Loading [MathJax]/jax/output/HTML-CSS/jax.js

泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S

王小平, 梅洁. 泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S[J]. 环境工程学报, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145
引用本文: 王小平, 梅洁. 泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S[J]. 环境工程学报, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145
WANG Xiaoping, MEI Jie. Removal of TBBPS from simulated production wastewater by bubble film dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145
Citation: WANG Xiaoping, MEI Jie. Removal of TBBPS from simulated production wastewater by bubble film dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145

泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S

    作者简介: 王小平(1984—),男,博士,副教授。研究方向:水体污染控制技术。E-mail:xpwang@ctbu.edu.cn
    通讯作者: 王小平, E-mail: xpwang@ctbu.edu.cn
  • 基金项目:
    重庆市社会事业与民生保障科技创新专项项目(cstc2017shmsA20015)
  • 中图分类号: X703.1

Removal of TBBPS from simulated production wastewater by bubble film dielectric barrier discharge plasma

    Corresponding author: WANG Xiaoping, xpwang@ctbu.edu.cn
  • 摘要: 为了有效的降解生产废水中的四溴双酚S(TBBPS),采用泡膜式介质阻挡放电等离子体处理装置,研究了放电等离子体对TBBPS降解的影响。分别探讨了放电电压、空气流量、液体流量、活性物质抑制剂对TBBPS降解效果的影响;考察了降解过程中pH、电导率、COD和生物毒性的变化。结果表明,在放电电压为12.5 kV、空气流量为1.8 L·min−1、液体流量为150 mL·min−1时,处理9 min后其TBBPS去除率达到95 %以上;活性物质抑制剂对TBBPS的降解有一定的抑制作用,活性物质O2是反应体系中的主要活性物质;在降解过程中,pH不断下降,电导率不断上升,COD先升高后降低,生物毒性呈下降趋势。紫外-可见分光光度计全波扫描结果表明,TBBPS对应的特征吸收峰随处理时间变小,表明等离子体处理会破坏TBBPS的结构。以上研究结果可为TBBPS的有效降解提供参考。
  • 硫化氢(H2S)特性为剧毒、高腐蚀性,易损害工业管路及设备,威胁相关从业人员生命安全。此外,硫化氢的嗅觉阈值极低(仅为0.012 mg·m−3),是污水处理厂、垃圾填埋场等相关单元不良气味的重要来源[1]。因此,硫化氢的去除在清洁能源制备、烟气达标排放及生活环境优化中十分重要。对于大规模高浓度硫化氢而言,Claus法为首选处理工艺。而对于较低浓度的含硫化氢气体来说,常见脱除方法可分为干法和湿法两大类 [2]。干法多为采用固体吸附剂或催化剂进行硫化氢的吸附/催化脱除;湿法工艺则以碱性或氧化性溶液为吸收剂,利用硫化氢的酸性或还原性来提升其脱硫性能。其中,醇胺溶液吸收法是用于硫化氢、二氧化碳等酸性气体脱除最常见的传统工艺之一[3]。铁基脱硫等氧化脱硫工艺则是利用溶液的强氧化能力,将硫化氢氧化为硫磺,以达到脱硫及硫资源回收的目的[4]。此外,新型非水溶剂(如离子液体、低共熔溶剂)在气态污染物脱除方面的应用也是当前研究热点之一[5]

    纳米流体是指将纳米尺度(小于100 nm)的微粒加入基础流体中获得的稳定、均匀悬浮液[6]。与普通流体相比,不同纳米流体体系可具备独特的热、光、应力-应变及磁特性[7]。因此,纳米流体的使用越来越受到关注。与传统基液相比,纳米流体在增强传热、传质方面具有显著优势。纳米颗粒的布朗运动可增强流体扰动、增大气液传质系数、提升传质通量。向液体中加入适当比例的纳米颗粒,可有效提升其传质特性[8-9]。在气体分离领域,迄今已有较多关于纳米流体在二氧化碳吸收方面的研究。纳米颗粒的加入可强化二氧化碳在吸收剂中的传质,进而显著提升了吸收剂的吸收、再生性能[10-11]。当前利用纳米流体吸收硫化氢气体的研究报道较少,SiC[12]、CuO/Cu[13]、氧化石墨烯[14-16]及其他纳米颗粒[17-19]的加入可有效增强水溶液、醇胺等液体的硫化氢吸收性能,但相关研究使用的基液及纳米颗粒种类仍较少。本团队前期对非水溶液(离子液体、低共熔溶剂)基纳米流体体系的脱硫性能进行了研究[20-21],发现合适的纳米流体构建对气液吸收性能具备显著的增强作用。但纳米流体体系在水溶液气液吸收中的作用研究仍较少,考虑到当前常见的液态脱硫剂仍以碱性或氧化性水溶液为主,对以此类水溶液为基液而形成的纳米流体体系的脱硫性能研究具有重要意义。

    为初步探讨纳米流体体系在硫化氢动态吸收脱除中的作用,本研究分别以较为常见的碱性或氧化性水溶液为基液,加入4种常见易得的纳米颗粒,调控原料配比以形成不同种类的纳米流体体系。其中,碱性溶液选择N-甲基二乙醇胺溶液,氧化性水溶液则选取氯化铁溶液。通过系统考察不同体系纳米流体对硫化氢的吸收能力,确定其组成与脱硫性能的内在关系,分析纳米流体体系对水溶液脱硫性能的影响,从而探讨水溶液基纳米流体体系在脱硫方面的作用规律,以期为纳米流体体系在气体脱硫方面的应用提供参考。

