-
菜籽饼是油菜籽经压榨制油后得到的副产物,含有丰富的蛋白质、氨基酸以及其他营养物质,是一种可资源化利用的农业固废[1-2]。我国作为世界上油菜种植面积最大的国家,菜籽饼产量巨大,近年来每年产量均在500×104 t以上[3]。若不对其进行充分利用,不仅会造成资源浪费,还会增加固废物处置压力。随着油菜产业的快速发展,菜籽饼的资源化利用尤为重要。与此同时,据不完全统计,我国每年畜禽粪污的产量在38×108 t以上,但有效利用率却不到50%;大量粪便的随意堆放和低效处理,亦给环境造成了较大污染[4]。现阶段,在农业废弃物资源化利用方法中,厌氧发酵产沼气是一条清洁高效的途径,不仅可以实现废弃物的资源化利用、减轻环境污染,还可作为农村生活用能;同时,还能产出有机肥,从而促进生态农业发展[5-6]。
目前,对菜籽饼的利用主要集中在作为动物饲料添加剂[7-9]和肥料[10-11]等的研究上,而将其作为原料进行厌氧发酵的研究鲜见报道。菜籽饼富含蛋白质等有机物质(粗蛋白含量30%~38%),是较理想的产沼气原料。近年来,高含固率(≥10%)厌氧发酵因能有效解决低含固率(<10%)发酵存在的需水量大、沼液排放量大及耗能大等问题,已成为该领域中试实验及大规模推广研究的热点[12-14]。有研究表明,在作物废弃物类原料中添加牲畜粪便进行共发酵具有诸多优点,不仅能平衡发酵原料的营养成分、改善单一原料发酵消化效率不高的问题、提高沼气产量;还可以促进种、养殖业的协调发展和生物质资源的循环利用,对实现农业可持续发展具有重要意义[15-17]。但目前还未见高含固率菜籽饼与牲畜粪便不同配比混合厌氧发酵的报道。因此,本研究以农用沼气池为发酵装置,分析高含固率菜籽饼和牛粪-羊粪不同配比混合厌氧发酵产沼气的特性;并采用修正的Gompertz模型对各处理沼气产生过程进行动力学分析,以期为菜籽饼等农业废弃物资源的再利用及高含固率厌氧发酵技术的推广和使用提供参考。
高含固率菜籽饼与牛粪-羊粪混合厌氧发酵产沼气特性
Biogas production characteristics of mixed anaerobic fermentation of rapeseed cake with high solid content and cow dung-sheep manure
-
摘要: 为充分利用菜籽饼和牛羊粪等固体废物资源并提高其产沼气性能,以农用沼气池为发酵装置,研究了高含固率菜籽饼和牛粪-羊粪10个不同配比(以干物质计)混合厌氧发酵40 d的产沼气特性。结果表明,各混合处理的整个发酵过程运行良好,厌氧消化运行情况稳定。其中,菜籽饼与羊粪干物质配比为2∶1时具有较高的产气潜力,累积产气量最大,达到122.92 m3·t−1。同时,菜籽饼与羊粪混合发酵的产气效果要优于与牛粪混合的效果。修正的Gompertz模型显示,各处理能较好地拟合产沼气过程。其中,最大产沼气量(Pm)和最大产气速率(Rm)随菜籽饼添加量的增加而增大,产气滞留时间(λ)则随菜籽饼添加量的增加而降低。本研究结果可为菜籽饼和畜禽粪便的资源化利用提供参考。Abstract: In order to make full use of the waste resources such as rape cake and cow dung and sheep manure and improve the biogas production performance at the same time, this test was based on the agricultural biogasdigester as the fermentation device, to study the characteristics of mixed anaerobic fermented 40d biogas of rape seed cake with high solid-state rate and cow dung-sheep manure in 10 different proportions (calculated by dry material). According to the result, it indicated that the entire fermentation process of each mixed treatment is under good operation, which suggested that the mixed fermentation could improve the anaerobic digestion and operation effect, of which, the accumulated biogas yield had high potential when the dry material proportion of rape seed cake and sheep manure was 2∶1, up to 122.92 m3·t−1. Meanwhile, the biogas effect of mixed fermentation by rape seed cake and sheep manure was better than that of the cow dung mixing. The modified Gompertz model indicated that each treatment could fit the process of producing biogas well, of which, the value of maximum biogas yield (Pm) and maximum biogas production rate (Rm) increased with the increase in the addition volume of rape seed cake, while (λ) decreased with the increase in the addition volume of rape seed cake. This study provided valuable reference for resource utilization of rape seed cake and feces.
