电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响

张玉浩, 陈彦洁, 付国楷. 电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响[J]. 环境工程学报, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
引用本文: 张玉浩, 陈彦洁, 付国楷. 电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响[J]. 环境工程学报, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
ZHANG Yuhao, CHEN Yanjie, FU Guokai. Effect of current intensity on nitrogen removal and electricity generation in hybrid biocathode MFC for high-salinity wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
Citation: ZHANG Yuhao, CHEN Yanjie, FU Guokai. Effect of current intensity on nitrogen removal and electricity generation in hybrid biocathode MFC for high-salinity wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122

电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响

    作者简介: 张玉浩(1996—),男,硕士研究生。研究方向:水污染控制。E-mail:2474339121@qq.com
    通讯作者: 付国楷(1979—),男,博士,副教授。研究方向:水污染控制与水体修复。E-mail:fuguokai@163.com
  • 基金项目:
    重庆市自然科学基金资助项目 (cstc2019jcyj-msxmX0573)
  • 中图分类号: X703.1

Effect of current intensity on nitrogen removal and electricity generation in hybrid biocathode MFC for high-salinity wastewater treatment

    Corresponding author: FU Guokai, fuguokai@163.com
  • 摘要: 构建了双室混合生物阴极微生物燃料电池(microbial fuel cell,MFC)处理高盐榨菜废水,探讨了不同电流强度对混合膜 MFC 脱氮的影响,并分析了产电特性及微生物群落特征。结果表明,高电流通量可缩短双室混合膜MFC的完全脱氮周期,且主要缩短的是稳定期周期。相对于其他3个实验组,电流强度最大的S3实验组硝酸盐平均去除速率((5.72±0.10) mg·(L·d)−1)与硝酸盐最高去除速率((8.45±0.15) mg·(L·d)−1)均最大,且实现总氮100%去除的时间最短(19 d),稳定期硝酸盐去除速率k (6.122 5 mg·(L·d)−1)最大,这说明增大电流强度可促进混合膜MFC 电营养反硝化。电营养反硝化菌可直接利用电子进行反硝化反应,而较大的电子通量给阴极电活性自养脱氮微生物提供了丰富的生命燃料。在产电方面,曝气阶段开路电压(S1、S2、S3、S4分别为750、729、721、699 mV)随外加电阻的增大而增大,最大功率密度相差却并不显著(1.09、0.94、1.04、1.02 W·m−3);停止曝气阶段,阴极室电子受体的减少,导致MFC产电性能普遍下降,外电阻最大的S1实验组开路电压(746 mV)与最大功率密度(0.77 W·m−3)为最高。高通量测序结果表明,承担电营养反硝化功能的菌群可能为norank_f_HydrogenophagaAzoarcus。以上研究结果可为后续双室混合膜 MFC处理高盐废水提供技术参考。
  • TESSIER等[1]于1979年提出连续提取法,以用于分析金属在土壤或固废中的结合形态。该法将土壤金属的结合态分为5种,即可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态、残渣态;各结合态的提取难度依次增大,其所对应的生物有效性依次降低。Tessier连续提取法作为一种操作性定义,以特定提取剂和一定的提取条件来区分元素与土壤特定组分的结合态,有其相对合理性,也存在着一定的局限性,但现阶段还未找到更好的替代方法。Tessier连续提取法最初只对8种土壤金属(Cd、Co、Cu、Ni、Pb、Zn、Fe、Mn)进行了分析,但其中并不包含铬。近年来,随着土壤铬污染问题及其修复技术研发的需要,一些研究开始将Tessier连续提取法拓展到土壤铬的结合态分析上来,有些研究仅针对总铬(TCr)[2-4],有些也包括六价铬[Cr(Ⅵ)][5-7],该方法的应用场景越来越广泛[8-9]

    土壤TCr以三价铬[Cr(Ⅲ)]和Cr(Ⅵ) 2种价态存在。其中,Cr(Ⅵ)的可迁移性和毒性远远高于Cr(Ⅲ)。因此,铬污染土壤修复通常是指清除土壤中的Cr(Ⅵ),或将其转化成低毒性的Cr(Ⅲ)[10]。Tessier连续提取法在铬结合态分析中的应用主要出于3个目的:1)了解自然环境下未污染土壤中原生铬结合态的分布;2)了解铬污染土壤中Cr(Ⅲ)、Cr(Ⅵ)和TCr结合态的分布[11];3)比较修复前、后土壤Cr(Ⅲ)、Cr(Ⅵ)或TCr结合态分布的变化,从结合态的角度评估修复技术的有效性[12-13]。然而,Tessier连续提取法在其第3步铁锰氧化物结合态的提取中使用了还原剂盐酸羟胺(NH2OH·HCl),存在将Cr(Ⅵ)还原成Cr(Ⅲ)的可能性。在第4步有机结合态的提取中使用的双氧水(H2O2)也可能导致Cr(Ⅵ)-Cr(Ⅲ)的转化。此外,对于经还原修复的铬污染土壤,土壤中残留的还原剂也可能在提取过程中将Cr(Ⅵ)还原成Cr(Ⅲ),从而影响修复效果评估的准确性。但关于以上条件对铬结合态分析的影响至今仍缺少相关研究报道。目前,Tessier连续提取法在未加评估的情况下,被直接用于铬污染土壤和含铬固废的结合态分析。

    本研究针对当前Tessier连续提取法使用的3种场景,即:1)未污染土壤的原生铬结合态;2)铬污染土壤中的铬结合态;3)铬污染土壤还原修复后残留铬的结合态(还原剂为亚铁[4]和硫化钠[14])。通过液相机理研究和土壤相验证研究相结合的方式,探究提取液自身组分和残留还原剂导致的各提取步骤中Cr(Ⅵ)与Cr(Ⅲ)的转化及机理。本研究结果可为利用Tessier连续提取法准确评估铬污染土壤修复效果提供参考。

    实验试剂。重铬酸钾(K2Cr2O7)、七水硫酸亚铁(FeSO4·7H2O)、九水硫化钠(Na2S·9H2O)、六水合氯化镁(MgCl2·6H2O)、乙酸钠(NaCOOH)、乙酸(HCOOH)、盐酸羟胺(NH2OH·HCl)、30%过氧化氢(H2O2)、乙酸铵(NH4COOH)、硝酸(HNO3)均为分析纯。