    N-甲基二乙醇胺(MDEA)购自中国阿拉丁试剂(上海)有限公司;无水三氯化铁购自上海展云化工有限公司;纳米铜(Cu)和纳米二氧化硅(SiO2)购自上海麦克林生化科技有限公司;碳纳米管(CNTs)和纳米氧化铝(Al2O3)购自中国阿拉丁试剂(上海)有限公司;所用试剂均为分析纯。

    Tecnai G2F20场发射高分辨率透射电子显微镜(TEM,美国FEI公司); ZEISS MERLIN扫描电子显微镜(SEM,英国Oxford仪器公司);TH990FIII智能烟气分析仪(武汉市天虹仪表有限公司)。

    1) 纳米流体脱硫剂的制备。将一定质量分数(0.01%~0.05%)的纳米颗粒(纳米氧化铝、纳米二氧化硅、碳纳米管、纳米铜)加入质量分数为10%的醇胺水溶液(MDEA)中,磁力搅拌30 min,超声(40 kHz,100 W)间歇震荡40 min,得到稳定均匀的悬浮体系。得到的MDEA纳米流体体系分别记为MDEA@Al2O3-x%,MDEA@SiO2-x%,MDEA@CNTs-x%和MDEA@Cu-x%。其中,x%为纳米颗粒的质量浓度。同样,以0.1 mol·L−1的FeCl3水溶液为基液,加入不同的纳米颗粒,制备FeCl3纳米流体体系,分别记为 FeCl3@Al2O3-x%,FeCl3@SiO2-x%,FeCl3@CNTs-x%和FeCl3@Cu-x%。其中,x%为纳米颗粒的质量分数。

    对于氯化铁溶液而言,吸收过程中硫化氢被三价铁离子氧化脱除,其脱硫机理如式(1)[22]所示。

    H2S+2FeCl3=S+2FeCl2+2HCl (1)

    2) 硫化氢动态吸收实验。采用动态硫化氢气体吸收实验装置,流程见图1。所用硫化氢气体质量浓度为1 000 mg·m−3。以氮气为稀释气体,将含硫化氢气体以200 mL·min−1的流速通入装有纳米流体脱硫剂的鼓泡吸收反应器中。气体流量通过质量流量计控制,吸收温度使用恒温水浴控制。采用TH990FIII智能烟气分析仪测定出口气体中的硫化氢质量浓度。尾气通过NaOH溶液除去残余硫化氢气体防止环境污染。吸收液的再生方式为一定温度下鼓入500 mL·min−1空气1 h吹脱。H2S去除效率按式(2)计算。

    图 1  硫化氢气体动态吸收实验装置
    Figure 1.  The experimental apparatus for dynamic absorption of hydrogen sulfide gas
    η=(C0Ct)/C0 (2)

    式中:η为脱硫效率,C0为吸收器入口的H2S质量浓度,Ct为时间t时吸收器出口的H2S质量浓度。

    对不同纳米颗粒分别进行SEM和TEM表征,其结果分别如图2图3所示。纳米SiO2和纳米铜均具有较为均匀规则的球形结构,其粒径均小于100 nm。Al2O3纳米颗粒具有较均匀的棒状结构,碳纳米管则具有管状结构,其直径均小于100 nm。符合纳米流体体系对于纳米颗粒的尺寸(0~100 nm)要求。此外,TEM结果表明,4种纳米颗粒均具备较高的分散度,有利于在溶液中分散均匀。

    图 2  不同纳米颗粒的SEM图像
    Figure 2.  The SEM images of different nanoparticles
    图 3  不同纳米颗粒的TEM图像
    Figure 3.  The TEM images of different nanoparticles

    当吸收温度为30 ℃时,添加不同纳米颗粒MDEA溶液的纳米流体体系与未添加纳米颗粒MDEA水溶液的脱硫性能对比如图4所示。添加Al2O3和SiO2纳米颗粒后,形成纳米流体体系的脱硫性能与醇胺水溶液相比未出现显著增强,说明相应2种纳米颗粒的加入对气液吸收过程无积极影响。而添加CNTs和Cu纳米颗粒后,MDEA水溶液对H2S气体的动态去除作用均得到不同程度增强。对于这2种体系而言,80 min内当纳米颗粒质量分数为0.05% 时,形成的纳米流体体系对脱硫作用的提升效果最为显著。对更高质量分数的纳米流体体系性能进行考察时发现,在制备过程中,纳米颗粒质量分数继续升高时,液体中出现明显的颗粒聚结沉淀现象,纳米流体体系的稳定性明显下降。因此,本研究的纳米颗粒质量分数最高选择为0.05%。

    图 4  30 ℃时MDEA水溶液及添加不同纳米颗粒的MDEA水溶液基纳米流体体系的脱硫性能
    Figure 4.  The desulfurization performance of MDEA solution and MDEA solution based nanofluid systems with different nanoparticles at 30℃

