新型真空膜渗透结晶工艺初探

孟芸翊, 李魁岭, 俞灵, 张勇, 刘泓锌, 王军. 新型真空膜渗透结晶工艺初探[J]. 环境工程学报, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142
引用本文: 孟芸翊, 李魁岭, 俞灵, 张勇, 刘泓锌, 王军. 新型真空膜渗透结晶工艺初探[J]. 环境工程学报, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142
MENG Yunyi, LI Kuiling, YU Ling, ZHANG Yong, LIU Hongxin, WANG Jun. Preliminary study on a novel vacuum membrane percrystallization process[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142
Citation: MENG Yunyi, LI Kuiling, YU Ling, ZHANG Yong, LIU Hongxin, WANG Jun. Preliminary study on a novel vacuum membrane percrystallization process[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142

新型真空膜渗透结晶工艺初探

    作者简介: 孟芸翊(1993—),女,硕士研究生。研究方向:膜及膜分离技术。E-mail:785809216@qq.com
    通讯作者: 王军(1975—),男,博士,研究员。研究方向:功能膜制备及应用等。E-mail:junwang@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(51978651);中国科学院饮用水科学与技术重点实验室专项(20Z07KLDWST);国家能源集团科技创新项目(GJNY-18-62)
  • 中图分类号: X703

Preliminary study on a novel vacuum membrane percrystallization process

    Corresponding author: WANG Jun, junwang@rcees.ac.cn
  • 摘要: 真空膜渗透结晶工艺(vacuum membrane percrystallization, VMPC)是一种新型膜结晶工艺,可同步实现溶质的结晶及其与溶剂的分离回收。以NaCl溶液为目标物系,对VMPC过程的原理进行了分析,初步考察了进料液温度、浓度和操作压力对该工艺产能的影响。结果表明:VMPC过程是膜渗透和真空压差闪蒸结晶的协同作用的过程,随进料液温度的升高,结晶盐通量和水通量均增大;随进料液浓度的升高,结晶盐通量增大,水通量降低;而操作压力对工艺产能影响较小,但对生成晶体的形貌影响显著;当进料液温度为34 ℃,进料质量分数为25%,操作压力为0.5 kPa时,可获得高达8.04 kg·(m2·h)−1的盐通量和30 L·(m2·h)−1的水通量,远高于现有太阳能驱动膜结晶技术的产能。针对现有膜滤浓缩液类高浓盐水结晶工艺流程复杂、能耗高、效率和产能低的问题,VMPC工艺为新型高效处置技术的开发及应用提供了可行的解决方案。
  • 随着工业化和城镇化的加速推进,对废水的集中处理备受关注[1]。1932年开始应用的Wuhrmann工艺是最早的脱氮工艺,称之为O/A工艺,遵循硝化、反硝化的流程顺序而设置[2]。然而,在硝化过程中需要供氧,反硝化过程中需要外加碳源,这造成了能耗和碳源的双重浪费。对此,将生物单元的顺序进行倒置,便产生了A/O工艺,A/O工艺成为最早使用的生物脱氮技术。这是工艺单元不同排列顺序构成组合工艺的开端,后续发展的废水生物处理工艺几乎均为厌氧、缺氧/水解、好氧单元的组装(图1)。典型的工艺有A/A/O和O/A/O,组合工艺中的不同单元反应器排序会影响碳源利用和脱氮效果,因此,需要根据废水组成与处理目标选择合适的工艺技术。

    图 1  前置厌氧与前置好氧工艺的演化配置
    Figure 1.  Evolutionary configuration of pre-anaerobic and pre-aerobic processes.

    厌氧置前的工艺可以控制碳源转化为小分子有机物或者甲烷,提高废水的可生化性,为后续反硝化反应提供碳源。HAO等[3]采用A/A/O工艺处理制革废水,考察了沿程溶解性有机物的浓度变化,发现A1的厌氧水解单元能优先去除小分子量的物质和蛋白质,后续的A/O工艺可更彻底地去除残余有机物。O/A/O工艺可在O1单元反应器中好氧降解部分有机物,实现含氮有机物的氨化,有助于硝化反应的实现。李国令等[4]对比了O/A/O和A/O工艺处理同一城镇污水的结果,在O1单元反应器中降解了大部分有机物,可为O2提供良好的硝化环境,因此,O/A/O脱氮效果优于A/O工艺。A/A/O工艺对高毒性工业废水的处理不具有优势,这是因为A1中的微生物增殖速度慢,难以消除毒性抑制作用。兼顾脱氮和除磷是A/A/O工艺的特征,脱氮效率受回流比的影响,无法实现完全脱除总氮,也存在着与除磷菌在碳源利用分配之间的矛盾。然而,前置好氧的O/A/O工艺因大幅度削减了毒性物质而有利于后续单元硝化菌的生长。与A/A/O工艺不同的是,该工艺不能利用废水中存在的易降解有机物作为碳源进行反硝化脱氮,造成一定程度的碳源浪费。由此可见,前置厌氧或者前置好氧对后续的脱氮工艺有着不同的影响机制,A/A/O工艺多用于生活污水[5-6],而O/A/O工艺可能更适合于工业废水[7]

    焦化废水是典型的高碳氮比工业废水,含有多种高浓度有毒物质。其中的有机污染物主要包括酚类[8]、苯系物、杂环芳烃和多环芳烃等物质[9];其无机物中,S2-、SCN、CN等均为典型的毒性物质,并且对废水的COD值有较大的贡献[10]。LI等[11]研究了在相同水力停留时间下A/A/O与A/O工艺分别对焦化废水中COD和NH4+-N的去除效果,发现两者的去除率几乎相同,但A/A/O比A/O工艺对总氮的去除效果更好。汤清泉等[12]比较了A/A/O与O/A/O工艺对焦化废水的处理效果,认为碳氮比是决定二者对总氮去除效果的关键因素。当碳氮比为15~20时可以选择A/A/O工艺,当碳氮比为20~35时则O/A/O工艺效果更好。其原因是:前置好氧单元可以去除高碳氮废水中的有机物而降低后续处理的负荷。本课题组在长期实践的基础上开发了针对焦化废水处理三污泥系统的好氧-水解-好氧流化床脱氮工艺(命名为O/H/O工艺,其中,O1为除碳氨化单元,H为水解脱氮单元,O2为完全硝化单元) [13-15],已有 5个实际工程应用案例,最长运行时间达到12年。O/H/O工艺具有独特的三相分离器,可以保证在不需要污泥回流的情况下实现各个单元反应器独立的污泥特征和生物量,节省了能耗,并促进了污泥生态与水质环境的相容性[16]。新型结构生物三相流化床作为O1反应器,在进水有机负荷达到2.4 kg ·(m3·d)−1 的运行情况下,其耗氧有机物的去除率可以达到93.0%以上,反应器中氧的利用率为50%~60%。面对高毒性、高浓度的焦化废水,A/A/O工艺需要1~2倍稀释后才能进入生物系统,而O/A/O或O/H/O工艺则不需要稀释。