-
表 1 原料和接种物的理化性质
Table 1. Physical and chemical properties of raw materials and inoculums
供试样品 pH TS/% VS/% N/% C/% C/N 木质素/% 纤维素/% 半纤维素/% 粗蛋白/% 菜籽饼 6.34±0.1 92.35±0.3 84.88±0.2 4.88±0.6 45.3±0.5 9.28 10.91±0.6 3.37±0.1 3.35±0.1 30.5±0.6 羊粪 7.87±0 38.48±0 30.07±0.1 1.86±0.2 38.24±0.4 20.56 33.73±0.4 14.50±0.3 9.81±0.5 11.63±0.2 牛粪 7.73±0.1 36.83±0.1 29.41±0.1 1.41±0.2 37.25±0.7 26.42 35.77±0.3 18.3±0.2 11.10±0.2 8.81±0.2 接种物 7.31±0.1 2.37±0.1 1.28±0.2 2.35±0.3 27.41±0.9 11.66 ND ND ND ND 注:ND表示未测定。 表 2 原料添加量
Table 2. Raw material addition
kg 处理组 菜籽饼 羊粪 牛粪 T1 827.77 0 0 T2 0 1 986.62 0 T3 0 0 2 075.61 T4 413.89 993.31 0 T5 275.92 1 324.41 0 T6 206.94 1 489.96 0 T7 165.55 1 589.29 0 T8 551.85 662.21 0 T9 206.94 0 1 556.71 T10 206.94 744.98 778.36 注:添加量为鲜质量。 表 3 不同处理产沼气修正的Gompertz模型的动力学参数
Table 3. Kinetic parameters of modified Gompertz model for biogas production from different treatments
处理组 P/(m3·t−1) Pm/(m3·t−1) Rm/(m3·(t·d)−1) λ/d R2 T1 87.584 89.233 5.134 0.729 0.997 T2 42.663 43.081 1.981 2.362 0.999 T3 37.121 38.061 1.452 2.421 0.999 T4 100.696 97.183 6.327 1.467 0.994 T5 88.068 87.398 4.854 1.474 0.998 T6 71.914 69.745 4.231 1.596 0.996 T7 67.614 66.187 4.057 2.108 0.998 T8 122.921 124.742 6.766 1.455 0.998 T9 55.760 56.451 2.505 1.618 0.997 T10 58.630 59.203 2.657 1.545 0.998 -
[1] PIOTR K, DANIEL K, KRZYSZTOF L, et al. The effect of hydrothermally processed soybean and rapeseed-based diets on performance, meat and carcass quality characteristics in growing-finishing pigs[J]. Annals of Animal Science, 2019, 19(4): 1083-1097. doi: 10.2478/aoas-2019-0045 [2] SMETS K, ADRIAENSENS P, REGGERS G, et al. Flash pyrolysis of rapeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2): 118-127. doi: 10.1016/j.jaap.2010.11.002 [3] 祝红蕾, 储大勇, 刘华. 菜籽饼粕有机肥的应用[J]. 安徽化工, 2013, 39(5): 13-14. doi: 10.3969/j.issn.1008-553X.2013.05.004 [4] 王铁灵. 畜禽养殖污染的有效治理策略[J]. 中国畜牧业, 2016(21): 38-40. [5] WANG S N, YUAN R F, LIU C C, et al. Effect of Fe2+ adding period on the biogas production and microbial community distribution during the dry anaerobic digestion process[J]. Process Safety and Environmental Protection, 2020, 136: 234-241. doi: 10.1016/j.psep.2019.12.031 [6] ZHAI S M, LI M, XIONG Y H, et al. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316: 123903. doi: 10.1016/j.biortech.2020.123903 [7] DRAŻBO A, KOZŁOWSKI K, OGNIK K, et al. The effect of raw and fermented rapeseed cake on growth performance, carcass traits, and breast meat quality in turkey[J]. Poultry Science, 2019, 98(11): 6161-6169. doi: 10.3382/ps/pez322 [8] HANG L, ZHANG K Y, FRALEY G S, et al. High vitamin levels ameliorate negative effect of rapeseed meal in meat ducks by improving antioxidant activity[J]. Poultry Science, 2019, 98(10): 4622-4631. doi: 10.3382/ps/pez160 [9] WANG Y, LIU J, WEI F, et al. Improvement of the nutritional value, sensory properties and bioavailability of rapeseed meal fermented with mixed microorganisms[J]. LWT-Food Science and Technology, 2019, 112: 108238. doi: 10.1016/j.lwt.2019.06.005 [10] 余小芬, 杨树明, 邹炳礼, 等. 菜籽油枯有机无机复混肥对烤烟产质量及养分利用率的影响[J]. 