-
随着城市点源污染得到基本控制,由暴雨径流引起的非点源污染逐渐成为城市水体主要污染来源[1]。在城市分流制排水系统中,暴雨径流携带的部分颗粒物在重力作用下沉积在雨水管道底部,形成管道沉积物。这些沉积物在后续管道径流的冲刷作用下,部分又将重新进入管流并随之排入城市水体,成为水体污染重要的源和汇[2-4]。李海燕等[5-6]对北京市某区域分流制雨水管道进行了调查,结果表明,约80%以上管道存在不同程度的沉积现象,管道沉积物中TN对径流污染负荷的贡献率约为23%,TP贡献率约为30%。
管道沉积物对径流污染负荷的贡献可能与沉积物-水界面污染物交换特性有关。影响沉积物-水界面污染物交换的因素有沉积物的理化性质、环境因子和扰动(包括物理扰动和生物扰动)等[7]。近年来一些学者在管道沉积物污染分布[8-9]、冲刷沉积规律[10]、吸附解吸[11]及溶出特性[12]等方面开展了研究。陈红等[13]对合流制入河管道沉淀物中氮转化规律进行了探究,结果表明,氨氮是其主要释放形态。李明怡[14]利用北京市雨水管道沉积物进行了研究,发现上覆水体pH和流速是影响沉积物中磷和重金属释放的主要因素,并利用连续函数法计算出:当流速为1.1 m·s−1时,沉积物和水之间磷的平均交换速率为4.09 mg·(m2·min)−1。目前,有关分流制雨水管道沉积物-水界面的研究很少,关于微生物对沉积物-水界面之间污染物交换特性的影响尚未见有报道。
株洲市位于湖南省东部,湘江中下游,其中白石港是湘江在株洲最大的支流,沿河两岸雨水及溢流污水均直接排入白石港。港道水体氨氮等指标超标明显,水质较差[15]。基于此,本研究选取株洲市某分流制雨水管道沉积物作为研究对象,通过模拟实验考察了溶解氧、温度、水力扰动强度及微生物种群对污染物在沉积物-水界面之间交换的影响,剖析上覆水中污染物转化途径与规律,为雨水管道沉积物污染控制提供参考。
株洲市雨水管道沉积物-水界面污染物交换特性
Pollutants exchange characteristics of sediment-water interface in Zhuzhou rainwater pipeline
-
摘要: 为了解株洲市雨水管道沉积物-水界面污染物的交换规律,分析了沉积物中
$ {{\rm{N}}{{\rm{H}}^ +_4}} $ -N、SCOD、TP的含量及微生物种群的结构,探讨了溶解氧、温度、水力扰动和微生物种类等环境因素对污染物交换特性的影响。结果表明:沉积物中$ {{\rm{N}}{{\rm{H}}^ +_4}} $ -N、SCOD和TP的质量分数分别为20.41、2 154.99和1 200.86 mg∙kg−1;微生物以兼性厌氧菌为主,优势菌属为氨化、反硝化及聚磷功能菌属;溶解氧的降低、温度和扰动强度的升高,均可促使污染物交换通量的升高;氮类物质交换特性受环境因素改变的影响较大。在环境温度为25 ℃、扰动强度为300 r∙min−1时,${ {\rm{N}}{{\rm{H}}^ + _4}}$ -N交换通量为1.630 mg∙(m2∙h)−1、SCOD为36.218 mg∙(m2∙h)−1、DTP为0.049 mg∙(m2∙h)−1。以上研究结果可为株洲市雨水管道沉积物污染控制提供参考。Abstract: In order to investigate the exchange characteristics of pollutants at the sediment-water interface in Zhuzhou rainwater pipeline, the contents of$ {\rm{N}}{{\rm{H}}^ +_4} $ -N, SCOD, TP and the microbial population structure in the sediments were analyzed. The effects of dissolved oxygen, temperature, disturbance and microbial on pollutant exchange flux were discussed. The results showed that the contents of$ {\rm{N}}{{\rm{H}}^ +_4} $ -N, SCOD and TP were 20.41, 2 154.99 and 1 200.86 mg∙kg−1, respectively. The predominant bacteria were ammonifying, denitrifying and phosphorus-accumulating functional bacteria. The decrease of dissolved oxygen, the increase of temperature and disturbance intensity could lead to the increase of pollutant exchange flux. The exchange characteristics of nitrogen were greatly affected by environmental factors. At 25 ℃ and 300 r∙min−1,$ {\rm{N}}{{\rm{H}}^ +_4} $ -N exchange flux was 1.630 mg∙(m2∙h)−1, SCOD was 36.218 mg∙(m2∙h)−1, and DTP was 0.049 mg∙(m2∙h)−1. The research results can provide reference for sediment pollution control in Zhuzhou rainwater pipelines. -
表 1 不同溶解氧水平下污染物平均交换通量
Table 1. Effect of dissolved oxygen on the exchange fluxes of pollutants
溶解氧质量
浓度/(mg·L−1)平均交换通量/(mg∙(m2∙h)−1) 氨氮 硝酸盐氮 亚硝酸盐氮 SCOD DTP DIP ≤1 1.425 −0.586 −0.058 17.013 0.034 0.028 3 1.034 −0.472 −0.048 13.846 0.017 0.016 5 0.726 −0.297 −0.033 7.703 0.009 0.009 表 2 不同温度水平下污染物平均交换通量