    厌氧、水解、好氧单元不同顺序的排列组合构成了不同的废水生物处理工艺技术。在废水性质转化方面,厌氧单元可提高B/C值[17],而好氧单元可降低B/C值,分别有利于异养反硝化与硝化反应;在脱氮模式中,要考虑硝化反硝化[18]、短程硝化反硝化[19]、厌氧氨氧化[20]、自养反硝化[21]、好氧反硝化[22]等原理的选用、协同及条件控制。A/A/O工艺和O/A/O工艺都需要回流才能保持反应器内的污泥浓度,A/A/O工艺的运行属于单污泥系统,O/A/O工艺中设置了2个二沉池,属于双污泥系统,而O/H/O工艺属于三污泥系统。根据废水的性质选择合适的工艺,可以在达标排放的基础上实现能耗与物耗的减量化。由于目前缺乏不同工艺特征的比较,为此,本文分析了不同工艺的碳源利用模式和脱氮模式,提出了一种代表性的焦化废水组成并通过研究A/A/O、O/A/O、O/H/O的组合工艺对焦化废水中核心污染物的去除及其能耗分配关系,阐明了工艺技术选择的原则,为复杂工业废水生物处理技术的工艺优选提供参考。

    本课题组对国内38个焦化厂进行了实地调查和数据采集,分析了焦化废水的水质特征与地域差异的关系,发现华北、华中、华东地区废水中的COD值略高,华中和西南地区废水的氨氮浓度略低[23]。焦化废水中的含氮物质主要由氨氮、有机氮、SCN、CN等组分构成,由于蒸氨工艺的差异,含氮物质的比例各有不同。综合国内外的焦化废水原水水质[24-26],结合我们的调查,为了消除差异性和增强可比性,本文定义代表性的焦化废水组成为: COD为4 000 mg·L−1,苯酚、NH+4-N、SCN、CN、S2−以及总氮的质量浓度分别为800、 100、 500、 50、 50 和280 mg·L−1

    A/A/O工艺借鉴宝武韶钢公司的运行数据,水量为60 m3·h−1,3个单元反应器的水力停留时间分别为34、22和52 h,COD负荷分别为1.22、1.46和0.47 kg·(m3·d)−1;O/H/O工艺参考实验室和焦化厂的运行数据[27-28],废水处理量为60 m3·h−1,3个单元反应器的水力停留时间分别为36、40和24 h,COD负荷分别为2.30、0.38和0.55 kg·(m3·d)−1;选取韩国某厂实验室数据作为O/A/O工艺的案例[29],实验规模为0.03 L·h−1,3个反应器的水力停留时间分别为28.8、12和19.2 h,进水中添加KH2PO4和Na2CO3以维持碱度,在缺氧池中加入3倍总氮浓度的甲醇作为碳源,工艺装置总水力停留时间为2.5 d。通过实际与假设相结合的方法进行分析,以3个焦化厂的实际废水数据(见表1)来剖析不同工艺的碳源利用和脱氮模式。O/A/O和O/H/O工艺的反应器排列顺序相同,反应器的性能和运行模式不同。因此,在分析碳源利用和脱氮模式时只考虑A/A/O与O/A/O的对比,而在能耗分析时,再考虑O/A/O与O/H/O的差异性。

    表 1  3种工艺实际运行水质
    Table 1.  Actual operating water quality in three processes mg·L−1
    工艺COD挥发酚NH+4-NSCNCN
    A/A/O1 727±60742±69173±12175±1826.2±4.5
    O/A/O2 300±100635±15235±15375±25-
    O/H/O3 451±215973±74245±15450±1725±3
      注:以集水调池的水质作为生物上水。
     | Show Table
    DownLoad: CSV

    根据污染物的降解途径计算了污染物的COD当量和TN当量,结果见表2,在生物系统里,SCN和CN中的氮转化为氨氮[30-31]

    表 2  不同污染物对COD和总氮的贡献
    Table 2.  Contribution of various pollutants to COD and nitrogen mg·mg-1
    当量挥发酚SCNCNS2−NO3NO2
    COD当量2.3801.1000.6152.000-0.348
    N当量-0.2410.538-0.2260.304
     | Show Table
    DownLoad: CSV

    通过分析不同污染物对COD和总氮的贡献,检验废水组成的合理性。如式(1)所示,废水中的含氮量主要由NO3NO2NH+4、SCN、CN以及其他有机氮提供。如式(2)所示,废水中的COD主要由有机物和还原性无机离子构成,其中,挥发酚、苯系物、SCN、S2−的贡献比例比较大,部分难降解的有机物也导致生物出水中检出较高的COD值。

    CTN= 0.226CNO3+0.538CCN+0.241CSCN+CNH+4N+0.304CNO2+C其他含氮物质 (1)
    CCOD= 2.380Cphenol+1.100CSCN+0.615CCN+2.000CS2+0.348CNO2+C其他有机物 (2)

    式中:CTNCNO3CNO2CCNCSCNCNH+4-NC其他含氮物质分别表示总氮、硝酸根、亚硝酸根、氰化物、硫氰化物、氨氮以及其他含氮物质的质量浓度,mg·L−1CCOD为废水中耗氧有机物(以COD计)的质量浓度,mg·L−1CphenolCS2−C其他有机物分别表示废水中苯酚、硫离子以及其他有机物的质量浓度,mg·L−1

    在每一个单元反应器的出水中,都通过以上的方法进行检验,以确定废水组成的合理关系。

    根据式(3)~式(7)计算A/A/O工艺中每个反应器对污染物i总体去除的贡献率,分别以PiA1PiA2PiO表示。根据式(8)~式(13)计算O/A/O每个反应器对污染物i总体去除率,分别以PiO1PiAPiO2表示。

    PiA1=(1+R1)×CiA1-I-CiA1-ECi0×100% (3)
    PiA2=(1+R1+R2)×CiA2-I-CiA2-ECi0×100% (4)
    PiO=(1+R1+R2)×CiO-I-CiO-ECi0×100% (5)
    CiA2-I=(1+R1)×CiA1-E+R1×CiO-E1+R1+R2 (6)
    CiO-I=CiA2-E (7)
    PiO1=(1+R3)CiO1-I-CiO1-ECi0×100% (8)
    PiA=(1+R4+R5)×CiA-I-CiA-ECi0×100% (9)
    PiO2=(1+R4+R5)×CiO2-I-CiO2-ECi0×100% (10)
    CiO1-I=Ci0+R3CiO1-E1+R3 (11)
    CiA-I=CiO1-E+(R4+R5)×CiO2-E1+R4+R5 (12)
    CiO2-I=CiA-E (13)

    式中:i为各种污染物(COD、苯酚、硫氰化物、氰化物、氨氮、亚硝酸根、硝酸根和总氮)。R1R2分别为A/A/O工艺中污泥回流比和硝化液回流比,污泥回流比取值1,硝化液回流比取值3;R3R4R5分别为O/A/O工艺中初沉池回流至O1的污泥回流比、二沉池回流至A的污泥回流比以及硝化液回流比,均取值为1。C0i为未处理废水中污染物i的质量浓度,mg·L−1CiA1ICiA1ECiA2ICiA2ECiOICiOECiO1ICiO1ECiAICiAECiO2ICiO2E分别表示A1、A2、O反应器和O1、A、O2反应器中污染物i的进水和出水的质量浓度,mg·L−1

    排除水力停留时间对工艺对比造成差异,假设A/A/O与O/A/O工艺具有相同的总水力停留时间,结合文献调研和实际考虑,每个工艺各个反应器的体积比为1:1:2,处理水量为60 m3·h−1

    污染物在反应器中会进行到氨化碳氧化、亚硝化氮氧化或硝化氮氧化3种不同的处理阶段,不同阶段的耗氧量分别根据式(14)~式(16)进行计算。

    OS=[aKCODCCOD+CDO]Q24 000 (14)
    OS=[aKCODCCOD+b(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)CDO]Q24 000 (15)
    OS=[aKCODCCOD+c(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)CDO]Q24 000 (16)
    Kd=(1-NoNi)×100% (17)

