-
由于人口的增加、供水质量的下降、气候变化等原因,全球淡水需求急剧增长,水环境形势越发严峻[1]。中国也面临水资源短缺的重大挑战,2016年我国工业用水量达130.8×109 m3,约占总供水量的21.66%[2]。作为补充水资源的有效方式,工业废水的回收利用尤为重要。2005年《中国节水技术政策大纲》首次提出发展外排废水回用技术和零排放(zero liquid discharge, ZLD)技术[3],目前典型工业废水零排放系统一般由深度预处理单元、超滤-反渗透低盐废水脱盐单元、高盐废水脱盐单元、蒸发结晶单元组成。而工业废水零排放的技术关键,在于低盐废水脱盐单元所产生的膜滤浓缩液的进一步高效低耗脱盐及蒸发结晶[4]。相比而言,脱盐技术研究备受关注,但结晶技术进展缓慢。目前,实现结晶的方式主要有自然蒸发法、热法与冷冻法结晶器结晶法和膜蒸馏结晶法[1]。其中自然蒸发法容量有限,土地使用成本高,太阳能效率低;热法与冷冻法结晶器结晶法能耗高,设备成本高昂,反应器易腐蚀;膜蒸馏结晶法存在膜润湿、膜污染和膜结垢问题,这制约了膜蒸馏结晶技术的发展,因此,开发新的结晶技术意义重大[1, 5]。
2018年,澳大利亚昆士兰大学COSTA团队[6]报道了一种新型蒸发结晶工艺,即真空膜渗透结晶。这是一种发生在真空条件下的渗透蒸发结晶过程,在膜内外压力差的作用下,溶液渗透至无机陶瓷膜外表面形成一层液膜,随后溶剂在真空环境中瞬间蒸发,溶质在膜表面结晶并生长,直至自动脱落从而得到回收。
相比于传统的结晶-过滤-干燥流程,VMPC工艺最大的优势是实现了同步蒸发浓缩与结晶,即在同一反应器内实现了盐和水的同步分离和回收,无需后续步骤,简化了工艺流程,节省了设备规模和成本投资[6]。且针对蒸发池和结晶器能耗高、效率低等问题,VMPC工艺通过引入膜界面和真空条件,显著提高了生产能力和能量利用率;更为重要的是,针对现有膜蒸馏结晶技术因膜结垢和膜润湿导致的通量衰减和截留率下降等问题,VMPC工艺采用膜渗透过程,无需考虑膜润湿的影响,同时将膜结垢(膜结晶)作为生产目的,促进膜结晶的发生,且因为结晶体的自动脱离机制,有效地规避了膜堵塞问题。通过技术经济层面的分析可见,VMPC工艺具有良好的技术优势和广阔的应用前景,未来必会成为分离与纯化领域的研究与应用热点。迄今为止,COSTA团队[6-9]通过在无机膜上负载碳化蔗糖分离层,主要探究了膜性能对VMPC过程的影响,具体包括:无机膜如何应用于结晶过程以及何种性质的无机膜能够应用于VMPC过程;膜的化学性质和制备条件对NaCl结晶形态的影响;无机碳膜对不同溶质结晶形态的影响。
总体而言,目前VMPC工艺尚处于初步探索阶段,高性能功能化渗透结晶膜材料与工艺原理需系统研究;关键工艺参数及交叉影响因素需进一步明确、优化;工艺过程模拟和技术经济分析亟待推进。在应用前景方面,尤其是在典型分离与纯化及废水零排放领域,VMPC技术可与其他技术耦合(膜蒸馏-真空膜渗透结晶),实现优势互补,拓展与应用空间巨大。在蒸发结晶领域,VMPC技术有望实现短流程、提质、增效、降耗、资源化等多重目标,因此,有必要推进VMPC工艺的系统性研究。本研究以浓盐水蒸发结晶工艺创新为目标,以丰富VMPC技术体系,促进该技术进步为目的,开展了对VMPC工艺的初步探究,通过自制的乙酸酐改性淀粉纳米晶(modified starch nanocrystals with acetic anhydride, AA-SNC)无机陶瓷膜,阐述了VMPC发生的现象、过程和原理,并分别考察了进料液温度、浓度和操作压力对VMPC工艺的产能影响。
新型真空膜渗透结晶工艺初探
Preliminary study on a novel vacuum membrane percrystallization process
-
摘要: 真空膜渗透结晶工艺(vacuum membrane percrystallization, VMPC)是一种新型膜结晶工艺,可同步实现溶质的结晶及其与溶剂的分离回收。以NaCl溶液为目标物系,对VMPC过程的原理进行了分析,初步考察了进料液温度、浓度和操作压力对该工艺产能的影响。结果表明:VMPC过程是膜渗透和真空压差闪蒸结晶的协同作用的过程,随进料液温度的升高,结晶盐通量和水通量均增大;随进料液浓度的升高,结晶盐通量增大,水通量降低;而操作压力对工艺产能影响较小,但对生成晶体的形貌影响显著;当进料液温度为34 ℃,进料质量分数为25%,操作压力为0.5 kPa时,可获得高达8.04 kg·(m2·h)−1的盐通量和30 L·(m2·h)−1的水通量,远高于现有太阳能驱动膜结晶技术的产能。针对现有膜滤浓缩液类高浓盐水结晶工艺流程复杂、能耗高、效率和产能低的问题,VMPC工艺为新型高效处置技术的开发及应用提供了可行的解决方案。Abstract: VMPC process is a new kind of membrane crystallization process. It can realize the simultaneous separation and recovery of solute crystallization and solvent in a single step. In this study, the principle of VPMC process was analyzed and the effects of different temperature and concentration of feed solution, and vacuum operating pressure on the productivity were investigated preliminarily by taking a NaCl solution as the target system. The results showed that VMPC was a co-development process of membrane permeation and vacuum pressure differential flash crystallization. With the increase of feed liquid temperature, water flux and crystallized NaCl