    硫化物溶液。为模拟经硫化钠处理后的土壤中残留硫化物的状态,残留还原剂的影响实验中使用的硫化物溶液取自K2Cr2O7与Na2S溶液密闭反应7 d后的上清液,主要成分为硫离子、多硫化物、硫代硫酸钠等[15]

    本研究采用4种土壤样品进行土壤相实验。

    土样1。未污染土壤,取自重庆大学校园内挖出的未经污染的原生黏土。采集后风干、过1 mm孔径的筛网备用。

    土样2。铬污染土壤,采自重庆某铬渣堆场。该渣场铬渣已被清理,土壤样品取自该渣场底部。

    土样3。经硫酸亚铁稳定化处理后的Cr(Ⅵ)污染土壤。以硫酸亚铁为还原剂,对土样2进行稳定化处理,用量为与Cr(Ⅵ)按化学计量比反应所需剂量的5倍。期间密封保存,稳定化处理时间为7 d,然后对其进行Tessier连续提取分析。

    土样4。经硫化钠稳定化处理后的Cr(Ⅵ)污染土壤。以硫化钠为还原剂,用量为与Cr(Ⅵ)按化学计量比反应所需剂量的5倍。稳定化处理方法同土样3,然后对其进行Tessier连续提取分析。

    Tessier连续提取法引起的铬结合态分析误差主要来自于2个方面,一是其提取液自身组分在第3、4步提取过程中对Cr(Ⅵ)的还原;二是土壤中残留还原剂在第1、2步提取过程中对Cr(Ⅵ)的还原。

    1)第3、4步中提取液组分的影响。本实验采用的Tessier连续提取法[1]操作步骤详见表1,其在第3步和第4步分别使用了NH2OH·HCl和H2O2。在酸性条件下,NH2OH·HCl和H2O2均可能将释放到提取液中的Cr(Ⅵ)还原成Cr(Ⅲ)[16-17]。为避免土壤中铬提取不完全的误差和土壤中其他离子的干扰,本实验不加入土壤基质,以Cr(Ⅵ)标准液替代铬污染土壤,进行溶液相反应机理研究。向150 mL锥形瓶中加入0.5 mL不同浓度的Cr(Ⅵ)标准液,具体加入量见表2中“Cr(Ⅵ)初始量”,实验编号分别L3-1、L3-2和L4-1、L4-2。再分别按照Tessier连续提取法第3步、第4步进行操作,测定溶液中残留的Cr(Ⅵ)量。

    表 1  Tessier连续提取法操作步骤
    Table 1.  Operation procedures of Tessier consequential extraction
    步骤结合形态提取方法
    1可交换态称取(1.000 0 ± 0.000 3) g 1)土样于50 mL塑料离心管中,加入8 mL 1 mol·L−1 MgCl2溶液,(22 ± 5) ℃下恒温连续振荡1 h(200 r·min−1)
    2碳酸盐结合态于上步残渣中加入8 mL 1 mol·L−1 NaAc溶液(加入HOAc调至pH = 5.0),(22 ± 5) ℃下恒温连续振荡5 h(200 r·min−1))
    3铁锰氧化物结合态于上步残渣中加入20 mL 0.04 mol·L−1 NH2OH·HCl的25% HAc溶液(pH = 2.0),(96 ± 3) ℃下水浴6 h,每10 min搅拌1次
    4有机结合态于上步残渣中加入3 mL 0.02 mol·L−1 HNO3溶液和5 mL 30% H2O2溶液(pH = 2.0),(85 ± 2) ℃下水浴2 h,间歇搅拌;补加3 mL 30% H2O2溶液(pH = 2.0),(85 ± 2) ℃水浴3 h,每10 min搅拌1次,加入5 mL 3.2 mol·L−1 NH4Ac的20% HNO3溶液,稀释到20 mL,(22 ± 5) ℃下恒温振荡30 min (200 r·min−1))
    5残渣态参见“1.3 分析方法”中土壤TCr和Cr(Ⅵ)的检测方法
      注:1)在土样的土壤Tessier连续提取实验中,为保证残渣态土壤量足够进行碱消解(2.5 g)和微波消解(0.2 g),本实验中每个土壤样品实际用量为本表中的3倍(即:3 g),提取液用量也等比例增加。第1、2步在50 mL离心管中操作,第3、4步在100 mL烧杯中操作。
     | Show Table
    DownLoad: CSV
    表 2  第3、4步提取操作中提取液对Cr()的还原
    Table 2.  Reduction of Cr(Ⅵ) by extraction solution in the 3rd and 4th extraction steps
    提取步骤实验编号Cr(Ⅵ)初始量/mgCr(Ⅵ)残留量/mgCr(Ⅵ)反应量/mg
    第3步(NH2OH·HCl)L3-120.00ND20.00
    L3-260.009.12 ± 1.0250.88
    第4步(H2O2)L4-10.27ND0.27
    L4-21.360.82 ± 0.080.54
     | Show Table
    DownLoad: CSV

    2)第1、2步中残留还原剂的影响。对于修复后的铬污染土壤,残留还原剂和剩余Cr(Ⅵ)都会释放到提取液中,2者可能在第1、2步的操作过程中发生反应,导致Cr(Ⅵ)的还原。在本实验中,首先向第1步和第2步的提取液中添加Cr(Ⅵ)标准液,再加入还原剂FeSO4溶液或硫化物溶液,按表1中步骤操作完成后,检测溶液中剩余的Cr(Ⅵ)量。

    3)土壤铬的Tessier连续提取实验。按照表1中步骤分析4种土壤样品中Cr(Ⅵ)和TCr结合态。每步提取完成后,使用离心机进行固液分离(4 000 r·min−1,10 min)。上清液经0.45 µm滤膜过滤后测定Cr(Ⅵ)和TCr含量,离心管中的土壤继续用于下一步的提取分析。