土壤学报, 2020, 57(6): 1564-1574. [11] 李司童, 毛凯伦, 郑璞帆, 等. 生物炭与菜籽饼配施对土壤养分及烟叶产质量的影响[J]. 中国土壤与肥料, 2017(4): 37-43. doi: 10.11838/sfsc.20170406 [12] 马旭光, 江滔, 唐琼, 杨娟. 牛粪添加量对油菜秆半固态发酵产甲烷特性的影响[J]. 农业工程学报, 2016, 32(S2): 323-330. [13] 刘杨, 闫志英, 姬高升, 等. 水稻秸秆序批式干发酵产沼气中试及其动力学研究[J]. 农业工程学报, 2018, 34(23): 221-226. doi: 10.11975/j.issn.1002-6819.2018.23.028 [14] CUI Z F, SHI J, LI Y B. Solid-state anaerobic digestion of spent wheat straw from horse stall[J]. Bioresource Technology, 2011, 102(20): 9432-9437. doi: 10.1016/j.biortech.2011.07.062 [15] LV Z, FENG L, SHAO L, et al. The effect of digested manure on biogas productivity and microstructure evolution of corn stalks in anaerobic cofermentation[J]. BioMed Research International, 2018(2018): 5214369. [16] ZHAO Y B, SUN F R, YU J D, et al. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation[J]. Bioresource Technology, 2018, 269: 143-152. doi: 10.1016/j.biortech.2018.08.040 [17] AWORANTI O A, AGARRY S E, OGUNLEYE O O. Biomethanization of the mixture of cattle manure, pig manure and poultry manure in co-digestion with waste peels of pineapple fruit and content of chicken-gizzard - Part II: Optimization of process[J]. The Open Biotechnology Journal, 2017, 11: 54-71. doi: 10.2174/1874070701711010054 [18] 韩睿, 朱德锐, 陈来生. 青海户用沼气池料液温度变化特征及对产气的影响[J]. 中国沼气, 2016, 34(6): 95-100. doi: 10.3969/j.issn.1000-1166.2016.06.018 [19] 赵玲, 李森, 王聪, 等. 不同预处理对秸秆木质纤维组分特性的影响[J]. 沈阳农业大学学报, 2017, 48(2): 244-249. [20] 詹晓燕, 刘臣辉, 范海燕, 等. 水体中氨氮测定方法的比较: 纳氏试剂光度法、靛酚蓝比色法[J]. 环境科学与管理, 2010, 35(11): 132-134. doi: 10.3969/j.issn.1673-1212.2010.11.034 [21] 谢海婷. 氯离子对厌氧处理废水中蒸馏法测定VFA的影响[D]. 郑州: 郑州大学, 2017. [22] OTERO M, LOBATO A, CUETOS M J, et al. Digestion of cattle manure: thermogravimetric kinetic analysis for the evaluation of organic matter conversion[J]. Bioresource Technology, 2011, 102(3): 3404-3410. doi: 10.1016/j.biortech.2010.10.016 [23] 王金主, 王元秀, 李峰, 等. 玉米秸秆中纤维素、半纤维素和木质素的测定[J]. 山东食品发酵, 2010(3): 44-47. [24] 雷红. 凯氏定氮法消化实验方法的改进[J]. 科技创新与应用, 2013(34): 22. [25] HU Z H, YU H Q. Anaerobic digestion of cattail by rumen cultures[J]. Waste Management, 2006, 26(11): 1222-1228. doi: 10.1016/j.wasman.2005.08.003 [26] 马旭光, 江滔, 唐琼, 等. 油菜秸秆和鸡粪比例及含固率对其发酵产甲烷特性的影响[J]. 农业工程学报, 2018, 34(12): 236-244. doi: 10.11975/j.issn.1002-6819.2018.12.029 [27] 罗娟, 赵立欣, 姚宗路, 等. NaOH预处理甘蔗叶与猪粪-牛粪混合厌氧消化工艺参数优化[J]. 农业工程学报, 2019, 35(5): 212-218. [28] 周丹丹. 混合原料批次恒温厌氧发酵动力学过程研究[D]. 兰州: 兰州理工大学, 2014. [29] WEI S Z, GUO Y F. Comparative study of reactor performance and microbial community in psychrophilic and mesophilic biogas digesters under solid state condition[J]. Journal of Bioscience and Bioengineering, 2018, 125(5): 543-551. doi: 10.1016/j.jbiosc.2017.12.001 [30] LIN J, ZUO J, GAN L, et al. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China[J]. Journal of Environmental Sciences, 2011, 23(8): 1403-1408. doi: 10.1016/S1001-0742(10)60572-4 [31] ADRIE V, SERGEY K, HEIJO S, et al. Effect of pH and VFA on hydrolysis of organic solid waste[J]. Journal of Environmental Engineering, 2000, 126(12): 1076-1081. doi: 10.1061/(ASCE)0733-9372(2000)126:12(1076) [32] TA A T, BABEL S. Utilization of green waste from vegetable market for biomethane production: Influences of feedstock to inoculum ratios and alkalinity[J]. Journal of Material Cycles and Waste Management, 2019, 21(6): 1391-1401. doi: 10.1007/s10163-019-00898-2 [33] RAPOSO F, BANKS C J, SIEGERT I, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests[J]. Process Biochemistry, 2006, 41(6): 1444-1450. doi: 10.1016/j.procbio.2006.01.012 [34] YENIGUN O, DEMIREL B. Ammonia inhibition in anaerobic digestion: A review[J]. Process Biochemistry, 2013, 48(5/6): 901-911. [35] LI L, HE Q M, WEI Y M, et al. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste[J]. Bioresource Technology, 2014, 171: 491-494. doi: 10.1016/j.biortech.2014.08.089 [36] ZHAO J, HOU T, LEI Z, et al. Effect of biogas recirculation strategy on biogas upgrading and process stability of anaerobic digestion of sewage sludge under slightly alkaline condition[J]. Bioresource Technology, 2020, 308: 123293. doi: 10.1016/j.biortech.2020.123293 [37] FANG W, ZHANG, P, ZHANG G, et al. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization[J]. Bioresource Technology, 2014, 168: 167-172. doi: 10.1016/j.biortech.2014.03.050 [38] LI Y Q, ZHANG R H, CHEN C, et al. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions[J]. Bioresource Technology, 2013, 149: 406-412. doi: 10.1016/j.biortech.2013.09.091 [39] YU J, ZHAO L, FENG J, et al. Sequencing batch dry anaerobic digestion of mixed feedstock regulating strategies for methane production: Multi-factor interactions among biotic and abiotic characteristics[J]. Bioresource Technology, 2019, 284: 276-285. doi: 10.1016/j.biortech.2019.03.141 [40] KATHERINE S, MANUEL A, ESTRELLA A, et al. Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm[J]. Anaerobe, 2004, 10(1): 8-13. [41] YE J Q, LI D, SUN Y M, et al. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure[J]. Waste Management, 2013, 33(12): 2653-2658. doi: 10.1016/j.wasman.2013.05.014 [42] AĞDAĞ O N, SPONZA D T. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes[J]. Chemosphere, 2005, 59(6): 871-879. doi: 10.1016/j.chemosphere.2004.11.017 [43] MASSE L, MASSÉ D I, KENNEDY K J, et al. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater[J]. Biotechnology and Bioengineering, 2002, 79(1): 43-52. doi: 10.1002/bit.10284 [44] 贺静, 邓雅月, 李凛, 等. 废弃食用油脂两相厌氧发酵酸化条件优化[J]. 农业工程学报, 2015, 31(19): 247-253. doi: 10.11975/j.issn.1002-6819.2015.19.035 [45] ANGELIDAKI I, SANDERS W. Assessment of the anaerobic bio-degrad- ability of macropollutants[J]. Reviews in Environmental Science and Bio-Technology, 2004, 3(2): 117-129. doi: 10.1007/s11157-004-2502-3 [46] KIM S H, HAN S K, SHIN H S. Kinetics of LCFA inhibition on acetoclas tic methanogenesis, propionate degradation and β-oxidation[J]. Journal of Environmental Science and Health Part A, 2004, 39(4): 1025-1037. [47] 赵芳, 李江华, 董滨, 等. 长链脂肪酸对厌氧消化产沼的抑制作用研究进展[J]. 安徽农业科学, 2012, 40(25): 12564-12567. doi: 10.3969/j.issn.0517-6611.2012.25.085 [48] 王武娟. 羊粪与南方农业废弃物厌氧发酵产沼气条件优化研究[D]. 南宁: 广西大学, 2019.