Table 2. Effect of temperature on the exchange fluxes of pollutants
温度/℃ 平均交换通量/(mg∙(m2∙h)−1) 氨氮 硝酸盐氮 亚硝酸盐氮 SCOD DTP DIP 15 0.771 −0.319 −0.032 9.979 0.007 0.007 25 1.034 −0.472 −0.048 13.846 0.017 0.016 35 1.274 −0.562 −0.061 18.861 0.027 0.026 表 3 不同扰动强度下污染物平均交换通量
Table 3. Effect of disturbance on the exchange fluxes of pollutants
扰动强度/(r·min−1) 平均交换通量/(mg∙(m2∙h)−1) 氨氮 硝酸盐氮 亚硝酸盐氮 SCOD DTP DIP 0 0.964 −0.468 −0.041 14.320 0.018 0.018 150 1.301 0.111 0.002 22.619 0.031 0.028 300 1.630 0.235 0.025 36.218 0.049 0.041 -
[1] MOORE T L, RODAK C M, VOGEL J R. Urban stormwater characterization, control, and treatment[J]. Water Environment Research, 2017, 90(10): 1876-1927. [2] ASHLEY R, CRABTREE B, FRASER A, et al. European research into sewer sediments and associated pollutants and processes[J]. Journal of Hydraulic Engineering, 2003, 129(4): 267-275. doi: 10.1061/(ASCE)0733-9429(2003)129:4(267) [3] CHANG S Y, TANG T Q, DONG L X, et al. Impacts of sewer deposits on the urban river sediment after rainy season and bioremediation of polluted sediment[J]. Environmental Science and Pollution Research, 2018, 25(13): 12588-12599. doi: 10.1007/s11356-018-1457-9 [4] BERTAND-KRAJEWSK J, LBARDIN J P, GIBELLO C. Long term monitoring of sewer sediment accumulation and flushing experiments in a man-entry sewer[J]. Water Science and Technology, 2006, 54(6/7): 109-117. [5] 李海燕, 梅慧瑞, 徐波平. 北京城市雨水管道中沉积物的状况调查与分析[J]. 中国给水排水, 2011, 27(6): 36-39. [6] 李海燕, 徐波平, 徐尚玲, 等. 北京城区雨水管道沉积物污染负荷研究[J]. 环境科学, 2013, 34(3): 919-926. [7] 陈洁, 许海, 詹旭, 等. 湖泊沉积物-水界面磷的迁移转化机制与定量研究方法[J]. 湖泊科学, 2019, 31(4): 907-918. doi: 10.18307/2019.0416 [8] HAJJ-MOHAMAD M, DARWANO H, DUY S V, et al. The distribution dynamics and desorption behavior of mobile pharmaceuticals and caffeine to combined sewer sediments[J]. Water Research, 2017, 108: 57-67. doi: 10.1016/j.watres.2016.10.053 [9] SANG W J, CHEN Z Y, MEI L J, et al. The abundance and characteristics of microplastics in rainwater pipelines in Wuhan, China[J]. Science of the Total Environment, 2021, 755: 142606. [10] MANUEL R P, JOSE A, SUAREZ J, et al. Characterisations of sediments during transport of solids in circular sewer pipes[J]. Water Science and Technology, 2017(1): 8-15. [11] KAESEBERG T, ZHANG J, SCHUBERT S, et al. Sewer sediment-bound antibiotics as a potential environmental risk: Adsorption and desorption affinity of 14 antibiotics and one metabolite[J]. Environmental Pollution, 2018, 239: 638-647. doi: 10.1016/j.envpol.2018.04.075 [12] 徐强强, 李阳, 马黎, 等. 城市雨水管道沉积物氮磷污染溶出特性试验研究[J/OL]. 环境科学研究: 1-11[2020-09-15]. https://doi.org/10.13198/j.issn.1001-6929. [13] 陈红, 卓琼芳, 许振成, 等. 