flux increased. With the increase of feed liquid concentration, the crystallized NaCl flux increased, while the water flux decreased. In addition, the operating pressure had a significant effect on the morphology of the NaCl crystals rather than crystallization productivity. When the temperature of the feed liquid was 34 ℃, the mass fraction was 25%, and the operating pressure was 0.5 kPa, a NaCl flux up to 8.04 kg·(m2·h)−1 and water flux up to 30 L·(m2·h)−1 were obtained through experiments, which was far higher than the capacity of existing solar-driven evaporator crystallization technologies. This work developed a novel process to address the challenges in terms of complex process flow, high energy consumption, low efficiency and productivity during existing crystallization process of membrane filtration concentrate, thereby provide an important solution for further development and application of efficient treatment technologies of high salinity wastewater.
-
-
[1] ZHANG C, SHI Y, SHI L, et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge[J]. Nature Communications, 2021, 12(1): 1-10. doi: 10.1038/s41467-020-20314-w [2] HUBE S, ESKAFI M, HRAFNKELSDOTTIR K F, et al. Direct membrane filtration for wastewater treatment and resource recovery: A review[J/OL]. [2021-03-01]. Science of the Total Environment, 2020, 710. https://doi.org/10.1016/j.scitotenv.2019.136375. [3] 罗金华. 钢铁工业废水零排放中的浓盐水处理技术[J]. 冶金动力, 2011(2): 57-59. doi: 10.3969/j.issn.1006-6764.2011.02.019 [4] TONG T, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science and Technology, 2016, 50(13): 6846-6855. doi: 10.1021/acs.est.6b01000 [5] CHOI Y, NAIDU G, NGHIEM L D, et al. Membrane distillation crystallization for brine mining and zero liquid discharge: Opportunities, challenges, and recent progress[J]. Environmental Science: Water Research & Technology, 2019, 5(7): 1202-1221. doi: 10.1039/C9EW00157C [6] MOTUZAS J, YACOU C, MADSEN R S K, et al. Novel inorganic membrane for the percrystallization of mineral, food and pharmaceutical compounds[J]. Journal of Membrane Science, 2018, 550: 407-415. doi: 10.1016/j.memsci.2017.12.077 [7] MADSEN R S K, MOTUZAS J, VAUGHAN J, et al. Fine control of NaCl crystal size and particle size in percrystallisation by tuning the morphology of carbonised sucrose membranes[J]. Journal of Membrane Science, 2018, 567: 157-165. doi: 10.1016/j.memsci.2018.09.003 [8] MADSEN R S K, MOTUZAS J, JULBE A, et al. Novel membrane percrystallisation process for nickel sulphate production[J]. Hydrometallurgy, 2019, 185: 210-217. doi: 10.1016/j.hydromet.2019.02.015 [9] MADSEN R S K. Novel percrystallisation process by inorganic carbon membranes[D]. Brisbane: The University of Queensland, 2018. [10] HUANG J, SCHOLS H A, JIN Z, et al. Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate[J]. Carbohydrate Polymers, 2007, 67(1): 11-20. doi: 10.1016/j.carbpol.2006.04.011 [11] ABURTO J, ALRIC I, THIEBAUD S, et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch[J]. Journal of Applied Polymer Science, 1999, 74(6): 1440-1451. doi: 10.1002/(SICI)1097-4628(19991107)74:6<1440::AID-APP17>3.0.CO;2-V [12] 任丽丽. 淀粉纳米晶的改性及其在热塑性淀粉复合材料中的应用[D]. 长春: 吉林大学, 2012. [13] 郝亚成. 蜡质马铃薯淀粉纳米晶的制备及改性研究[D]. 广州: 华南理工大学, 2018. [14] SAMUEL D W B, ZIVKOVIC T, BENES N E, et al. Electrolyte retention of supported bi-layered nanofiltration membranes[J]. Journal of Membrane Science, 2006, 277: 18-27. doi: 10.1016/j.memsci.2005.10.004 [15] ELMA M, WANG D K, YACOU C, et al. High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications[J]. Desalination, 2015, 365: 308-315. doi: 10.1016/j.desal.2015.02.034 [16] YANG H, ELMA M, WANG D K, et al. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation[J]. Journal of Membrane Science, 2017, 523: 197-204. doi: 10.1016/j.memsci.2016.09.061 [17] 刘斌. 溶液闪蒸过程实验研究[D]. 大连: 大连理工大学, 2019. [18] JIANG X, LU D, XIAO W, et al. Interface-based crystal particle autoselection via membrane crystallization: From scaling to process control[J]. AIChE Journal, 2019, 65(2): 723-733. doi: 10.1002/aic.16459 [19] 丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985. [20] MIYATAKE O, TOMIMURA T, IDE Y, et al. An experimental study of spray flash evaporation[J]. Desalination, 1981, 36(2): 113-128. doi: 10.1016/S0011-9164(00)88635-X [21] 赵冰超, 杨庆忠, 张丹, 等. NaCl溶液静态闪蒸传热特性实验研究[J]. 工程热物理学报, 2013, 34(10): 1874-1877. [22] 赵冰超, 杨庆忠, 张丹, 等. NaCl溶液静态闪蒸前后液膜浓度变化的实验研究[J]. 工程热物理学报, 2014, 35(7): 1357-1360. [23] 齐文, 郑绵平. 西藏盐湖卤水蒸发速率的实验与计算[J]. 地质学报, 2007, 81(12): 1727-1733. doi: 10.3321/j.issn:0001-5717.2007.12.014 [24] 闵骞. 道尔顿公式风俗函数的改进[J]. 水文, 2005, 25(1): 37-41. doi: 10.3969/j.issn.1000-0852.2005.01.009 [25] LI H, YAN Z, LI Y, et al. Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges[J]. Water Research, 2020, 177: 115770. doi: 10.1016/j.watres.2020.115770 [26] 美国陶氏化学公司. FILMTECTM反渗透和纳滤膜元件产品与技术手册(2016版)[Z], 美国陶氏化学公司, 2016. [27] 杨庆忠, 刘光耀, 张丹, 等. NaCl溶液静态闪蒸的蒸发特性[J]. 化工学报, 2013, 64(11): 4068-4073. [28] EDWIE F, CHUNG T S. Development of simultaneous membrane distillation-crystallization (SMDC) technology for treatment of saturated brine[J]. Chemical Engineering Science, 2013, 98: 160-172. doi: 10.1016/j.ces.2013.05.008 [29] ELIKBILEK M, ERSUNDU A, AYDIN S. Crystallization kinetics of amorphous materials[EB/OL]. [2021-03-01]. https://www.intechopen.com/books/advances-in-crystallization-processes/crystallization-kinetics-of-amorphous-materials.