    本研究中不同体系的脱硫性能差异较大,部分体系的脱除率一直处于较低水平。同时,饱和硫容的测定时间较长,对测量仪器的压力较大,因此,穿透硫容及饱和硫容不能很好地反映各体系的脱硫性能。考虑到80 min内各体系的脱硫率均低于40%,将80 min内单位质量脱硫剂脱除的硫化氢质量定为硫容,以此对各体系的脱硫性能进行比较。对80 min内不同MDEA水溶液纳米流体体系的硫容进行计算,结果如图5所示。对于纳米氧化铝和纳米二氧化硅来说,纳米颗粒的加入对水溶液的脱硫性能无显著增强作用,甚至略有下降。而对碳纳米管和纳米铜颗粒体系来说,不同质量分数纳米颗粒的加入均对水溶液的硫容有明显提升作用。其中,MDEA@Cu-0.05%纳米流体的硫容最高,MDEA@CNTs-0.05%纳米流体的硫容次之。

    图 5  80 min内不同MDEA水溶液基纳米流体体系的硫容
    Figure 5.  The sulfur capacities of different MDEA solution based nanofluid systems within 80 min

    在探讨碱性溶液纳米流体脱硫性能的同时,以氯化铁水溶液为研究对象,探讨以氧化性溶液为基液的纳米流体体系脱硫性能变化。在吸收温度为30 ℃时,将添加不同纳米颗粒FeCl3溶液纳米流体体系与未添加纳米颗粒水溶液的脱硫性能进行对比(见图6)。与未添加纳米颗粒的FeCl3水溶液相比,添加Al2O3纳米颗粒后其脱硫性能未出现明显提升。添加SiO2纳米颗粒后,水溶液动态脱硫性能稍有提升,但提升程度并不明显。2种具备较为显著增强效果的纳米流体体系仍为碳纳米管和纳米铜体系。在碳纳米管纳米流体体系中,只有FeCl3@CNTs-0.05%体系表现出良好的脱硫增强性能。而在纳米铜体系中,FeCl3@Cu-0.02%和FeCl3@Cu-0.05%纳米流体均表现出良好的提升性能。以上结果与MDEA水溶液基纳米流体体系的性能变化规律基本相似。图7为80 min内不同FeCl3水溶液纳米流体体系的硫容计算结果。Al2O3纳米颗粒的加入对FeCl3水溶液脱硫性能并无显著影响,SiO2纳米颗粒的加入则使原溶液的脱硫性能稍有增强。碳纳米管和纳米铜颗粒的引入对FeCl3水溶液的硫化氢脱除能力有较明显的增强作用,其中FeCl3@Cu-0.02%纳米流体体系的增强效果最为明显。

    图 6  30 ℃时FeCl3水溶液及添加不同纳米颗粒的FeCl3水溶液基纳米流体体系的脱硫性能
    Figure 6.  The desulfurization performance of FeCl3 solution and FeCl3 solution based nanofluid systems with different nanoparticles at 30 ℃
    图 7  80 min内不同FeCl3水溶液基纳米流体体系的硫容
    Figure 7.  The sulfur capacities of different FeCl3 solution based nanofluid systems within 80 min

    考虑到纳米颗粒易发生团聚现象,可能会对溶液的再生性能造成影响。本研究对添加纳米铜颗粒前后FeCl3水溶液的再生性能进行了考察。再生方法为常温下向吸收硫化氢后的吸收剂中鼓入500 mL·min−1空气,鼓泡时间为1 h。再生效果如图8所示。纳米颗粒的加入未对FeCl3水溶液的再生性能产生显著影响。此外,FeCl3水溶液再生后的脱硫性能出现显著下降,这应该是由于单纯的FeCl3不稳定,易在吸收-再生过程失去活性所致。为提高铁基水溶液的脱硫及再生性能,可考虑向铁基溶液中加入配体,形成络合铁脱硫体系。

    图 8  FeCl3添加纳米铜颗粒前(a)后(b)的常温连续再生后的脱硫性能
    Figure 8.  The desulfurization performance of FeCl3 solution after continuous regeneration at room temperature before (a) and after (b) the addition of Cu nanoparticles

    不同种类、不同比例纳米颗粒的加入对气液吸收性能的影响并不一致,其影响机理可能十分复杂,目前仍无确切机理报道。目前,较为普遍的观点是纳米颗粒对水溶液的影响受多种因素影响。纳米颗粒加入所产生的不利影响包括:导致基础液体的粘度增加、气液接触面积的减少、纳米颗粒的团聚等[14]。而对于纳米流体在传质方面的促进作用,当前较为常见的几种纳米流体强化气液传质机制则包括:掠过效应(传输作用)、抑制气泡聚并机理、边界层混合机理等。掠过效应即纳米颗粒可自由出入传质边界层,在边界层吸附气体后在液相主体中释放,从而加快气液传质速率;抑制气泡聚并机理即固体颗粒附着在气泡表面,阻止气泡聚并,增大了气液传质面积;边界层混合机理则说明纳米颗粒的运动改变了传质边界层的流体力学行为,进而增强气液传质。一般认为以上几种机制相互关联、共同作用。本课题组在前期研究中发现,引入纳米铜颗粒对碱性低共熔溶剂的硫化氢吸收性能具备较为显著的增强作用。对氧化性离子液体溶液的研究则表明,4种纳米颗粒的加入均对离子液体溶液的脱硫性能具有积极影响。表征结果证明,在吸收过程中纳米颗粒无显著物理及化学变化;而动力学实验则证明,纳米颗粒的加入对气液传质具备显著的促进作用[20-21]。同样,在其他研究报道中,不同纳米颗粒对不同基液气液传质的影响作用并不统一,也尚未得出清晰的纳米颗粒、基液性质及传质作用间的构效关系。