    以上所有液相和固相土壤实验均设置3个平行。

    硫化物溶液浓度(以S2-计)的测定采用碘量法(HJ/T 60-2000)[18]。水溶液中Cr(Ⅵ)的测定采用二苯碳酰二肼分光光度法(EPA Method 7196a)[19],水溶液中TCr的测定采用高锰酸钾氧化-二苯碳酰二肼分光光度法(GB 7466-1987)[20]。土壤Cr(Ⅵ)的测定采用碱消解(Method 3060a)[21]联合二苯碳酰二肼分光光度法(Method 7196a);土壤TCr的测定采用微波消解[22]联合高锰酸钾氧化-二苯碳酰二肼分光光度法(GB 7466-1987)。以上检测采用空白样、实验室控制样和加标样作为质控措施。

    在残留还原剂的影响实验中,为保证剩余Cr(Ⅵ)浓度测定的准确性,需采取一定方法减小检测误差:为避免残留Fe2+对Cr(Ⅵ)测定的干扰[23],实验完成后要先将溶液pH调至11以上,曝气50 min,放置1 d左右;然后,滤去Fe(OH)3沉淀,测定滤液Cr(Ⅵ)浓度,在此操作下,Fe(OH)3沉淀的吸附不影响Cr(Ⅵ)检测[24]。为减小残留硫化物对Cr(Ⅵ)测定的干扰,实验完成后,对溶液中残留的Cr(Ⅵ)同时采用二苯碳酰二肼显色法(EPA Method 7196a)和UV-VIS扫描测定[25]。如果发现残留硫化物导致显色法测定结果出现显著负偏差,而UV-VIS扫描测定的结果在其检出限以上,则采用UV-VIS扫描的测定结果;如果2种方法的检测结果均在其检出限以下,则认为残留Cr(Ⅵ)含量未检出,记为“ND”。

    1) NH2OH·HCl对Cr(Ⅵ)的还原。实验结果表明(表2),在Tessier提取的第3步,Cr(Ⅵ)被提取液组分中的还原剂NH2OH·HCl所还原,其还原Cr(Ⅵ)的量可高达约50.88 mg(L3-2),换算成1.0 g土样中的Cr(Ⅵ)含量为50 880 mg·kg−1。该量远超常见铬污染土壤中的Cr(Ⅵ)浓度[26-27],这意味着该步骤提取的Cr(Ⅵ)可被全部还原成Cr(Ⅲ),导致误判。在真实铬污染土壤提取中,NH2OH·HCl不仅会还原Cr(Ⅵ),还会还原土壤中铁锰所氧化物。因此,其实际用于还原Cr(Ⅵ)的量随土壤组分而变化。

    在第3步实验中观察到,Cr(Ⅵ)与NH2OH·HCl提取液混合后,有气泡产生(N2和N2O);溶液迅速变成蓝色(Cr(Ⅲ)及其配合离子的混合色),加热后转变为绿色(图1)。加热前、后溶液的UV-VIS扫描结果显示(图2),溶液在375 nm处均无Cr(Ⅵ)吸收峰[25],这说明Cr(Ⅵ)已被全部还原。在加热前,溶液在415 nm处有吸收峰,与含Cr(Ⅲ)对照溶液[Cr2(SO4)3·6H2O配制]吸收峰位置基本相同;加热后,溶液吸收峰位置右移至437 nm处,且吸光度增大,说明有Cr(Ⅲ)配合物产生。

    图 1  Cr()与NH2OH·HCl提取液混合液加热前、后的颜色变化
    Figure 1.  Color development of the mixture of Cr(Ⅵ) and NH2OH·HCl extraction solution before and after heating
    图 2  Cr()与NH2OH·HCl提取液混合液加热前、后UV-VIS扫描图谱
    Figure 2.  UV-VIS spectral scanning of the mixture of Cr(Ⅵ) and NH2OH·HCl extraction solution before and after heating

    第3步铁锰氧化物结合态的提取原理是,在酸性条件下,以NH2OH·HCl为还原剂,将土壤中以固相存在三价铁还原为易溶于水的二价铁[28-29],使得附着其上的其它金属离子失去附着基质而被释放到提取液中,反应方程式如式(1)~式(10)所示。

    Fe()+NH2OHNH2O+Fe()+H+ (1)
    2NH2ON2+2H2O (2)
    Fe()+NH2ONHO+Fe()+H+ (3)
    2NHON2O+H2O (4)
    5Fe()+NH2O+2H2O5Fe()+NO3+6H+ (5)
    NO3+NH2OHNO+NO2+H++H2O (6)

    当有Cr(Ⅵ)存在时,还会发生式(7)~式(10)的反应。

    Cr()+3NH2OH3NH2O+Cr()+3H+ (7)
    Cr()+3NH2O3NHO+Cr()+3H+ (8)
    5Cr()+3NH2O+6H2O5Cr()+3NO3+18H+ (9)
    CrO24+3Fe2++4H2OCr3++3Fe3++8OH (10)

    在液相实验中,由于没有土壤,因此不发生与Fe(Ⅲ)有关的反应,NH2OH·HCl被全部用于还原Cr(Ⅵ)。

    2) H2O2对Cr(Ⅵ)的还原。Tessier连续提取法第4步的操作pH为2.0,在酸性条件下,H2O2相对于土壤有机物为强氧化剂,但相对于Cr(Ⅵ)却是还原剂(式11)。值得注意的是,在碱性条件下,H2O2可以反过来将Cr(Ⅲ)氧化成Cr(Ⅵ)(式12)[30-31]

    4HCrO4+4H2O2+16H+=4Cr3++5O2+14H2OΔGr,20C=554kJ (11)
    2Cr(OH)3+3H2O2+4OH=2CrO24+8H2OΔGr,20C=627kJ (12)

    根据表2可知,实验L4-1中Cr(Ⅵ)因量太低被全部还原,而实验L4-2中有0.54 mg(0.01 mmol)的Cr(Ⅵ)被H2O2还原。在H2O2加入到Cr(Ⅵ)溶液中(L4-2)的瞬间,溶液变成紫色(Cr(Ⅵ)离子的颜色)[17, 32],反应后紫色褪去恢复黄色。提取液中H2O2的加入量为1.5 g(0.044 mol),若按式(11)与Cr(Ⅵ)完全反应,则可还原的Cr(Ⅵ)总量为1.529 g(0.029 mol),远大于0.54 mg。这表明在第4步中,H2O2对Cr(Ⅵ)的还原能力较弱。但其还原的Cr(Ⅵ)量对应到土壤中高达540 mg·kg−1,因此不可忽视其影响。在实际的土壤提取操作中,H2O2会被土壤中的其他物质消耗,实际还原的Cr(Ⅵ)量小于该值。