    式中:Q为生物系统进水量,m3·d−1abc分别为氧化COD、氨氮到亚硝氮、氨氮到硝态氮的有关的耗氧系数,在本研究中为1.4、3.43、4.57;Os为好氧单元的理论需氧量,kg·h−1CCOD为耗氧有机物(以COD计)的质量浓度,mg·L−1CDO为好氧单元溶解氧的质量浓度,mg·L−1KCOD为COD去除率,%;RsRd分别为活性污泥和硝化液回流比;CNCCNCSCN分别为以脱氮为目标的好氧池中含氨氮、氰化物、硫氰化物的质量浓度,mg·L−1Kd为反硝化率,%;NiNo分别为脱氮系统进、出水总氮的质量浓度,mg·L−1

    A/A/O中的好氧单元主要发挥硝化作用,通过式(16)和式(17)计算可知其耗氧量;O/A/O工艺中,O1易氧化降解耗氧有机物(以COD计),不考虑硝化作用,耗氧量通过式(14)计算可知;在O2中进行硝化作用,耗氧量通过式(16)和式(17)计算可知;O/H/O工艺与O/A/O工艺相似,但不需要污泥回流,因此,在计算O/H/O工艺中O2的曝气能耗时,式(16)的污泥回流比Rs为0。

    污泥回流的能耗是A/A/O与O/A/O工艺所必不可少的,只有通过污泥回流才能保证生物池活性污泥的浓度,回流泵的能耗通过式(18)进行计算。

    WS=KQH (18)
    K=k183.5 (19)

    式中:Ws为污泥回流泵的能耗,kW·h;K是安全系数,由式(19)计算,当水泵功率和污泥回流泵功率超过5 kW时,式(19)中的k取值1.15[32]Q为回流的流量,m3·d−1H为水泵总水头损失,m。

    由于回流污泥含水率高达99.5%~99.9%,所以,污泥回流与废水回流的能耗以相同方法计算。A/A/O与O/A/O工艺的回流比已经明确,O/H/O工艺仅存在硝化液回流,回流比为1,能耗估算值可由泵能耗的公式给出。A/A/O工艺中污泥回流至厌氧池的水头损失为1.5~2 m,硝化液回流至缺氧池的水头损失为1~1.2 m。O/A/O工艺有2个污泥回流系统,二沉池至O1的水头损失为0.5~0.8 m,另一个二沉池至A的水头损失为1~1.5 m。O/H/O不存在污泥回流,硝化液回流的水头损失为1~1.6 m。

    首先考察了2种工艺中COD的沿程变化,分析2种工艺的碳源利用模式差异。由图2可以看出,在A/A/O工艺中,O单元对耗氧有机物(以COD计)的去除效果最好,A1的水解作用使难降解有机物断链、开环,转化为小分子有机酸,为后续的反硝化脱氮所利用;而在O/A/O工艺中,O1对COD的去除率高达90.0%以上,使后续单元工艺主要为脱氮服务。两者不同的是,A/A/O工艺通过微生物反硝化作用去除了废水中的耗氧有机物,而O/A/O工艺则通过生物耗氧直接氧化废水中的耗氧有机物。

    图 2  各工艺沿程COD的变化
    Figure 2.  COD changes along each process.

    LI等[11]对比了A/A/O与A/O工艺的处理效果,指出2个工艺对于有机物和氨氮的去除效果几乎相同,但A/A/O工艺更有利于总氮脱除,这是因为A/A/O工艺设置了产酸阶段。CHAKRABORTY等[33]发现,在A1中COD的去除率为5%~11%,CN降解率为35.0%,没有发现苯酚降解的中间产物和甲烷的生成。王子兴等[34]指出,在A/A/O-MBR工艺处理焦化废水的过程中,单个反应器COD去除率分别为9.2%、73.5%、14.7%;经过GC/MS检测分析,苯酚在A1中的降解率为26.7%,而含氮杂环化合物以及苯系物的去除率分别为49.5%和65.8%。此外,有研究[35]表明,在A/A/O工艺中,A1单元去除污染物效果不明显,COD去除率低于10%;A2单元的COD去除率最高,尤其是易降解有机物在此阶段几乎全部被利用;在O单元中,利用异养微生物好氧氧化残留的有机物,CN和SCN在O2中也被彻底去除。SHARMA[36]研究了厌氧、缺氧、好氧单个单元的处理效果时发现,好氧单元可去除83.3%的CN 和62.0%的COD;当加入氰化物后,好氧单元中COD的去除率下降到52.0%。由此可见,废水组成的复杂性会影响单组分的去除效果。马昕等[37]采用O/A/O工艺处理焦化废水时发现,在O1停留时间为16 h时对COD的去除率达到75.0%,这与我们调查的工艺结果相似。由图2(b)可见,在O/A/O工艺中,O1对COD的去除率很高,浪费了部分有机碳源,而添加的外部有机碳源是造成A单元COD去除率降低的原因之一[38];另一方面,O1中的氨化过程可为O2提供良好的硝化环境。以上研究结果表明,2种工艺对废水中碳源的利用在原理上存在非常大的差异。

    脱氮的效果可通过协调碳源、电子供受体以及DO等因素来实现,故根据2种工艺中氨氮浓度沿流程变化来分析不同脱氮模式的有效性。 由图3可见,虽然O/A/O工艺进水氨氮偏高,但出水氨氮却很低,在O2单元中已经彻底硝化。可见,前置好氧工艺可以为后续O2创造良好的硝化条件。A1去除了27.0%的氨氮,而O1去除了87.5%的氨氮,即在A1中仍然保留着较高浓度的氨氮,而在O1中氨氮几乎完全硝化,这与在进水中是否添加磷盐有关[39]。O1、A1中氨氮浓度的变化以及微生物同化、有机氮氨化、氰化物及硫氰化物氨化等可以同时发生。在工程研究中发现,O1中还存在亚硝化和硝化的可能性[17]

    图 3  各工艺沿程铵离子浓度变化
    Figure 3.  Change in NH4+-N concentration along each process.

    焦化废水中的含氮物质除了铵离子/氨分子外,还有SCN、CN以及含氮有机物。ZHANG等[40]发现,A/A/O中各个单元对氨氮的去除率分别为-2.5%、3%、97%,A1出水中氨氮升高的原因是其他含氮物质氨化作用所致。吕鹏飞等[41]的研究表明,2种流化床工艺的前置厌氧单元对氨氮有少量的降解,氨氮去除率分别为18.1%和35.6%,体现出反应器对于处理效果的影响不同,流化床反应器面对复杂毒性废水比传统的沸腾床反应器表现出更好的耐毒性抑制作用。经过缺氧反应器A2后,氨氮浓度的变化主要有回流导致的直接稀释以及微生物降解的共同作用。GUI等研究了2个A/A/O系统,在硝化液回流比为200%的情况下,氨氮的质量浓度由250 mg·L−1降低至80 mg·L−1[42]。易欣怡等[28]考察了O/H/O工艺的焦化废水处理,发现O1单元能够把氰化物、硫氰化物氧化为氨氮,有机氮全部氨化,从而造成O1出水氨氮浓度的升高;而在H单元中,环状含氮化合物通过水解作用可实现分子开环转变为氨氮,回流液中的硝态氮实现反硝化转变为氮气;接下来的O2单元能够将残余低价状态的含氮化合物转变为硝态氮,所以对氨氮的去除非常彻底。由于多种含氮物质之间具有不同价态转化机制,工艺中合理安排碳源进行脱氮,以及通过回流/超越或微生物功能调控实现总氮的彻底去除将是工艺理论中具有挑战性的研究方向。