    在本研究中,对于MDEA溶液而言,碳纳米管和纳米铜颗粒基本不参与气液反应,其对气液吸收过程的强化作用主要为物理作用,纳米颗粒的存在增强了液体湍动,促进了气液传质,从而提高了硫化氢的捕集效率。在氯化铁水溶液中,碳纳米管为惰性颗粒,其强化机制应与在MDEA溶液中类似。而纳米铜颗粒可被三价铁离子部分氧化为铜离子,可快速与硫化氢结合,形成CuS沉淀,进而被铁离子氧化,在一定程度上提高了硫化氢的脱除效率[23]。以上机理仅为初步推断,在后续工作中,应根据基液和纳米颗粒的种类、性质及气液作用进行更为详细的研究工作,进而更为深入地梳理纳米流体气液传质作用的影响规律。

    1)在基于MDEA水溶液的纳米流体体系中,添加Al2O3和SiO2纳米颗粒的MDEA水溶液纳米流体体系均未表现出明显的提升效果。碳纳米管和纳米铜颗粒的添加对H2S气体的去除均有不同程度的增强作用。MDEA@Cu-0.05%纳米流体显示出较好的提升性能,且硫容最高,MDEA@CNTs-0.05%纳米流体的硫容次之。

    2)在基于FeCl3水溶液的纳米流体体系中,与MDEA水溶液纳米流体体系相似,添加Al2O3和SiO2纳米颗粒的FeCl3水溶液纳米流体体系同样均未表现出明显的提升效果。对于CNTs-纳米颗粒来说,只有质量分数为0.05%的CNTs-纳米颗粒表现出较好的增强性能。添加Cu-纳米颗粒的纳米流体体系的硫容最高,质量分数为0.02%的Cu纳米颗粒增强效果最好。这表明构建纳米流体体系是强化气体吸收剂性能的可能途径之一。