    1)亚铁离子的影响。Fe2+与Cr(Ⅵ)的氧化还原反应(式10)在弱碱性和酸性条件下均可进行。Tessier连续提取法的第1步未对pH加以控制,第2步要求pH控制在5.0,而要阻止Fe2+与Cr(Ⅵ)的氧化还原反应,溶液的pH通常需要大于10[23, 33]。实验结果(表3)表明,当Fe2+过量时(L1-1-Fe、L1-2-Fe、L2-1-Fe和L2-2-Fe),Cr(Ⅵ)会被Fe2+全部还原。

    表 3  第1、2步提取操作中Fe2+对Cr()的还原
    Table 3.  Reduction of Cr(Ⅵ) by Fe2+ in the 1st and 2nd extraction steps
    提取步骤实验编号Cr(Ⅵ)初始量/mg初始pH反应后pHCr(Ⅵ)剩余量/mgCr(Ⅵ)反应量/mg
    第1步L1-1-Fe0.1466.6±0.25.3±0ND0.146
    L1-2-Fe1.4615.5±0.13.1±0ND1.461
    L1-3-Fe2.9225.1±0.13.2±0.10.95±0.101.972
    第2步L2-1-Fe0.1465.0±0.05.0±0ND0.146
    L2-2-Fe1.4615.0±0.05.0±0ND1.461
    L2-3-Fe2.9225.0±0.05.1±01.32±0.011.602
      注:Fe2+加入量为4.721 mg(0.085 mmol)。
     | Show Table
    DownLoad: CSV

    本实验发现,L1-3-Fe的Cr(Ⅵ)反应量大于L2-3-Fe;对比发现,L1-3-Fe反应后pH明显低于L2-3-Fe。这是因为,L1-3-Fe产生的Fe3+在生成Fe(OH)3的过程中释放出H+。在L2-3-Fe实验中,由于NaAc-HOAc提取液具有较强的缓冲能力,从而能维持在pH=5.0。当有土壤存在时,由于土壤具有较强的缓冲能力,通常不会出现L1-3-Fe中的低pH情况。

    2)硫化物的影响。Na2S还原处理后的铬污染土壤中,残留在土壤中的含硫物质并非S2-这1种形式,还包含零价硫(S0)、多硫化物(S2n)、硫代硫酸根(S2O23)、亚硫酸根(SO23)和硫酸根(SO24);除S0SO24之外,其他几种均具有还原性,可在不同pH条件下与Cr(Ⅵ)发生不同程度的氧化还原反应[34]。这些含硫组分的浓度分布受养护时间、溶解氧、pH等诸多条件的影响。本实验中采用K2Cr2O7与Na2S溶液密闭反应7 d后的上清液,该溶液呈淡黄色,用碘量法检测其硫化物浓度。本实验中硫化物加入量(以等效S2-计)为0.54 mg。

    实验结果表明(表4),在第1步提取实验中,Cr(Ⅵ)的绝对反应量随其初始量的增加而增加,但占初始量的比重却逐渐降低,依次为35%、6%和3%,整体还原效率远低于Fe2+

    表 4  第1、2步提取操作中硫化物对Cr()的还原
    Table 4.  Reduction of Cr(Ⅵ) by sulfides in the 1st and 2nd extraction steps
    提取步骤实验组Cr(Ⅵ)初始量/mg初始pH反应后pHCr(Ⅵ)剩余量/mgCr(Ⅵ)反应量/mg
    第1步L1-1-S0.2928.1±08.0±00.21±00.082
    L1-2-S1.4618.1±07.6±01.37±00.091
    L1-3-S2.9228.1±07.0±0.12.82±0.020.102
    第2步L2-1-S0.2925.0±05.1±00.13±00.162
    L2-2-S1.4615.0±05.0±00.99±00.471
    L2-3-S2.9225.0±05.0±02.13±0.020.792
      注:硫化物加入量(以等效S2−计)为0.54 mg。
     | Show Table
    DownLoad: CSV

    在第2步提取实验中,Cr(Ⅵ)的绝对反应量随其初始量的增加而增加,占初始量的比重分别为55%、32%和27%,与第1步有相同规律。但Cr(Ⅵ)的绝对反应量相较于第1步明显增加,这主要归因于第1步提取液pH呈弱碱性,Cr(Ⅵ)与S2−S2O23SO23反应缓慢。而第2步提取液pH控制在5.0,有利于Cr(Ⅵ)与S2−S2O23SO23的反应。

    在第2 d对溶液中的剩余Cr(Ⅵ)浓度进行复检时,Cr(Ⅵ)浓度下降。这说明该反应过程仍在缓慢进行,进一步影响了该提取步骤检测结果的可信度和重现性。

    根据表5可知,未污染土壤(土样1)中不含有Cr(Ⅵ)。TCr即为Cr(Ⅲ),其可交换态的检测结果低于检出限,这与自然条件下未污染土壤中Cr(Ⅲ)溶解度极低、通常不检出的情况一致。TCr的5种结合态加和值大于直接检测值,这是实验的系统误差所致。操作中发现,由于Tessier连续提取分析时土壤量少,导致数据重现性下降,数据偏差较大。

    表 5  未污染土壤的Tessier连续提取实验结果
    Table 5.  Results of Tessier sequential extraction of the uncontaminated soil
    结合形态Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)
    可交换态NDND
    碳酸盐结合态ND1.5±0.1
    铁锰氧化物结合态ND5.0±0.7
    有机结合态ND3.4±0.3
    残渣态ND88.4±19.5
    合计aND103.8±13.6
    直接检测值bND78.5±3.3
      注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。
     | Show Table
    DownLoad: CSV