    1)各单元反应器的去除效率。能耗分配受工艺的单元反应器组合的影响。单元反应器的不同组合顺序可构成多样的生物处理工艺,前置好氧与厌氧工艺对同一种废水会产生不同的污染物去除效率,较优的工艺应该是在达标排放(即核心污染物去除)的基础上实现时间和空间上的减量化,还要降低二次污染。图4反映了A/A/O和O/A/O工艺污染物浓度的沿程变化。沿流程图中的百分比数据代表反应单元出水污染物浓度占进水中污染物浓度的比例。除了内部降解外,还要考虑因回流引起的反应器内污染物浓度的稀释作用。结合文献调查,综合实际情况,总结出代表性焦化废水典型污染物在单元反应器中的去除效率,如图5所示。其中,假设SCN和CN在O/A/O工艺的O1中完全氨化。

    图 4  典型污染物含量沿各工艺流程的变化
    Figure 4.  The variation of typical pollutant content along each process.
    图 5  典型污染物在各工艺单元反应器中的降解率
    Figure 5.  The degradation rate of typical pollutants in each process unit reactor.

    2)不同工艺的能耗分配。废水中的污染物在不同工艺各单元反应器中的总体去除率如图6所示。A/A/O工艺对污染物的降解主要集中在O单元中,O/A/O工艺的降解则集中在O1单元中。这两者的差异反映了前置好氧工艺与前置厌氧工艺在曝气能耗上的差别。通过式(14)~式(16)计算,各工艺需氧单元的曝气量如图7所示。A/A/O工艺中O单元的需氧量为102.7 kg·h−1,O/A/O中O1和O2的需氧量分别为260.8 kg·h−1和35.1 kg·h−1。由图7可看出,O/A/O工艺的O1大部分的曝气量是用来去除易降解有机物,因此,需氧量较高。但当废水中有机物的浓度很低时(当不考虑有机物耗氧时),A/A/O工艺氧化含氮物质需氧量为100.4 kg·h−1,O/A/O工艺氧化含氮类物质的需氧量为83.9 kg·h−1。因此,对于脱氮性能,O/A/O工艺比A/A/O工艺能耗更高。这归因于:在O1中解除了SCN、CN等有毒物质对A反应器微生物的抑制作用,使得在A中降解的含氮物质相对较多,可以实现O2单元的低能耗硝化反应。因此,当废水中的耗氧有机物的预处理较为彻底时,前置好氧工艺可以实现低耗能高效率脱氮。O/H/O工艺在保留了O/A/O工艺优点的基础上,实现了反应器内部流态化的颗粒污泥特征,氧传质系数是一般活性污泥的2倍左右[43],因此,与O/A/O工艺相比,O/H/O工艺在耗氧量的节能方面更能体现出优势。本课题组根据多年的O/H/O运行经验数据统计得出,在仅考虑脱氮目标时,O/H/O工艺的需氧量约为53.26 kg·h−1

    图 6  不同工艺单元反应器对各污染物的总体去除率
    Figure 6.  Overall removal rate of various pollutants in the unit reactor of different process.
    图 7  各工艺段的曝气量分配
    Figure 7.  Aeration distribution of each process section.

    图4所示的计算可得出,在A/A/O工艺中,进入A2的废水COD为1 140.0 mg·L−1,硝化液回流的硝酸根为84.4 mg·L−1,在A2中主要去除总氮中的硝酸根,其余的氨氮、SCN、CN等含氮物质只是发生了少量的生物降解,经过A2可去除80.0 mg·L−1左右的硝态氮,满足微生物生长的碳源需求量为723.2 g·m−3 (缺氧条件下C∶N∶P = 200∶5∶1),因为废水中含有一定量的有机物,故实际可以供微生物利用的量约为540.0 g·m−3,需要外加碳源122.1 g·m−3 (以甲醇计)。在O/A/O工艺中,进入A单元的废水COD值为633.3 mg·L−1,其总氮类型为硝酸根和氨氮,浓度分别为93.9 mg·L−1和50.0 mg·L−1,在A中降解90.0 mg·L−1的硝态氮,满足微生物正常生长的碳源需求量约为813.6 g·m−3,进入A的废水中可降解有机物的含量约为83.3 g·m−3,不足的碳源需要从外部添加486.9 g·m−3(以甲醇计)。以上的讨论是在不考虑O/A/O工艺中有超越进水的情况,但在实际工程中,往往会使部分集水调节池中的出水以超越O1池的方式进入A池,这样既可以降低O1的曝气能耗,又可减少A单元的外部碳源的需求量。当超越1/3处理量的废水进入A单元时,O1的曝气量变为174.0 kg·h−1 ,超越之后A单元进水的有机物浓度达到977.8 mg·L−1,可供微生物利用的量约为427.8 mg·L−1,因此,折合计算1 m3废水仅需要257.2 g的外加碳源,节省了229.7 g的外部碳源(以甲醇计)。可以看出,O/A/O系统的模式多样性,可以实现总氮的低能耗高效率去除。在实际运行的O/H/O工艺中,由于不需要污泥回流,每个反应器可以灵活调控,因此,O/H/O工艺比O/A/O工艺更容易实现厌氧氨氧化反应,并且可以利用FeS进行自养反硝化脱氮而节省能耗,故实际的O/H/O工艺的外部碳源需求约0~220 g·m−3,具体的需求量取决于厌氧氨氧化与自养反硝化的耦合性能[44]

    污泥回流可以保证生物单元中的污泥浓度即生物量。通过式(18)和式(19)的计算,A/A/O工艺的污泥回流和硝化液回流的总能耗约为42.37 kW·h;O/A/O系统污泥回流与硝化液回流的总能耗约为23.55 kW·h;O/H/O系统只存在硝化液回流,回流能耗约为9.42 kW·h。除了曝气和回流的能耗外,考虑综合因素,3种工艺归纳为2大类:厌氧-缺氧-好氧以及好氧-水解/缺氧-好氧。由于反应器的设置不同,好氧-水解/缺氧-好氧工艺又可以分类为O/A/O和O/H/O,分化出二污泥法和三污泥法,反应器的类型决定了工艺的耗能。若只考虑生物阶段的处理,废水COD在3 000~4 000 mg·L−1、铵离子质量浓度在100~200 mg·L−1时,A/A/O的处理费用为6~8 元·t−1[45,46],O/A/O的处理费用为7~9 元·t−1 [47-49],而O/H/O流化床工艺的处理费用仅为4~5元·t−1,体现了不同技术的成本差异。

    单元工艺的摆放顺序不仅决定了整体工艺运行的能耗,还会对冲击负荷、系统中微生物菌落和处理效果产生很大的影响。李国令等[4]指出,热单胞菌属、脱氯单胞菌属是O/A/O工艺好氧池中的优势菌属;热单胞菌属、脱氯单胞菌属、球形红假单胞菌属是O/A/O工艺缺氧池中的优势菌属。WANG等也发现[50],热单胞菌属与硝酸盐还原酶基因呈正相关,对同时厌氧氨氧化-反硝化系统中的硝酸盐还原起重要作用。 WEI等[15]指出,丛毛单胞菌属在反应器O1中对COD去除起到了关键作用,有助于去除O1反应器中的NH4+-N;硫杆菌则在H反应器中起着主要的反硝化作用,AOB和NOB(亚硝化单胞菌和硝化螺菌)对反应器中硝化作用的贡献最大。三污泥法的O/H/O工艺各单元在污染物组成、去除、功能和微生物群落等方面存在显著进步,有望实现厌氧氨氧化脱氮与深度脱氮的结合,也表明废水水质和反应器的组合对微生物功能分布具有调控功能。