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental device

    图 2  放电电压对放电形貌的影响

    Figure 2.  Effect of discharge voltage on discharge morphology

    图 3  放电电压对TBBPS去除率的影响

    Figure 3.  Effect of discharge voltage on TBBPS removal

    图 4  空气流量对TBBPS去除率的影响

    Figure 4.  Effect of air flow rate on TBBPS removal

    图 5  液体流量对TBBPS去除率的影响

    Figure 5.  Effect of liquid flow rate on TBBPS removal

    图 6  超氧自由基抑制剂(对苯醌)对TBBPS去除率的影响

    Figure 6.  Effect of O2 inhibitor (p-benzoquinone) on TBBPS removal

    图 7  单线态1O2抑制剂(三乙烯二胺)对TBBPS去除率的影响

    Figure 7.  Effect of 1O2 inhibitor (DABCO) on TBBPS removal

    图 8  羟基自由基抑制剂(异丙醇)对TBBPS去除率的影响

    Figure 8.  Effect of ·OH inhibitor (isopropanol) on TBBPS removal

    图 9  TBBPS溶液的pH和电导率随降解时间的变化

    Figure 9.  Changes of solution conductivity and pH with the treatment time

    图 10  TBBPS随降解时间的COD变化

    Figure 10.  Change in COD value of TBBPS solution with degradation time

    图 11  TBBPS溶液生物毒性随降解时间的变化

    Figure 11.  Changes of biotoxicity of TBBPS solution with degradation time

    图 12  放电处理后水样光谱扫描

    Figure 12.  Spectrum scanning of water sample after discharge treatment

  • [1] DE WIT C A. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 46(5): 583-624. doi: 10.1016/S0045-6535(01)00225-9
    [2] WANG X M, HUANG P F, MA X M, et al. Preparation and evaluation of magnetic core-shell mesoporous molecularly imprinted polymers for selective adsorption of Tetrabromobisphenol S[J]. Talanta, 2017, 166: 300-305. doi: 10.1016/j.talanta.2017.01.067
    [3] 焦昭杰, 陈立功, 柳云骐, 等. 硫酸铜类芬顿法去除双酚A[J]. 环境工程学报, 2020, 14(6): 1521-1528. doi: 10.12030/j.cjee.201908056
    [4] GAO K L, GAO X M, ZHU W, et al. The hierarchical layered microsphere of BiOIxBr1-x solid solution decorated with N-doped CQDs with enhanced visible light photocatalytic oxidation pollutants[J]. Chemical Engineering Journal, 2021, 406: 127155. doi: 10.1016/j.cej.2020.127155
    [5] YANG Y C, ZENG S S, OUYANG Y, et al. An intensified ozonation system in a tank reactor with foam block stirrer: Synthetic textile wastewater treatment and mass transfer modeling[J]. Separation and Purification Technology, 2021, 257: 117909. doi: 10.1016/j.seppur.2020.117909
    [6] HU J, BIAN X, XIA Y, et al. Application of response surface methodology in electrochemical degradation of amoxicillin with Cu-PbO2 electrode: Optimization and mechanism[J]. Separation and Purification Technology, 2020, 250: 117109. doi: 10.1016/j.seppur.2020.117109
    [7] GHEZZAR M R, ABDELMALEK F, BELHADJ M, et al. Enhancement of the bleaching and degradation of textile wastewaters by gliding arc discharge plasma in the presence of TiO2 catalyst[J]. Journal of Hazardous Materials, 2009, 164(2/3): 1266-1274.
    [8] WANG T C, LU N, LI J, et al. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 436-441.
    [9] SHANG K F, LU N, LI J, et al. Factor analysis of ozone generation by gas-phase surface discharge for degradation of azo dye wastewater[J]. High Voltage Engineering, 2012, 38(7): 1636-1641.
    [10] 朱丹, 陈培, 江林, 等. 介质阻挡放电等离子体去除水中敌草隆的降解机理[J]. 环境科学研究, 2014, 27(11): 1360-1366.
    [11] CAO Y, QU G Z, LI T, et al. Review on reactive species in water treatment using electrical discharge plasma: Formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 10-26.
    [12] WANG X P, HUANG Q L, DING S G, et al. Micro hollow cathode excited dielectric barrier discharge(DBD) plasma bubble and the application in organic wastewater treatment[J]. Separation and Purification Technology, 2020, 240: 116659. doi: 10.1016/j.seppur.2020.116659
    [13] WANG T C, QU G Z, REN J, et al. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system[J]. Journal of Hazardous Materials, 2016, 302: 65-71. doi: 10.1016/j.jhazmat.2015.09.051
    [14] TICHONOVAS M, KRUGLY E, RACYS V, et al. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment[J]. Chemical Engineering Journal, 2013, 229: 9-19. doi: 10.1016/j.cej.2013.05.095
    [15] VANRAES P, GHODBANE H, DAVISTER D, et al. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency[J]. Water Research, 2017, 116: 1-12. doi: 10.1016/j.watres.2017.03.004
    [16] WANG X, LI Z, LAN T, et al. Sulfite oxidation in seawater flue gas desulfurization by plate falling film corona-streamer discharge[J]. Chemical Engineering Journal, 2013, 225: 16-24. doi: 10.1016/j.cej.2013.03.084
    [17] 姜艳艳. 介质阻挡低温等离子体降解水中啶虫脒的研究[D]. 济南: 山东大学, 2013.
    [18] 曾金辉. 同轴降膜放电反应器等离子体降解布洛芬的技术研究[D]. 杭州: 浙江大学, 2015.
    [19] WANG B W, DONG B, XU M, et al. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases[J]. Chemical Engineering Science, 2017, 168: 90-100. doi: 10.1016/j.ces.2017.04.027
    [20] 崔运秋, 程久珊, 籍海峰, 等. 大气压降膜DBD等离子体去除废水中四环素[J]. 环境工程学报, 2020, 14(2): 359-371. doi: 10.12030/j.cjee.201904065
    [21] 宋玲. 气相介质阻挡放电活性粒子喷射降解水中有机污染物的研究[D]. 大连: 大连理工大学, 2008.
    [22] 王丽, 乐传俊, 王雯彬. 紫外分光光度法快速检测塑料制品中的双酚S[J]. 食品研究与开发, 2015, 36(22): 120-122. doi: 10.3969/j.issn.1005-6521.2015.22.030
    [23] 谢爱娟, 罗士平, 郭登峰. 不同溶剂中苯酚的紫外光谱[J]. 光谱实验室, 2012, 29(1): 159-163. doi: 10.3969/j.issn.1004-8138.2012.01.038
  • 加载中
图( 12)
计量
  • 文章访问数:  5066
  • HTML全文浏览数:  5066
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-01-23
  • 录用日期:  2021-04-12
  • 刊出日期:  2021-07-10
王小平, 梅洁. 泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S[J]. 环境工程学报, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145
引用本文: 王小平, 梅洁. 泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S[J]. 环境工程学报, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145
WANG Xiaoping, MEI Jie. Removal of TBBPS from simulated production wastewater by bubble film dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145
Citation: WANG Xiaoping, MEI Jie. Removal of TBBPS from simulated production wastewater by bubble film dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2305-2313. doi: 10.12030/j.cjee.202101145

泡膜式介质阻挡放电等离子体去除模拟生产废水中的四溴双酚S

    通讯作者: 王小平, E-mail: xpwang@ctbu.edu.cn
    作者简介: 王小平(1984—),男,博士,副教授。研究方向:水体污染控制技术。E-mail:xpwang@ctbu.edu.cn
  • 重庆工商大学环境与资源学院,催化与环境新材料重庆市重点实验室,重庆 400067
基金项目:
重庆市社会事业与民生保障科技创新专项项目(cstc2017shmsA20015)

摘要: 为了有效的降解生产废水中的四溴双酚S(TBBPS),采用泡膜式介质阻挡放电等离子体处理装置,研究了放电等离子体对TBBPS降解的影响。分别探讨了放电电压、空气流量、液体流量、活性物质抑制剂对TBBPS降解效果的影响;考察了降解过程中pH、电导率、COD和生物毒性的变化。结果表明,在放电电压为12.5 kV、空气流量为1.8 L·min−1、液体流量为150 mL·min−1时,处理9 min后其TBBPS去除率达到95 %以上;活性物质抑制剂对TBBPS的降解有一定的抑制作用,活性物质O2是反应体系中的主要活性物质;在降解过程中,pH不断下降,电导率不断上升,COD先升高后降低,生物毒性呈下降趋势。紫外-可见分光光度计全波扫描结果表明,TBBPS对应的特征吸收峰随处理时间变小,表明等离子体处理会破坏TBBPS的结构。以上研究结果可为TBBPS的有效降解提供参考。

