[1] |
戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34.
|
[2] |
吴继阳, 郑凯琪, 杨婷婷, 等. 污泥生物炭对土壤中Pb和Cd的生物有效性的影响[J]. 环境工程学报, 2017, 11(10): 5757-5763. doi: 10.12030/j.cjee.201612044
|
[3] |
王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102. doi: 10.12030/j.cjee.202001001
|
[4] |
ZHENG G, WANG X K, CHEN T B, et al. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments[J]. Environmental Research, 2020, 185: 109431. doi: 10.1016/j.envres.2020.109431
|
[5] |
BARRY D, BARBIERO C, BRIENS C, et al. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge[J]. Biomass and Bioenergy, 2019, 122: 472-480. doi: 10.1016/j.biombioe.2019.01.041
|
[6] |
DOU X M, CHEN D Z, HU Y Y, et al. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal[J]. Journal of Hazardous Materials, 2017, 321: 132-145. doi: 10.1016/j.jhazmat.2016.09.010
|
[7] |
LEE J W, HAWKINS B, DAY D M, et al. Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration[J]. Energy & Environmental Science, 2010, 3: 1695-1705.
|
[8] |
HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269. doi: 10.1016/j.watres.2018.01.009
|
[9] |
WANG Z P, XIE L K, LIU K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438. doi: 10.1016/j.wasman.2019.04.033
|
[10] |
KHAN S, CHAO G, WAQAS M, et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47: 8624-8632.
|
[11] |
JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050
|
[12] |
CHENG Y, LUO L, LV J T, et al. Copper speciation evolution in swine manure induced by pyrolysis[J]. Environmental Science & Technology, 2020, 54(14): 9008-9014.
|
[13] |
LI S H, ZOU D S, LI L C, et al. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks[J]. Chemosphere, 2020, 247: 125962. doi: 10.1016/j.chemosphere.2020.125962
|
[14] |
CHEN Z E, LUO L, XIAO D Y, et al. Selected dark sides of biomass-derived biochars as environmental amendments[J]. Journal of Environmental Sciences, 2017, 54: 13-20. doi: 10.1016/j.jes.2016.06.004
|
[15] |
李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3): 1392-1399.
|
[16] |
LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248: 128-134. doi: 10.1016/j.cej.2014.03.021
|
[17] |
HE E K, YANG Y X, XU Z B, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253. doi: 10.1016/j.scitotenv.2019.04.037
|
[18] |
XU Y G, QI F J, BAI T X, et al. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars[J]. Journal of Hazardous Materials, 2019, 380: 120870. doi: 10.1016/j.jhazmat.2019.120870
|
[19] |
环境保护部. 土壤和沉积物金属元素总量的消解 微波消解法: HJ 832-2017[S]. 北京: 中国环境科学出版社, 2017.
|
[20] |
环境保护部. 土壤8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法: HJ 804-2016[S]. 北京: 中国环境科学出版社, 2016.
|
[21] |
WOOLSON E A, AXLEY J H, KEARNEY P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society of America Journal, 1971, 35(1): 101-105. doi: 10.2136/sssaj1971.03615995003500010030x
|
[22] |
LUO L, MA Y B, SANDERS R L, et al. Speciation and transformation of phosphorus in three long-term fertilized Chinese soils using chemical fractionation and P K-edge XANES spectroscopy[J]. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226. doi: 10.1007/s10705-017-9830-5
|
[23] |
环境保护部. 土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法: HJ 889-2017[S]. 北京: 中国环境科学出版社, 2017.
|
[24] |
BOIM A G F, MELO L C A, MORENO F N, et al. Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils[J]. Journal of Environmental Management, 2016, 170: 21-27.
|
[25] |
生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018.
|
[26] |
农业农村部. 生物炭基有机肥料: NY/T 3618-2020[S]. 北京: 中国农业出版社, 2020.
|
[27] |
国家市场监督管理总局, 中国国家标准化管理委员会. 农用污泥污染物控制标准: GB 4284-2018[S]. 北京: 中国标准出版社, 2018.
|
[28] |
LOCK K, JANSSEN C R. Influence of aging on metal availability in soils[J]. Reviews of Environmental Contamination and Toxicology, 2003, 178: 1-21.
|
[29] |
XIAO Z H, YUAN X Z, LI H, et al. Chemical speciation, mobility and phytoaccessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge[J]. Science of the Total Environment, 2015, 536: 774-783. doi: 10.1016/j.scitotenv.2015.07.126
|
[30] |
ANAWAR H M, RENGEL Z, DAMON P, et al. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants[J]. Environmental Pollution, 2018, 233: 1003-1012. doi: 10.1016/j.envpol.2017.09.098
|
[31] |
TANG X Y, LIM M P, McBRIDE M B. Arsenic uptake by arugula (Eruca vesicaria, L.) cultivars as affected by phosphate availability[J]. Chemosphere, 2018, 195: 559-566. doi: 10.1016/j.chemosphere.2017.12.110
|
[32] |
SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513-533. doi: 10.1016/j.chemosphere.2017.03.074
|
[33] |
郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. doi: 10.12030/j.cjee.201507083
|