    根据污泥回流的设置与否,A/A/O、O/A/O、O/H/O工艺可以分为单污泥系统、双污泥系统及三污泥系统,3个工艺的主要区别见表3。据报道,A/A/O工艺中A1单元对COD去除效率小于10%,检测不到甲烷的产生[51]。因此,A/A/O工艺仅仅在缺氧和有氧反应器中实现了对COD的去除。由于回流的存在,A/A/O工艺表现为单污泥特征,异养细菌具有较高的比生长速率,因污泥排放量高而导致其在处理高COD/TN废水时,大量自养硝化细菌被排洗。前置好氧工艺对高浓度毒性废水有很好的抗负荷冲击能力,并且O/H/O工艺中的新型结构流化床反应器的强化传质功能与污泥原位分离原理加强了各单元反应器中的微生物能力[22]。在H单元中,根据投加的电子供体不同而具有多种反硝化模式:如利用O1池的剩余COD作为碳源及其他电子供体进行异养反硝化脱氮;通过投加无机还原性电子供体以利用其作为营养源进行自养反硝化脱氮[21,52],还可以避免二次碳源的污染。另外,有研究表明,控制O1反应器在短程硝化水平,可使亚硝酸盐直接得到富集和积累,然后实现厌氧氨氧化模式脱氮,从而使工艺过程节能效果更好[17,19]。可见,复杂废水的脱氮模式多种多样,需要根据实际情况合理选择或耦合新原理,从而进一步实现低能耗、低物耗目标下的总氮去除。

    表 3  不同工艺系统的特点
    Table 3.  Characteristics of different process systems
    工艺污泥系统毒性物质的去除COD/TN脱氮途径能耗影响因素平均运行单价/(元·m-3)优点缺点
    A/A/O单污泥系统A1对大分子有机物的去除11.4异养反硝化一次回流、一次曝气7有利于含氮有机物的水解;反硝化可利用废水中有机物作为碳源不耐冲击负荷,受毒性抑制,需要稀释进水
    O/A/O双污泥系统O1对SCN、CN的去除及氨化12.5异养反硝化、自养反硝化二次回流、二次曝气8耐冲击负荷,进水不需要稀释;硝化效果好耗氧量大,污泥回流频繁,耗能多
    O/H/O三污泥系统O1对SCN、CN的去除及氨化13.8异养反硝化、自养反硝化、厌氧氨氧化及其耦合脱氮二次曝气4.5耐冲击负荷,颗粒污泥耐毒性抑制,硝化效果好,不需要沉淀池;不需要回流耗氧量大
     | Show Table
    DownLoad: CSV

    1)每处理1 m3设定浓度的焦化废水(不考虑O/A/O的超越进水),A/A/O和O/A/O工艺分别需要122.1 g 与486.9 g的外部碳源(以甲醇计)。当废水中的易降解有机物较少且只考虑脱氮目标时,O/A/O工艺的曝气需氧量为83.9 kg·h−1,A/A/O工艺的曝气需氧量为100.4 kg·h−1;当O/A/O工艺中有1/3的进水流量超越至A单元时,其碳源需求量由486.9 g·m−3减至257.2 g·m−3(以甲醇计),曝气量也将显著降低。

    2)由于废水组成的复杂性,污染物的降解效率除了受到彼此的相互制约外,工艺条件和反应器的设计也至关重要。具有高毒性、高碳氮含量的焦化废水,更适合于选择前置好氧的工艺。O/H/O工艺由于其独特的三相分离器的设置而节省了污泥回流部分的能耗,反应器中的颗粒污泥更加耐毒性抑制和抗冲击负荷,并且传氧速率高,工艺耗氧量仅为53.26 kg·h−1,外部碳源的消耗可以由486.9 g·m−3降至0~220 g·m−3

    3)反应器的高效性和可控性,使O/H/O工艺比O/A/O工艺更容易实现自养反硝化与异养反硝化协同脱氮、自养型短程反硝化与厌氧氨氧化的协同脱氮等其他脱氮途径,进而使O/H/O工艺成为一种更具潜力的低能耗、低物耗的生物脱氮技术工艺。针对不同的废水水质与物质组成特征,O/H/O工艺能够对不同功能的单元进行组合和编辑,从时间与空间、药剂与能耗、处理效率等方面追求更加丰富的优化模式,以满足各种不同的出水需求,特别是满足总氮浓度趋零的要求。

  • 图 1  AA-SNC分离层负载前后的无机陶瓷膜外观

    Figure 1.  Appearances of inorganic ceramic membrane before and after loading AA-SNC separation layer

    图 2  实验装置示意图

    Figure 2.  Diagram of the VMPC experimental set up

    图 3  VMPC过程典型现象图

    Figure 3.  Typical phenomena diagrams of VMPC process

    图 4  VMPC过程原理

    Figure 4.  Schematic diagram of the VMPC process

    图 5  进料液温度对水与NaCl结晶通量的影响

    Figure 5.  Influence of temperature of the feed solution on the water and crystallized NaCl flux

    图 6  进料液浓度对水与NaCl结晶通量的影响

    Figure 6.  Influence of concentration of the feed solution on the water and crystallized NaCl flux

    图 7  操作压力对水与NaCl结晶通量的影响

    Figure 7.  Influence of operating pressure on the water and crystallized NaCl flux