    在各步提取液中均未检测到Cr(Ⅵ),说明不存在Cr(Ⅲ)转化成Cr(Ⅵ)的情况,即在实际土壤的Tessier连续提取过程中,有机结合态提取步骤中使用的H2O2只能氧化土壤有机物,不能氧化Cr(Ⅲ),与液相实验结果一致。这表明,当土壤中只有Cr(Ⅲ)时,如农田中少量的铬污染,其存在形态通常只有Cr(Ⅲ)这一种形态,在土壤中的结合态分析可以采用Tessier连续提取法。

    铬污染土壤(土样2)的Tessier连续提取结果表明(表6),其含有较高的Cr(Ⅵ)和TCr。在TCr的可交换态和碳酸盐结合态中,Cr(Ⅵ)占比分别高达91%和78%。与土样1相比,可交换态检测到Cr(Ⅲ)的存在,这是由于该铬污染土壤中的绝大部分Cr(Ⅲ)以Cr(OH)3沉淀存在,仅有少量Cr3+和无定性Cr(OH)3吸附在土壤颗粒表面,这部分Cr(Ⅲ)易被提取出来。

    表 6  铬污染土壤的Tessier连续提取实验结果
    Table 6.  Results of Tessier sequential extraction of the chromium-contaminated soil
    结合形态Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)
    可交换态170.1±3.4186.6±4.8
    碳酸盐结合态71.4±1.293.0±1.5
    铁锰氧化物结合态ND2 799.0±128.4
    有机结合态ND440.8±57.0
    残渣态7.2±0.1788.0±95.8
    合计a248.7±4.64 307.4±274.9
    直接检测值b361.3±16.74 285.5±607.1
      注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。
     | Show Table
    DownLoad: CSV

    Cr(Ⅵ)的铁锰氧化物结合态和有机结合态的检测结果低于检出限,且这2步的加标回收率分别为0和11%~12%,相比于可交换态和碳酸盐结合态的加标回收率在103%~109%之间(每步2个加标回收平行样,RPD = 0~1%),这说明在铁锰氧化物结合态和有机结合态的提取过程中存在严重的Cr(Ⅵ)还原现象。该结果与溶液相实验结果一致,即提取液中的还原性组分会将提取到溶液中的Cr(Ⅵ)还原。此外,在有机结合态提取步骤中,还可能存在原本不能直接与Cr(Ⅵ)反应的土壤有机质,经H2O2氧化降解后与Cr(Ⅵ)发生反应的情况[35]

    TCr的铁锰氧化物结合态和有机结合态检测结果的可信度受多重因素的影响,如:Cr(Ⅵ)被还原成Cr(Ⅲ)后,是否一部分会被重新吸附或沉淀到土壤中?属于铁锰氧化物结合态的Cr(Ⅵ)被还原成Cr(Ⅲ)后,是否会与土壤有机质结合转化成有机结合态[36]?这些影响因素对TCr结合态的检测结果影响是否达到不可接受的水平?需要根据土壤样品的具体成分进行评估研究。

    表7表明,经Na2S还原处理后的铬污染土壤(土样4),其Cr(Ⅵ)的可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态均未检出。经FeSO4还原处理后的铬污染土壤(土样3),除了可交换态少量检出外,其他结合态均未检出,以上实验结果与溶液相实验结果(表3表4)一致。苏长青[37]的研究中也出现了类似的可交换态、碳酸盐结合态、铁锰氧化态和有机态为零或少量检出的情况;但更多报道是5种结合态都有检出,这与土壤Cr(Ⅵ)含量、氧化性物质含量等诸多因素有关。土样4中,TCr的可交换态低于检出限,这是由于Na2S的强碱性导致土样4的pH较高(pH=9),Cr(Ⅲ)因生成Cr(OH)3而未被提取。在碳酸盐结合态的检测中可发现,当提取液pH被控制在5时,Cr(Ⅲ)开始大量溶出。其他研究中也存在还原修复后土壤TCr的可交换态低于检出限的情况[2]

    表 7  修复后铬污染土壤的Tessier连续提取实验结果
    Table 7.  Results of Tessier sequential extraction of the remediated chromium-contaminated soil
    结合形态土样3土样4
    Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)
    可交换态1.0±0.440.8±1.8NDND
    碳酸盐结合态ND162.4±4.1ND283.1±15.0
    铁锰氧化物结合态ND2 839.6±95.7ND2 991.2±267
    有机结合态ND328.1±33.9ND279.5±42.6
    残渣态9.4±0.5720.9±120.812.±0.6739.0±126.1
    合计a10.4±0.94 047.3±94.912.±0.64 244.7±67.3
    直接检测值b47.2±2.94 368.3±432.624.0±13.84 368.3±432.6
      注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。
     | Show Table
    DownLoad: CSV

    另外,由于在碳酸盐结合态提取步骤中依然存在Cr(Ⅵ)还原现象,说明土样3、土样4中残留还原剂在可交换态提取步骤未被完全去除。而还原剂在碳酸盐结合态提取步骤之后是否有残留,继续影响第3、4步的检测结果;由于提取液自身还原性组分的影响,此处无法进一步判断。土样3和土样4中Cr(Ⅵ)的5种结合态检测结果之和显著小于直接检测值,也说明Tessier连续提取过程从整体上存在Cr(Ⅵ)的还原现象。

    目前的研究通常未提供Cr(Ⅵ)检测结果的关键质控数据(如加标回收率),或者未通过直接检测值与5种结合态检测加和值的比较来判断数据的可信度[38],残渣态通常根据直接检测值减去前4种结合态求得,这种算法掩盖了提取过程中的Cr(Ⅵ)还原问题。此外,大部分研究仅将Tessier连续提取法用于TCr的分析[4, 39],只有少数用于Cr(Ⅵ)[6, 37, 40],但由于Cr(Ⅵ)毒性远大于Cr(Ⅲ),对于以评价土壤修复效果为目的的研究,仅对比还原修复前、后TCr结合态分布的变化,存在一定的不合理性。

    此外,BCR提取法中也使用了NH2OH·HCl作为还原剂(pH = 2)[12, 38],在常温下提取可还原结合态。而本研究结果表明,即使在室温条件下,Cr(Ⅵ)也会被还原成Cr(Ⅲ)(图1图2),这说明BCR提取法可能也面临同样的Cr(Ⅵ)-Cr(Ⅲ)转化问题。