English Abstract

  • 四溴双酚S(tetrabromobisphenol S,TBBPS)作为添加型或反应型溴代阻燃剂被广泛应用于电子设备、塑料和纺织品中,在其生产、使用、回收的过程中,又不可避免的进入池塘、湖泊、河流等水体中,最后汇入海洋[1]。近年来,四溴双酚S以及其衍生物在水体及其水生动物中被检测出来。有研究者[2]发现,微量四溴双酚S有致癌作用、肝毒性、破坏内分泌系统,所以选用合适且有效的方法对其降解处理,使得健康风险降到最低显得尤为重要。

    近年来,高级氧化技术被广泛的应用于难降解有机废水的处理中,包括 Fenton 氧化法[3]、光催化氧化法[4]、臭氧氧化法[5]、电化学降解法[6]和放电等离子体方法[7-8]等,其中,等离子体技术作为一种绿色有效的去除有机污染物的技术,引起了研究人员的广泛关注。该技术通过提供高能电子、离子、活性自由基、激发态原子和分子[9]参与化学反应;同时,光、热、电场和局部空化等物理效应也有利于有机污染物的降解。

    介质阻挡放电因其放电面积大,效果均匀稳定,被广泛应用于等离子体水处理研究中[10],但是,其存在的主要问题是活性物质的传质效率不高导致处理效果不佳[11]。通过近年研究发现,利用鼓泡法在气泡内产生活性物质自由扩散进入水相,可有效地增加气液传质界面,促进活性物质的吸收和利用[12-14]。另一种提高气液传质效率的办法是增加气液间的比表面积,采用降膜式反应器,既能增强活性物质的吸收,又能增强有机污染物的去除[15-16]

    在本研究中采用了泡膜式介质阻挡放电等离子体反应器,相比较于降膜式反应器,其具有多级传质和多级放电的双重特性,从活性物质产生效率和活性物质利用效率来看是理想的。根据这些优势,我们推测其对四溴双酚S的降解是有效的。本文考察了放电电压、空气流量、液体流量、活性物质抑制剂对TBBPS降解效果的影响,且对四溴双酚S降解机理进行了初步的分析,以期对难降解的有机废水提供一种有效且实用的处理方法。

  • 本研究中,实验装置如图1所示,反应器、检测系统、电源为实验主要组成部分,反应器中高压电极为置于石英玻璃管(外径为3 mm,内径为2 mm)中的不锈钢丝,不锈钢丝与石英管之间的间隙中填充饱和NaCl溶液,以避免石英管中可能出现的放电现象。另一根石英玻璃管(管直径2 cm,长22 cm)与高压电极同轴,其外表面包裹不锈钢丝作为接地电极。在调节合适的水气流量后,外加空气通过气体通道进入反应区对经底部进水口进入的待处理废水鼓泡,进而在高压电极石英玻璃管外壁与低压电极石英玻璃管内壁之间形成稳定上升的液膜,水气流量过大过小将影响水膜的稳定上升,放电发生在内部的气液界面和外部的石英玻璃管表面。降解反应发生在反应器中,根据实验情况从反应器中取样分析测量。

  • 电源CTP-2000K(南京苏曼);pH测定通过PHSJ-4F型pH计(雷磁-上海仪电);采用DDSJ-308F型电导率仪(雷磁-上海仪电)测量溶液电导率变化;使用LZB-4型玻璃转子流量计控制进气量;使用UV1102Ⅱ紫外-可见分光光度计(上海天美)和LC 2050型高效液相色谱仪对溶液成分进行检测;生物毒性由Lux-T010型测定。四溴双酚S(TBBPS)采购于上海阿达玛斯有限公司,配制溶液用水为去离子水,TBBPS的质量浓度为50 mg·L−1

  • 本实验中,模拟废水单次处理量为100 mL,处理浓度为50 mg·L−1,连通气体和溶液后,调节合适参数,待到反应器中液膜可均匀稳定上升时,启动电源,产生等离子体用以处理废水。在处理过程中,每隔3 min取样1次,取样体积为3 mL。本研究中所有结果均为 3 个平行样品的平均值。模拟废水中四溴双酚S的质量浓度由高效液相色谱法测定,四溴双酚S的去除率根据式(1)进行计算。

    式中:η是去除率,c0是TBBPS的初始质量浓度,mg·L−1ct是降解时间为t时刻的TBBPS质量浓度,mg·L−1

    高效液相色谱检测条件:Agilent Extend-C 18型色谱柱(4.6 mm×250 mm,5 μm),流动相配比为乙腈(600 mL)∶0.1 %磷酸二氢钾(400 mL)∶磷酸(1 mL),检测波长λ为227 nm,流速为1 mL·min−1,进样量为20 μL;化学需氧量(COD)由高锰酸钾指数法滴定测定。