    图 8  不同操作压力下形成的NaCl晶体形貌

    Figure 8.  Morphology of crystallized NaCl under different operating pressures

  • [1] ZHANG C, SHI Y, SHI L, et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge[J]. Nature Communications, 2021, 12(1): 1-10. doi: 10.1038/s41467-020-20314-w
    [2] HUBE S, ESKAFI M, HRAFNKELSDOTTIR K F, et al. Direct membrane filtration for wastewater treatment and resource recovery: A review[J/OL]. [2021-03-01]. Science of the Total Environment, 2020, 710. https://doi.org/10.1016/j.scitotenv.2019.136375.
    [3] 罗金华. 钢铁工业废水零排放中的浓盐水处理技术[J]. 冶金动力, 2011(2): 57-59. doi: 10.3969/j.issn.1006-6764.2011.02.019
    [4] TONG T, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science and Technology, 2016, 50(13): 6846-6855. doi: 10.1021/acs.est.6b01000
    [5] CHOI Y, NAIDU G, NGHIEM L D, et al. Membrane distillation crystallization for brine mining and zero liquid discharge: Opportunities, challenges, and recent progress[J]. Environmental Science: Water Research & Technology, 2019, 5(7): 1202-1221. doi: 10.1039/C9EW00157C
    [6] MOTUZAS J, YACOU C, MADSEN R S K, et al. Novel inorganic membrane for the percrystallization of mineral, food and pharmaceutical compounds[J]. Journal of Membrane Science, 2018, 550: 407-415. doi: 10.1016/j.memsci.2017.12.077
    [7] MADSEN R S K, MOTUZAS J, VAUGHAN J, et al. Fine control of NaCl crystal size and particle size in percrystallisation by tuning the morphology of carbonised sucrose membranes[J]. Journal of Membrane Science, 2018, 567: 157-165. doi: 10.1016/j.memsci.2018.09.003
    [8] MADSEN R S K, MOTUZAS J, JULBE A, et al. Novel membrane percrystallisation process for nickel sulphate production[J]. Hydrometallurgy, 2019, 185: 210-217. doi: 10.1016/j.hydromet.2019.02.015
    [9] MADSEN R S K. Novel percrystallisation process by inorganic carbon membranes[D]. Brisbane: The University of Queensland, 2018.
    [10] HUANG J, SCHOLS H A, JIN Z, et al. Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate[J]. Carbohydrate Polymers, 2007, 67(1): 11-20. doi: 10.1016/j.carbpol.2006.04.011
    [11] ABURTO J, ALRIC I, THIEBAUD S, et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch[J]. Journal of Applied Polymer Science, 1999, 74(6): 1440-1451. doi: 10.1002/(SICI)1097-4628(19991107)74:6<1440::AID-APP17>3.0.CO;2-V
    [12] 任丽丽. 淀粉纳米晶的改性及其在热塑性淀粉复合材料中的应用[D]. 长春: 吉林大学, 2012.
    [13] 郝亚成. 蜡质马铃薯淀粉纳米晶的制备及改性研究[D]. 广州: 华南理工大学, 2018.
    [14] SAMUEL D W B, ZIVKOVIC T, BENES N E, et al. Electrolyte retention of supported bi-layered nanofiltration membranes[J]. Journal of Membrane Science, 2006, 277: 18-27. doi: 10.1016/j.memsci.2005.10.004
    [15] ELMA M, WANG D K, YACOU C, et al. High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications[J]. Desalination, 2015, 365: 308-315. doi: 10.1016/j.desal.2015.02.034
    [16] YANG H, ELMA M, WANG D K, et al. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation[J]. Journal of Membrane Science, 2017, 523: 197-204. doi: 10.1016/j.memsci.2016.09.061
    [17] 刘斌. 溶液闪蒸过程实验研究[D]. 大连: 大连理工大学, 2019.
    [18] JIANG X, LU D, XIAO W, et al. Interface-based crystal particle autoselection via membrane crystallization: From scaling to process control[J]. AIChE Journal, 2019, 65(2): 723-733. doi: 10.1002/aic.16459
    [19] 丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985.
    [20] MIYATAKE O, TOMIMURA T, IDE Y, et al. An experimental study of spray flash evaporation[J]. Desalination, 1981, 36(2): 113-128. doi: 10.1016/S0011-9164(00)88635-X
    [21] 赵冰超, 杨庆忠, 张丹, 等. NaCl溶液静态闪蒸传热特性实验研究[J]. 工程热物理学报, 2013, 34(10): 1874-1877.
    [22] 赵冰超, 杨庆忠, 张丹, 等. NaCl溶液静态闪蒸前后液膜浓度变化的实验研究[J]. 工程热物理学报, 2014, 35(7): 1357-1360.
    [23] 齐文, 郑绵平. 西藏盐湖卤水蒸发速率的实验与计算[J]. 地质学报, 2007, 81(12): 1727-1733. doi: 10.3321/j.issn:0001-5717.2007.12.014
    [24] 闵骞. 道尔顿公式风俗函数的改进[J]. 水文, 2005, 25(1): 37-41. doi: 10.3969/j.issn.1000-0852.2005.01.009
    [25] LI H, YAN Z, LI Y, et al. Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges[J]. Water Research, 2020, 177: 115770. doi: 10.1016/j.watres.2020.115770
    [26] 美国陶氏化学公司. FILMTECTM反渗透和纳滤膜元件产品与技术手册(2016版)[Z], 美国陶氏化学公司, 2016.
    [27] 杨庆忠, 刘光耀, 张丹, 等. NaCl溶液静态闪蒸的蒸发特性[J]. 化工学报, 2013, 64(11): 4068-4073.
    [28] EDWIE F, CHUNG T S. Development of simultaneous membrane distillation-crystallization (SMDC) technology for treatment of saturated brine[J]. Chemical Engineering Science, 2013, 98: 160-172. doi: 10.1016/j.ces.2013.05.008
    [29] ELIKBILEK M, ERSUNDU A, AYDIN S. Crystallization kinetics of amorphous materials[EB/OL]. [2021-03-01]. https://www.intechopen.com/books/advances-in-crystallization-processes/crystallization-kinetics-of-amorphous-materials.
  • 加载中
图( 8)
计量
  • 文章访问数:  5633
  • HTML全文浏览数:  5633
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-19
  • 录用日期:  2021-05-12
  • 刊出日期:  2021-07-10
孟芸翊, 李魁岭, 俞灵, 张勇, 刘泓锌, 王军. 新型真空膜渗透结晶工艺初探[J]. 环境工程学报, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142
引用本文: 孟芸翊, 李魁岭, 俞灵, 张勇, 刘泓锌, 王军. 新型真空膜渗透结晶工艺初探[J]. 环境工程学报, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142
MENG Yunyi, LI Kuiling, YU Ling, ZHANG Yong, LIU Hongxin, WANG Jun. Preliminary study on a novel vacuum membrane percrystallization process[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142
Citation: MENG Yunyi, LI Kuiling, YU Ling, ZHANG Yong, LIU Hongxin, WANG Jun. Preliminary study on a novel vacuum membrane percrystallization process[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2314-2321. doi: 10.12030/j.cjee.202103142

新型真空膜渗透结晶工艺初探

    通讯作者: 王军(1975—),男,博士,研究员。研究方向:功能膜制备及应用等。E-mail:junwang@rcees.ac.cn
    作者简介: 孟芸翊(1993—),女,硕士研究生。研究方向:膜及膜分离技术。E-mail:785809216@qq.com
  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院生态环境研究中心,高浓度难降解有机废水处理技术国家工程实验室,北京 100085
  • 3. 中国科学院大学,北京 100049
基金项目:
国家自然科学基金资助项目(51978651);中国科学院饮用水科学与技术重点实验室专项(20Z07KLDWST);国家能源集团科技创新项目(GJNY-18-62)

摘要: 真空膜渗透结晶工艺(vacuum membrane percrystallization, VMPC)是一种新型膜结晶工艺,可同步实现溶质的结晶及其与溶剂的分离回收。以NaCl溶液为目标物系,对VMPC过程的原理进行了分析,初步考察了进料液温度、浓度和操作压力对该工艺产能的影响。结果表明:VMPC过程是膜渗透和真空压差闪蒸结晶的协同作用的过程,随进料液温度的升高,结晶盐通量和水通量均增大;随进料液浓度的升高,结晶盐通量增大,水通量降低;而操作压力对工艺产能影响较小,但对生成晶体的形貌影响显著;当进料液温度为34 ℃,进料质量分数为25%,操作压力为0.5 kPa时,可获得高达8.04 kg·(m2·h)−1的盐通量和30 L·(m2·h)−1的水通量,远高于现有太阳能驱动膜结晶技术的产能。针对现有膜滤浓缩液类高浓盐水结晶工艺流程复杂、能耗高、效率和产能低的问题,VMPC工艺为新型高效处置技术的开发及应用提供了可行的解决方案。