排水管道沉淀物氮释放特性的研究[J]. 环境科学, 2015, 36(8): 2918-2925. [14] 李明怡. 雨水管道沉积物: 水界面磷和重金属交换与释放规律的研究[D]. 北京: 北京建筑工程学院, 2012. [15] 石勇. 海绵城市规划之径流污染控制研究分析: 以株洲市为例[J]. 中国市政工程, 2017(02): 72-74. doi: 10.3969/j.issn.1004-4655.2017.02.022 [16] 向速林, 周文斌. 鄱阳湖沉积物中磷的赋存形态及分布特征[J]. 湖泊科学, 2010, 22(5): 649-654. [17] 孙璐. 西安市路面沉积物污染机制研究[D]. 西安: 长安大学, 2015. [18] 李海燕, 梅慧瑞, 徐波平, 等. 沉积物中磷和重金属形态分析方法[C]//武汉大学. Proceedings of Conference on Environmental Pollution and Public Health, 2010. [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] CAPORASO J, LAUBER C, WALTERS W, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. ISME, 2012, 6: 1621-1624. doi: 10.1038/ismej.2012.8 [21] 裴佳瑶, 冯民权. 环境因子对雁鸣湖沉积物氮磷释放的影响[J]. 环境工程学报, 2020, 14(12): 3447-3459. doi: 10.12030/j.cjee.201912021 [22] 李笑玥, 秦华鹏, 王凡, 等. 生物滞留池微生物种群的硝化反硝化功能研究: 以深圳市为例[J]. 深圳大学学报(理工版), 2021, 38(1): 36-44. [23] 贾仲君, 翁佳华, 林先贵, 等. 氨氧化古菌的生态学研究进展[J]. 微生物学报, 2010, 50(4): 431-437. [24] 刘伟, 周斌, 王丕波, 等. 沉积物再悬浮氮磷释放的机制与影响因素[J]. 科学技术与工程, 2020, 20(4): 1311-1318. doi: 10.3969/j.issn.1671-1815.2020.04.003 [25] BAREHA Y, GIRAULT R, JIMENEZ J, et al. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach[J]. Bioresource Technology, 2018, 263: 425-436. doi: 10.1016/j.biortech.2018.04.085 [26] LI W K, ZHENG T L, MA Y Q, et al. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815. [27] 张自杰. 排水工程: 下册[M]. 北京: 中国建筑工业出版社, 2015. [28] 佘晨兴, 王静, 苏玉萍, 等. 福建省3座水库库心沉积物聚磷菌的群落特征[J]. 应用生态学报, 2019, 30(7): 2393-2403. [29] 郭念, 闫金龙, 魏世强, 等. 三峡库区消落带典型土壤厌氧呼吸对铁还原及磷释放的影响[J]. 水土保持学报, 2014, 28(3): 271-276. [30] BEUTEL M W, HORNE A J, TAYLOR W D, et al. Effects of oxygen and nitrate on nutrient release from profundal sediments of a large, oligo-mesotrophic reservoir, Lake Mathews, California[J]. Lake and Reservoir Management, 2008, 24(1): 18-29. doi: 10.1080/07438140809354047 [31] WANG J, CHEN J, DING S, et al. Effects of temperature on phosphorus release in sediments of Hongfeng Lake, southwest China: an experimental study using diffusive gradients in thin-films (DGT) technique[J]. Environmental Earth Sciences, 2015, 74(7): 5885-5894. doi: 10.1007/s12665-015-4612-3 [32] 张义, 刘子森, 张垚磊, 等. 环境因子对杭州西湖沉积物各形态磷释放的影响[J]. 水生生物学报, 2017, 41(6): 1354-1361. doi: 10.7541/2017.167 [33] WU T F, QIN B Q, ZHU G G, et al. Flume simulation of wave-induced release of internal dissolved nitrogen in Taihu Lake, China[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 796-805. doi: 10.1007/s00343-012-1207-7 [34] RICHEY J S, MCDOWELL W H, LIKENS G E. Nitrogen transformations in a small mountain stream[J]. Hydrobiologia, 1985, 124(2): 129-139. doi: 10.1007/BF00006795 [35] 余晖, 张学青, 张曦, 等. 黄河水体颗粒物对硝化过程的影响研究[J]. 环境科学学报, 2004, 24(4): 601-606. doi: 10.3321/j.issn:0253-2468.2004.04.007