    实验结果均采用origin 2018及Excel 2019软件进行数据处理和分析。对于同一初始质量浓度的TBBPS溶液在不同放电电压、空气流量、液体流量、活性物质抑制剂条件下去除率的差异采用单因素方差分析(One-Way ANVON),P<0.05被认为差异显著。

  • 为了测试本放电装置在液膜有无和不同外加电压下,其放电形貌的变化,本研究在液体流量为150 mL·min−1,空气流量为1.8 L·min−1,电导率为18.25 μS·cm−1的条件下,使用去离子水对液膜有无和不同电压的放电现象进行了拍照,并记录放电过程的电压电流变化。由图2可见,相比较于无液膜存在的情况,液膜存在时的放电现象更加明显。同时,在有液膜的情况下,当电压为5.7 kV时,只有内部微弱的流光放电,放电波形较为平缓;当电压增至12.8 kV时,内部流注放电和外部的沿面介质阻挡放电明显,对比其电流电压波形,波形稳定;当电压达到15.6 kV时,沿面介质阻挡放电逐渐减弱,流注放电增强,电流波形幅度变大。综合上述结果可知,由电压和气液两相流速对放电强度的影响可以得出,电压和气液两相流速的最佳组合是必要的,液膜的形成可以增强放电强度。

  • 图3反映了在TBBPS初始质量浓度为50 mg·L−1,液体流量为150 mL·min−1,空气流量为1.8 L·min−1的条件下,放电电压对TBBPS去除率的影响。可以看出,TBBPS去除率随外加电压的增大而上升,但当电压在12.5 kV达到峰值后逐渐减小。其中,TBBPS去除率随放电电压的增加可以解释为输入能量的不断增加,导致活性物质的产生量提高,污染物的去除率显著升高 (P<0.05)。而放电区域的温度随着外加电压的增加而增加,会缩短H2O2和O3等活性物质的寿命[17-19],使其与污染物的反应时间缩短。此外,在外加电压为12.5 kV的条件下,可以同时点燃内部流注放电和外部沿面介质阻挡放电。但在较高电压下,内部流注放电向火花放电转变,活性物质的产生效率降低,从而限制了污染物的去除效率。

  • 图4反映了在TBBPS初始质量浓度为50 mg·L−1,液体流量为150 mL·min−1,外加电压为12.5 kV的条件下,空气流量对TBBPS去除率的影响。当气体流量分别为1.2 L·min−1和1.6 L·min−1时,TBBPS的去除率低。其原因是:此时未形成稳定水膜,只点燃了内部的流注放电。在此基础上,当空气流量增加到1.8 L·min−1时,TBBPS的去除率显著增加(P<0.05),且在9 min时达到95 %以上。而当空气流量增加到2.4 L·min−1时,TBBPS的去除率却降低。这是因为,在低空气流速下,反应器内部发生微弱的流注放电,外表面的沿面介质阻挡放电未被点燃,也无活性物质产生,TBBPS的去除仅取决于内部的流注放电。当气体流量增加到1.8 L·min−1时,会形成水膜,从而提高污染物的去除效率,在此阶段,内部区域内水膜上升,外部放电被点燃并产生活性物质,从而提高TBBPS的去除率。而当气体流量进一步增加到2.4 L·min−1时,会破坏水膜的稳定性,影响放电的均匀性,从而导致污染物去除效率的降低。

  • 图5反映了在TBBPS初始质量浓度为50 mg·L−1,外加电压为12.5 kV,空气流量为1.8 L·min−1的条件下,液体流量对TBBPS去除率的影响。可以看出,TBBPS去除率随液体流量增加而上升,且在150 mL·min−1时达到峰值,其去除率上升效果显著(P<0.05),之后TBBPS去除率略有下降。与空气流量的影响情况类似,液体流量也会影响水膜。在流量较低时,进水不能维持明显的水膜。而增大水流量可形成水膜,进而增强H2O2、O3、·OH等活性物质的生成和利用过程。但当液体流量200 mL·min−1过大时,内部高压电极与外部石英管之间的间隙内不会形成水膜,而是形成气泡-水混合流动。这导致整体放电强度和活性物质的生成率下降。同时,本实验是循环处理系统,较高的液体流速也使得液体在反应器中单位时间循环次数增加,增加等离子体对污染物作用次数增加,从而提高污染物与活性物质的反应效率。

  • 为了研究污染物降解过程中不同活性物质起到的作用,本研究中分别选用了对苯醌、三乙烯二胺和异丙醇作为O2、单线态1O2和·OH的抑制剂,在TBBPS初始质量浓度为50 mg·L−1、水气流量分别为150 mL·min−1和1.8 L·min−1的条件下,分析比较了抑制剂种类和浓度对TBBPS去除率的影响。图6反映了不同浓度的对苯醌对TBBPS去除率的影响。由图6可以看出,当对苯醌浓度为1 mmol·L−1时,反应6 min后,TBBPS去除率由未添加抑制剂时的92%降为84%;当对苯醌浓度增至5 mmol·L−1时,反应时间6 min后,其TBBPS去除率降至57%。由此可见,O2是等离子体放电处理TBBPS过程中存在的活性物质之一,对苯醌的添加导致TBBPS去除率的显著降低(P<0.05)。这是由于对苯醌消耗了反应体系中大量的O2,以至于体系中的O2不足以降解过量的TBBPS。此外,当反应时间为18 min时,TBBPS的去除率仍可以达到100 %,这说明反应体系中O2并不是唯一活性物质。