English Abstract

  • 由于人口的增加、供水质量的下降、气候变化等原因,全球淡水需求急剧增长,水环境形势越发严峻[1]。中国也面临水资源短缺的重大挑战,2016年我国工业用水量达130.8×109 m3,约占总供水量的21.66%[2]。作为补充水资源的有效方式,工业废水的回收利用尤为重要。2005年《中国节水技术政策大纲》首次提出发展外排废水回用技术和零排放(zero liquid discharge, ZLD)技术[3],目前典型工业废水零排放系统一般由深度预处理单元、超滤-反渗透低盐废水脱盐单元、高盐废水脱盐单元、蒸发结晶单元组成。而工业废水零排放的技术关键,在于低盐废水脱盐单元所产生的膜滤浓缩液的进一步高效低耗脱盐及蒸发结晶[4]。相比而言,脱盐技术研究备受关注,但结晶技术进展缓慢。目前,实现结晶的方式主要有自然蒸发法、热法与冷冻法结晶器结晶法和膜蒸馏结晶法[1]。其中自然蒸发法容量有限,土地使用成本高,太阳能效率低;热法与冷冻法结晶器结晶法能耗高,设备成本高昂,反应器易腐蚀;膜蒸馏结晶法存在膜润湿、膜污染和膜结垢问题,这制约了膜蒸馏结晶技术的发展,因此,开发新的结晶技术意义重大[1, 5]

    2018年,澳大利亚昆士兰大学COSTA团队[6]报道了一种新型蒸发结晶工艺,即真空膜渗透结晶。这是一种发生在真空条件下的渗透蒸发结晶过程,在膜内外压力差的作用下,溶液渗透至无机陶瓷膜外表面形成一层液膜,随后溶剂在真空环境中瞬间蒸发,溶质在膜表面结晶并生长,直至自动脱落从而得到回收。

    相比于传统的结晶-过滤-干燥流程,VMPC工艺最大的优势是实现了同步蒸发浓缩与结晶,即在同一反应器内实现了盐和水的同步分离和回收,无需后续步骤,简化了工艺流程,节省了设备规模和成本投资[6]。且针对蒸发池和结晶器能耗高、效率低等问题,VMPC工艺通过引入膜界面和真空条件,显著提高了生产能力和能量利用率;更为重要的是,针对现有膜蒸馏结晶技术因膜结垢和膜润湿导致的通量衰减和截留率下降等问题,VMPC工艺采用膜渗透过程,无需考虑膜润湿的影响,同时将膜结垢(膜结晶)作为生产目的,促进膜结晶的发生,且因为结晶体的自动脱离机制,有效地规避了膜堵塞问题。通过技术经济层面的分析可见,VMPC工艺具有良好的技术优势和广阔的应用前景,未来必会成为分离与纯化领域的研究与应用热点。迄今为止,COSTA团队[6-9]通过在无机膜上负载碳化蔗糖分离层,主要探究了膜性能对VMPC过程的影响,具体包括:无机膜如何应用于结晶过程以及何种性质的无机膜能够应用于VMPC过程;膜的化学性质和制备条件对NaCl结晶形态的影响;无机碳膜对不同溶质结晶形态的影响。

    总体而言,目前VMPC工艺尚处于初步探索阶段,高性能功能化渗透结晶膜材料与工艺原理需系统研究;关键工艺参数及交叉影响因素需进一步明确、优化;工艺过程模拟和技术经济分析亟待推进。在应用前景方面,尤其是在典型分离与纯化及废水零排放领域,VMPC技术可与其他技术耦合(膜蒸馏-真空膜渗透结晶),实现优势互补,拓展与应用空间巨大。在蒸发结晶领域,VMPC技术有望实现短流程、提质、增效、降耗、资源化等多重目标,因此,有必要推进VMPC工艺的系统性研究。本研究以浓盐水蒸发结晶工艺创新为目标,以丰富VMPC技术体系,促进该技术进步为目的,开展了对VMPC工艺的初步探究,通过自制的乙酸酐改性淀粉纳米晶(modified starch nanocrystals with acetic anhydride, AA-SNC)无机陶瓷膜,阐述了VMPC发生的现象、过程和原理,并分别考察了进料液温度、浓度和操作压力对VMPC工艺的产能影响。

  • 实验材料包括:自制AA-SNC管式无机陶瓷膜,平均孔径为50 nm,长度为10 cm,外径为1 cm,内径为0.6 cm;玉米淀粉(试剂级);氯化钠、浓硫酸、乙酸酐、十二烷基磺酸钠和氯仿,以上均为分析纯级别试剂,所有试剂均购自于国药集团化学试剂有限公司。

  • 通过在管式α-Al2O3无机陶瓷膜外表面负载AA-SNC碳分离层制得AA-SNC无机陶瓷膜[10-13]。如图1所示,负载碳分离层后的膜外表面均匀致密,呈现典型的石墨亮黑色,其表面静态接触角为130°,其疏水表面有助于缓解由吸附水合离子导致的严重膜污染[14-16],在长期实验过程中未发现膜发生性能变化。孔径主要分布在10~30 nm。对AA-SNC膜进行渗透性能测试:在0.2 MPa压力下,AA-SNC膜的纯水通量为76.5 L·(m2·h)−1,质量分数为15%的NaCl溶液通量为67.6 L·(m2·h)−1

  • VMPC实验装置如图2所示。实验系统主要分为进料系统、渗透蒸发系统和冷凝回收系统。进料系统料液瓶置于恒温水浴中,将AA-SNC膜连入管路,进料液以错流方式流经管程,进料液流速为400 mL·min−1。渗透蒸发系统主要包括蒸发室,真空泵,压力调节装置和温度测量装置。其中真空泵为系统的核心部件,选用临海市永昊真空设备有限公司生产的DVP-12型直连高速旋片式真空泵,极限压力为10−4 Pa。将AA-SNC膜放置在2 000 mL密封抽滤瓶中,抽滤瓶与真空泵连接作为蒸发室。蒸发室置于恒温水浴中,热电偶探入到AA-SNC膜膜面附近以测量蒸发温度,数显压力表显示蒸发室内绝对压力,控制真空泵阀门(粗调)和抽滤装置针阀(细调)开度调节真空室内压力。冷凝回收系统将系统产生的水蒸汽进行冷凝回收。进料温度、蒸发温度、冷凝温度分别由3个水浴进行控制。实验过程中,所有压力均为实际压力(绝对压力)。压力的考察范围设置为0~100 kPa;温度的考察范围设置为10~35 ℃。

  • VMPC过程的传质通量指标为NaCl通量和蒸发冷凝水通量。通过称量实验前后减少的进料液质量,减去产生结晶盐的质量,计算所得的数值即为实验过程中纯水的真实产量,通过测量每次实验前后蒸发室的质量变化来表征结晶盐的产量。水通量和NaCl通量的计算方法分别如式(1)和式(2)所示。

    式中:JH2O为蒸发冷凝水通量,L·(m2·h)−1JNaCl为NaCl通量,kg·(m2·h)−1V为渗透液溶液体积,L;M为生成干燥结晶质量,kg;A为膜的有效面积,m2t为运行时间,h。

    为保证实验结果的准确性,减小误差,每次实验的测试时间不少于3 h,其中包括压力调节至稳定的时间。在不涉及浓度变化的实验中,使用过饱和溶液以保证实验过程中溶液浓度稳定。