    陈英旭等[41]提出了一种专门针对土壤铬的5步提取方案:水溶态、交换态(1 mol·L−1 CH3COONH4)、沉淀态(2 mol·L−1 HCl)、有机结合态(5% H2O2 -2 mol·L−1 HCl)、残渣态。其沉淀态包含了Tessier连续提取法的碳酸盐结合态和铁锰氧化物结合态,因其沉淀态提取液中没有使用还原剂,该步骤不会发生提取液组分还原Cr(Ⅵ)的问题。其有机结合态的分析原理与Tessier连续提取法相同,使用H2O2在酸性条件下氧化有机物,同样可能导致Cr(Ⅵ)还原问题。但该方法对Cr(Ⅵ)的整体还原程度远低于Tessier连续提取法。因此可以认为,对于铬污染土壤的结合态分析,陈英旭等[41]提出的方法使用面相对较广,可适用于未经修复的铬污染土壤中Cr(Ⅵ)的结合态分析,但对于修复后残留大量还原剂的铬污染土壤依然不适用。

    1)Tessier连续提取法的提取液自身还原性组分会在铁锰氧化物结合态和有机结合态的检测中导致Cr(Ⅵ)被还原为Cr(Ⅲ),可还原的Cr(Ⅵ)最大量分别为50.88 mg、0.54 mg。经还原修复的铬污染土壤,土壤残留还原剂会在可交换态和碳酸盐结合态的检测中导致Cr(Ⅵ)的还原。

    2)当用于了解未污染土壤中原生铬结合态分布时,使用Tessier连续提取法无不利影响。

    3)当用于了解铬污染土壤中TCr和Cr(Ⅵ)的结合态分布时,Cr(Ⅵ)铁锰氧化物结合态和有机结合态的检测结果明显低于真实值,TCr结合态的检测结果重现性可能较差,但不一定出现不可接受的偏差。

    4)当用于评价铬污染土壤修复前、后Cr(Ⅵ)结合态分布变化时,修复后土壤中Cr(Ⅵ)可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态的检测结果均可能明显低于真实值。

  • 图 1  双室混合生物膜电极MFC实物图

    Figure 1.  Physical diagram of the dual-chamber hybrid membrane MFC

    图 2  双室混合生物膜电极MFC原理图

    Figure 2.  Schematic diagram of dual-chamber hybrid membrane MFC

    图 3  4组工况阴极室进出水COD及去除率

    Figure 3.  COD and its removal rate of influent and effluent of cathode chamber under four working conditions

    图 4  阴极室4组工况氮、DO、pH和COD的变化

    Figure 4.  Change of nitrogen concentration, DO, pH and COD in cathode chamber under four working conditions

    图 5  阳极室4组工况NH+4-N、COD和pH的变化

    Figure 5.  Changes of NH+4-N, COD and pH in anode chamber under four working conditions

    图 6  阴极室4组工况硝酸盐去除速率

    Figure 6.  Nitrate removal rate in cathode chamber under four working conditions

    图 7  阴极室4组工况总氮去除率

    Figure 7.  Total nitrogen removal rate in cathode chamber under four working conditions

    图 8  运行电压

    Figure 8.  Voltage during operation

    图 9  4组工况功率密度曲线

    Figure 9.  Power density curve of four working conditions

    图 10  4组工况极化曲线

    Figure 10.  Power density curve of four working conditions

    图 11  曝气阶段4组工况电极极化曲线

    Figure 11.  Electrode polarization curves of four working conditions at the aeration phase

    图 12  停曝阶段4组工况电极极化曲线

    Figure 12.  Electrode polarization curves of four working conditions at the stop aeration phase

    图 13  门水平下接种污泥与阴极生物膜微生物群落分析

    Figure 13.  Analysis of microbial community of inoculated sludge and cathodic biofilm at phylum level

    图 14  属水平下接种污泥和阴极生物膜微生物群落分析

    Figure 14.  Analysis of microbial community of inoculated sludge and cathodic biofilm at genus level

    表 1  阳极阴极启动水质

    Table 1.  Water quality of anode and cathode start-up

    电极DO/(mg·L−1)pH盐度/(g·L−1)COD/(mg·L−1)NH+4/(mg·L−1)TN/(mg·L−1)来源
    阳极07~815~162 0002020~30混合污水
    阴极0.57~815~161 500220~300220~350榨菜废水
    电极DO/(mg·L−1)pH盐度/(g·L−1)COD/(mg·L−1)NH+4/(mg·L−1)TN/(mg·L−1)来源
    阳极07~815~162 0002020~30混合污水
    阴极0.57~815~161 500220~300220~350榨菜废水
    下载: 导出CSV

    表 2  4组工况在3个阶段的周期和氮去除率

    Table 2.  Cycle and nitrogen removal rate at three stages under four working conditions

    工况盛宴期饥荒期稳定期
    周期/dNH+4-N去除率/%TN去除率/%周期/dNH+4-N去除率/%TN去除率/%周期/dTN去除率/%k/(mg·(L·d)−1)R2
    S12±158.9159.1110±141.0921.4517±119.43−3.618 00.995 2
    S22±163.3062.939±136.7015.5512±121.52−5.593 80.997 6
    S32±167.6167.558±132.3917.097±115.36−6.122 50.997 0
    S42±158.1858.1414±141.8215.4330±126.43−2.771 30.997 1
    工况盛宴期饥荒期稳定期
    周期/dNH+4-N去除率/%TN去除率/%周期/dNH+4-N去除率/%TN去除率/%周期/dTN去除率/%k/(mg·(L·d)−1)R2
    S12±158.9159.1110±141.0921.4517±119.43−3.618 00.995 2
    S22±163.3062.939±136.7015.5512±121.52−5.593 80.997 6
    S32±167.6167.558±132.3917.097±115.36−6.122 50.997 0
    S42±158.1858.1414±141.8215.4330±126.43−2.771 30.997 1
    下载: 导出CSV