    图7反映了不同浓度三乙烯二胺对TBBPS去除率的影响。由图7可以看出,当三乙烯二胺的浓度由1 mmol·L−1增至5 mmol·L−1,反应6 min后,其TBBPS的去除率由86%降至63%。由此可以看出,单线态1O2 是等离子体放电处理TBBPS过程中存在的活性物质之一,三乙烯二胺的添加导致去除率的显著降低(P<0.05)。此外,由图8可以看出,当异丙醇的浓度由1 mmol·L−1增至5 mmol·L−1时,反应6 min后,TBBPS的去除率由85%降至65%。表明·OH是放电处理TBBPS过程中存在的活性物质之一,异丙醇的添加导致去除率显著降低(P<0.05)。这是因为,在相同条件下,三乙烯二胺和异丙醇消耗了反应体系中的单线态1O2和·OH。综合以上结果可知,放电过程中产生的O2对TBBPS的降解贡献更大。

  • 在降解过程中,随着降解时间的延长,TBBPS的物质组成和性质会发生变化。本实验考察了在初始电导率为37.0 μS·cm−1、初始pH为7.5、空气流量为1.8 L·min−1,外加电压为12.5 kV的条件下,TBBPS溶液中pH和电导率随降解时间的变化(图9)。由图9可看出,溶液的pH和电导率的变化趋势是不同的,pH随着降解时间的延长而下降,电导率则随着降解时间的延长而上升。这说明放电处理过程中,伴随着放电等离子体的产生和活性物质的生成,不断有带电粒子和酸性物质生成。其中,pH在3~9 min内迅速下降,在此反应时间内TBBPS的去除速率最高,随后二者变化缓慢,这可以解释为本实验通入空气中的氮在放电等离子体的作用下形成硝酸(pKa=−1.3)、亚硝酸(pKa=3.3)以及TBBPS降解后产生的酸性中间产物(BrOBrO3等)导致了溶液的pH快速降低[20]。而随着降解时间的延长,TBBPS降解生成的酸性中间产物,易与·OH产生中和反应,pH变化缓慢[21]。同时,溶液电导率的增加是因为等离子体处理过程中,溶液中不断产生硝酸、亚硝酸等活性氮物种,并且随着降解时间的延长,TBBPS降解过程中产生的小分子中间产物也使得溶液中离子浓度有所上升,从而导致电导率增加。

  • 图10反映了在TBBPS初始质量浓度为50 mg·L−1、液体流量为150 mL·min−1、空气流量为1.8 L·min−1的条件下,TBBPS溶液中COD的变化情况。由图10可以看出,TBBPS溶液的COD先上升后下降,在放电15 min后,COD先由31.06 mg·L−1上升到36.14 mg·L−1,后又下降到18.10 mg·L−1。由此可见,在放电处理过程中,初始阶段溶液中TBBPS由于放电活性物质的作用,生成了有机酸类物质和小分子物质,导致溶液的COD值上升,之后随着降解时间的不断延长,TBBPS降解生成的这些小分子物质被降解,COD值则呈下降趋势。

  • 本实验测试了在TBBPS初始质量浓度为50 mg·L−1,液体流量为150 mL·min−1、空气流量为1.8 L·min−1的条件下,不同降解时间下该溶液的生物毒性变化,结果如图11所示。其发光细菌生物毒性抑制率随着降解时间的增加而降低,经过放电处理,抑制率由未处理时的83%降低到经处理24 min后的63%。由此可见,放电等离子体处理可以有效地降解TBBPS,而降解过程中的中间产物仍具有毒性,故需要进一步的降解处理。

  • 图12反映了在TBBPS初始质量浓度为50 mg·L−1、液体流量为150 mL·min−1、空气流量为1.8 L·min−1的条件下,放电处理后溶液的光谱扫描,扫描用样均是处理后水样稀释10倍所得。通过对其进行全波长扫描,可以看到,在可见光区存在2个特征吸收峰,分别在227 nm和310 nm处,随着降解时间的增加,可以看到2个特征峰均逐渐降低。其中,227 nm处的特征峰在降解时间9 min后逐渐消失,这与第2.2节中报告的TBBPS去除率的变化结果是一致的;随着时间的延长,在310 nm处对应的吸收峰强度降低,且伴有明显的蓝移。这说明TBBPS在处理3 min后就开始发生主链的断裂,导致其分子结构受到破坏,生成了TBBPS的降解中间产物,推测该物质为双酚S[22-23]

  • 1)本研究中的泡膜式等离子体放电装置放电均匀稳定、传质快、可有效降解废水中的TBBPS。在外加电压为12.5 kV、液体流量为150 mL·min−1和空气流量为1.8 L·min−1的条件下,TBBPS去除率可在9 min后达到95%以上。

    2)放电体系中产生的O2是主要活性物质,对降解过程起重要作用;此外,·OH和单线态1O2也是反应体系中的活性物质。

    3)在降解过程中随着溶液pH不断下降,电导率呈上升趋势,这是因为在降解过程中TBBPS的中间产物和硝酸类物质的生成。同时,降解过程中COD呈先升高后降低的趋势,生物毒性有所下降。

参考文献 (23)

返回顶部

目录

/

返回文章
返回