  • 本研究中所检测的瞬时和连续渗透结晶过程的典型现象如图3所示,VMPC过程的原理如图4所示。真空条件可使膜两侧产生压力差,因此,无机盐水合离子和水分子渗透穿过膜孔,在膜界面处由于压力突变发生闪蒸,液体由过冷态转为过热态,液态水迅速相变为水蒸气,同时带走大量热量[17]。当渗透和蒸发达到平衡时,由于表面张力的作用,渗透液在膜表面形成一层液膜。这层液膜即蒸发结晶界面,液膜呈过饱和状态,晶体在此逐渐成核并生长至临界尺寸,最终在复杂力场合力作用下从膜表面脱落,让出成核位点。与此同时,溶液源源不断地通过碳膜扩散,补充液膜蒸发的水分,新的晶核继续生长[18]。VMPC过程仅在一定压力范围内发生,且发生条件随进料液温度、浓度、蒸发温度等影响因素的变化而变化,当操作压力超过临界压力时,由于溶液的渗透速率高于液膜的水分蒸发速率,将发生渗漏现象,此时VMPC过程不能正常进行。

    根据以上VMPC过程的原理分析,可以认为,VMPC过程是膜渗透和真空压差闪蒸结晶的协同发展过程。对于某一确定压力点P,首先发生的是溶液的渗透过程,其推动力为膜两侧压力差ΔP。在渗透形成的液膜界面上,溶质发生结晶,推动力为过饱和度S;对于溶剂,当压力从大气压到压力点P的下降过程中,发生动态闪蒸,推动力为过热度ΔT,当到达动态平衡后,进入稳定蒸发阶段,推动力与此时的压力P和溶液的实际温度Tb有关,Tb是由蒸发过程、外界至膜表面的传热、膜表面至料液传热等过程共同作用下决定的平衡温度。

    渗透过程推动力表达式如式(3)所示。结晶过程的主要推动力过饱和度S的表达式如式(4)所示[19]。动态闪蒸过程中,过热度的定义为液膜初始温度与理论平衡温度之差[20],纯水系统过热度ΔT表达式[20]如式(5)所示,NaCl溶液过热度ΔT由纯水系统而来,其可根据式(6)进行计算[21-22]。闪蒸平衡后,稳定蒸发阶段的蒸发速率v根据式(7)进行计算[23-24]

    式中:P0为膜内侧压力,为大气压,数值为101.3 kPa;P为绝对压力,为设定值,kPa。

    式中:C为溶液中溶质实际质量浓度,g·L−1C*为饱和溶液中溶质的平衡质量浓度,g·L−1

    式中:T0为液膜初始温度,℃;Te为平衡时刻闪蒸腔压力对应的纯水饱和温度,℃;TBs为平衡时刻闪蒸腔压力对应的NaCl溶液饱和温度,℃;θ为平衡时刻NaCl溶液相对于纯水的沸点升高量,℃。

    式中:v为蒸发面的蒸发速率,m·s−1C为经验常数,通过实际测量可得;E为平衡温度Tb下溶液的饱和蒸气压,ETb,kPa;e为该条件下的实际蒸气压,kPa。

  • 在进料液质量分数为25%、蒸发室水浴温度为75 ℃、绝对压力为0.5 kPa的条件下,工艺产能随进料液温度的变化情况如图5所示。图5表明,结晶盐通量和水通量均随进料温度的升高而增大。一方面,随着进料液温度增加,渗透速率升高,单位时间内通过的溶剂和溶质总量增加。另一方面,进料液温度的增加使液膜初始温度提升,ΔTTb增加,蒸发推动力加大,动态闪蒸阶段和稳定蒸发阶段的蒸发速率均提高,因此,水通量增大;同时由于过饱和度S提高,结晶推动力加大,导致盐通量增加。

    在本研究中,当最高测试温度为34 ℃时,获得最高盐通量,为8.04 kg·(m2·h)−1,这明显高于太阳能驱动膜结晶技术的盐通量(0.1~0.6 kg·(m2·h)−1)[25]。优势更为明显的是,VMPC工艺还同步获得了约30 L·(m2·h)−1的纯水。与反渗透工艺(RO)相比,陶氏化学公司生产的FILMTEC系列RO膜[26]的建议运行通量为20~30 L·(m2·h)−1,可耐受NaCl的质量浓度为50 000 mg·L−1,且RO需要克服渗透压实现分离,所以需要的压力较大,推荐运行压力为1~3 MPa。而VMPC过程不截留盐离子,无需克服渗透压,因此,无需高压设备。VMPC工艺水回收能力与RO相当,且还能同步获得结晶盐。

  • 在蒸发室水浴温度为75 ℃,进料液温度为19 ℃,绝对压力为0.3 kPa的条件下,工艺产能随进料液浓度的变化情况如图6所示。图6表明,随着进料液浓度的增大,结晶盐通量随之增大,水通量减小。当进料液质量分数为25%时,盐通量最大,为5.92 kg·(m2·h)−1,此时水通量为13.12 L·(m2·h)−1。这是因为,随进料液浓度增加,蒸发结晶界面的过饱和度有所提高,结晶速率增加,导致盐通量增加;蒸发界面溶液浓度升高,导致沸点降低,过热度减小,平衡温度降低,动态闪蒸过程驱动力变弱[27],蒸发速率降低。此外,渗透速率的下降,使得可供蒸发的水量下降,因此导致水通量降低。

  • 在蒸发室水浴温度为70 ℃,进料液温度为21 ℃,进料液质量分数为25%的条件下,工艺产能随操作压力的变化情况如图7所示。图7表明,操作压力的调节对生成的盐通量和水通量影响程度相对较小,但对形成晶体的尺寸和晶型影响很大。随绝对压力的增大,膜内外压力差减小,渗透通过的溶液通量降低,导致生成的结晶量减少,盐通量降低。但是,由于平稳蒸发过程的蒸发速率vTb升高而升高,且随P升高而降低,所以,当P增大时,蒸发动力减小,蒸发速率降低,蒸发消耗热量减少,导致Tb有一定程度的升高,这又反过来促进蒸发速率的提升,2方面同时作用再加上实验误差的影响,导致实验结果中水通量变化明显,其波动范围为7~15 L·(m2·h)−1

    晶体尺寸和形貌与渗透侧真空环境的驱动力有关[28-29],其随操作压力的变化情况如图8所示。随着绝对压力的降低,颗粒粒径明显减小,获得的晶体尺寸更细。这是因为,绝对压力越小,渗透速率和蒸发速率越大,膜渗透面上液膜蒸发越薄,NaCl成长至临界尺寸晶体的时间越短,临界尺寸也越小。因此,较低的压力往往产生较小的颗粒,而绝对压力越大,晶体聚集并形成较大的颗粒的时间越宽裕,生成颗粒越大,形貌越接近于规则的正方体晶型。由此可见,通过调控操作压力可获得理想形貌的结晶体。

  • 1) VMPC过程是膜渗透和真空压差闪蒸结晶的协同发展过程。其中,渗透过程的推动力为膜内外压力差,蒸发过程推动力为过热度,结晶过程推动力为过饱和度。

    2)随进料液温度的升高,结晶盐通量和水通量均增大,盐通量和水通量最高可达8.04 kg·(m2·h)−1和30 L·(m2·h)−1;随进料液浓度的升高,结晶盐通量随之增大,水通量降低,其最高盐通量为5.92 kg·(m2·h)−1,最低水通量为13.12 L·(m2·h)−1;随着绝对压力的升高,结晶盐通量略微减小。

    3)操作压力对生成晶体的尺寸和形貌影响显著,可通过控制操作压力获得理想形貌晶体。绝对压力越小,生成结晶粒径越小,获得的晶体尺寸更细;绝对压力越大,生成结晶粒径越大,形貌越接近于规则的正方体晶型。

参考文献 (29)

返回顶部

目录

/

返回文章
返回