    表 3  4组工况的产电特性

    Table 3.  Power generation characteristics of four working conditions

    阶段外阻值/Ω开路电压/mV最大功率密度/(W·m−3)内部电阻/Ω
    S1a1 0007501.09257
    S2a5007290.94252
    S3a1007211.04243
    S4a206991.02202
    S1b1 0007460.771 054
    S2b5005970.41885
    S3b1004620.29795
    S4b204120.21675
    阶段外阻值/Ω开路电压/mV最大功率密度/(W·m−3)内部电阻/Ω
    S1a1 0007501.09257
    S2a5007290.94252
    S3a1007211.04243
    S4a206991.02202
    S1b1 0007460.771 054
    S2b5005970.41885
    S3b1004620.29795
    S4b204120.21675
    下载: 导出CSV
  • [1] 付国楷, 雷莉, 张智, 等. 高盐度废水微生物燃料电池电压与底物有机物浓度相关性研究[J]. 应用化工, 2015, 44(7): 1185-1189.
    [2] 李家祥, 江葱, 范跃华. 榨菜废水处理特点及工程设计[J]. 水处理技术, 2013, 39(5): 119-122. doi: 10.3969/j.issn.1000-3770.2013.05.031
    [3] 钟璟, 韩光鲁, 陈群. 高盐有机废水处理技术研究新进展[J]. 化工进展, 2012, 31(4): 920-926.
    [4] 杜俊. 间歇曝气复合型MBR处理含盐榨菜废水研究[J]. 中国给水排水, 2014, 30(1): 70-72.
    [5] CHAI H, WEI Z, KANG W, et al. Biological treatment of mustard tuber wastewater and urban sewage by cyclic activated sludge system[J]. Asian Journal of Chemistry, 2014, 26(11): 3261-3264. doi: 10.14233/ajchem.2014.17505
    [6] WANG J, GONG B, WANG Y, et al. The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater[J]. Bioresource Technology, 2017, 243: 708-715. doi: 10.1016/j.biortech.2017.06.131
    [7] CHEN C, SUN F, ZHANG H, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578. doi: 10.1016/j.biortech.2016.05.115
    [8] KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems: A review[J]. Bioresource Technology, 2014, 153: 351-360. doi: 10.1016/j.biortech.2013.12.046
    [9] SEVDA S, SREEKISHNAN T R, POUS N, et al. Bioelectroremediation of perchlorate and nitrate contaminated water: A review[J]. Bioresource Technology, 2018, 255: 331-339. doi: 10.1016/j.biortech.2018.02.005
    [10] YE Y, HUU HAO N, GUO W, et al. A critical review on ammonium recovery from wastewater for sustainable wastewater management[J]. Bioresource Technology, 2018, 268: 749-758. doi: 10.1016/j.biortech.2018.07.111
    [11] DING A, ZHAO D, DING F, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering Journal, 2018, 343: 399-407. doi: 10.1016/j.cej.2018.02.119
    [12] ZHANG L, FU G, ZHANG Z. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 289: 121630.
    [13] ZHANG L, FU G, ZHANG Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community[J]. Bioresource Technology, 2020, 313: 123660. doi: 10.1016/j.biortech.2020.123660
    [14] AN Q, ZHOU Y, ZHAO B, et al. Efficient ammonium removal through heterotrophic nitrification-aerobic denitrification by Acinetobacter baumannii strain AL-6 in the presence of Cr(VI)[J]. Journal of Bioscience and Bioengineering, 2020, 130(6): 622-629. doi: 10.1016/j.jbiosc.2020.07.010
    [15] ZHANG Q, CHEN X, ZHANG Z, et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment[J]. Bioresource Technology, 2020, 315: 123813. doi: 10.1016/j.biortech.2020.123813
    [16] HUANG F, PAN L, HE Z, et al. Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics[J]. Science of the Total Environment, 2020, 732: 139268. doi: 10.1016/j.scitotenv.2020.139268
    [17] HUANG F, PAN L, HE Z, et al. Culturable heterotrophic nitrification-aerobic denitrification bacterial consortia with cooperative interactions for removing ammonia and nitrite nitrogen in mariculture effluents[J]. Aquaculture, 2020, 523: 735211. doi: 10.1016/j.aquaculture.2020.735211
    [18] XIA L, LI X, FAN W, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge[J]. Bioresource Technology, 2020, 301: 122749. doi: 10.1016/j.biortech.2020.122749
    [19] YANG L, WANG X H, CUI S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Bioresource Technology, 2019, 285: 121360. doi: 10.1016/j.biortech.2019.121360
    [20] DING A, ZHENG P, ZHANG M, et al. Impacts of electron donor and acceptor on the performance of electrotrophic denitrification[J]. Environmental Science and Pollution Research, 2017, 24(24): 19693-19702. doi: 10.1007/s11356-017-9455-x
    [21] DING A, YANG Y, SUN G, et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC)[J]. Chemical Engineering Journal, 2016, 283: 260-265. doi: 10.1016/j.cej.2015.07.054
    [22] DING A, FAN Q, CHENG R, et al. Impacts of applied voltage on microbial electrolysis cell-anaerobic membrane bioreactor (MEC-AnMBR) and its membrane fouling mitigation mechanism[J]. Chemical Engineering Journal, 2018, 333: 630-635. doi: 10.1016/j.cej.2017.09.190
    [23] 杨茜, 李轩, 蒋涛阳, 等. 高盐废水生物阴极MFCs产电及脱氮性能研究[J]. 应用化工, 2020, 49(1): 22-27.
    [24] ZHANG L, FU G, ZHANG Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioelectrochemistry, 2019, 126: 20-28. doi: 10.1016/j.bioelechem.2018.11.002
    [25] CHEN J, HU Y, HUANG W, et al. Enhanced electricity generation for biocathode microbial fuel cell by in situ microbial-induced reduction of graphene oxide and polarity reversion[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12574-12582. doi: 10.1016/j.ijhydene.2017.03.012
    [26] ZHANG L, FU G, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012
    [27] YANG N, LIU H, ZHAN G Q, et al. Sustainable ammonia-contaminated wastewater treatment in heterotrophic nitrifying/denitrifying microbial fuel cell[J]. Journal of Cleaner Production, 2020, 245: 118923. doi: 10.1016/j.jclepro.2019.118923
    [28] POUS N, PUIG S, DOLORS BALAGUER M, et al. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems[J]. Chemical Engineering Journal, 2015, 263: 151-159. doi: 10.1016/j.cej.2014.11.002
    [29] CLAUWAERT P, RABAEY K, AELTERMAN P, et al. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3354-3360.
    [30] ZHANG F, GE Z, GRIMAUD J, et al. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility[J]. Environmental Science & Technology, 2013, 47(9): 4941-4948.
    [31] 陶琴琴. 微生物燃料电池同步脱氮除磷及产电性能研究[D]. 广州: 华南理工大学, 2015.
    [32] TAO Q, LUO J, ZHOU J, et al. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell[J]. Bioresource Technology, 2014, 164: 402-407. doi: 10.1016/j.biortech.2014.05.002
    [33] 刘若男, 赵博玮, 岳秀萍. 曝气量对微生物燃料电池脱氮的影响[J]. 环境化学, 2018, 37(6): 1317-1326. doi: 10.7524/j.issn.0254-6108.2017091001
    [34] FREGUIA S, RABAEY K, YUAN Z, et al. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells[J]. Water Research, 2008, 42(6/7): 1387-1396.
    [35] ZHAO L L, SONG T S. Simultaneous carbon and nitrogen removal using a litre-scale upflow microbial fuel cell[J]. Water Science and Technology, 2014, 69(2): 293-297. doi: 10.2166/wst.2013.705
    [36] RYU J H, LEE H L, LEE Y P, et al. Simultaneous carbon and nitrogen removal from piggery wastewater using loop configuration microbial fuel cell[J]. Process Biochemistry, 2013, 48(7): 1080-1085. doi: 10.1016/j.procbio.2013.05.016
    [37] SONG K, SAWAYANAGI K, NUMANO T, et al. High-rate partial nitrification of semiconductor wastewater: Implications of online monitoring and microbial community structure[J]. Biochemical Engineering Journal, 2019, 143: 34-40. doi: 10.1016/j.bej.2018.12.009
    [38] MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(21): 5809-5814.
    [39] ZHANG G, WANG K, ZHAO Q, et al. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells[J]. Bioresource Technology, 2012, 118: 249-256. doi: 10.1016/j.biortech.2012.05.015
    [40] CAI Q Q, WU M Y, LI R, et al. Potential of combined advanced oxidation - Biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation: Screening of AOP pre-treatment technologies[J]. Chemical Engineering Journal, 2020, 389: 123419. doi: 10.1016/j.cej.2019.123419
    [41] WRIGHTON K C, VIRDIS B, CLAUWAERT P, et al. Bacterial community structure corresponds to performance during cathodic nitrate reduction[J]. Isme Journal, 2010, 4(11): 1443-1455. doi: 10.1038/ismej.2010.66
    [42] RUBABA O, ARAKI Y, YAMAMOTO S, et al. Electricity producing property and bacterial community structure in microbial fuel cell equipped with membrane electrode assembly[J]. Journal of Bioscience and Bioengineering, 2013, 116(1): 106-113. doi: 10.1016/j.jbiosc.2013.01.019
    [43] LU L, WANG B, ZHANG Y, et al. Identification and nitrogen removal characteristics of Thauera sp. FDN-01 and application in sequencing batch biofilm reactor[J]. Science of the Total Environment, 2019, 690: 61-69. doi: 10.1016/j.scitotenv.2019.06.453
    [44] HUANG X, DONG W, WANG H, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater[J]. Bioresource Technology, 2017, 241: 969-978. doi: 10.1016/j.biortech.2017.05.161
    [45] LIU J, ZHANG P, LI H, et al. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community[J]. Bioresource Technology, 2018, 250: 110-116. doi: 10.1016/j.biortech.2017.11.026
    [46] YANG N, ZHAN G, LI D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. doi: 10.1016/j.cej.2018.08.161
    [47] 丁阿强. 生物电极脱氮及其机理研究[D]. 杭州: 浙江大学, 2018.
    [48] ZHENG M, XU C, ZHONG D, et al. Synergistic degradation on aromatic cyclic organics of coal pyrolysis wastewater by lignite activated coke-active sludge process[J]. Chemical Engineering Journal, 2019, 364: 410-419. doi: 10.1016/j.cej.2019.01.121
    [49] GOMEZ M A, RODELAS B, SAEZ F, et al. Denitrifying activity of Xanthobacter autotrophicus strains isolated from a submerged fixed-film reactor[J]. Applied Microbiology and Biotechnology, 2005, 68(5): 680-685. doi: 10.1007/s00253-005-1937-y
    [50] SUN G, ZHU Y, SAEED T, et al. Nitrogen removal and microbial community profiles in six wetland columns receiving high ammonia load[J]. Chemical Engineering Journal, 2012, 203: 326-332. doi: 10.1016/j.cej.2012.07.052
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.9 %DOWNLOAD: 3.9 %HTML全文: 91.6 %HTML全文: 91.6 %摘要: 4.4 %摘要: 4.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.7 %其他: 95.7 %XX: 2.3 %XX: 2.3 %三亚: 0.1 %三亚: 0.1 %上海: 0.1 %上海: 0.1 %北京: 0.7 %北京: 0.7 %广州: 0.1 %广州: 0.1 %朝阳: 0.1 %朝阳: 0.1 %沈阳: 0.1 %沈阳: 0.1 %玉林: 0.1 %玉林: 0.1 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %酒泉: 0.1 %酒泉: 0.1 %银川: 0.1 %银川: 0.1 %其他XX三亚上海北京广州朝阳沈阳玉林西安运城酒泉银川Highcharts.com
图( 14) 表( 3)
计量
  • 文章访问数:  5508
  • HTML全文浏览数:  5508
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-22
  • 录用日期:  2021-02-01
  • 刊出日期:  2021-07-10
张玉浩, 陈彦洁, 付国楷. 电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响[J]. 环境工程学报, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
引用本文: 张玉浩, 陈彦洁, 付国楷. 电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响[J]. 环境工程学报, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
ZHANG Yuhao, CHEN Yanjie, FU Guokai. Effect of current intensity on nitrogen removal and electricity generation in hybrid biocathode MFC for high-salinity wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
Citation: ZHANG Yuhao, CHEN Yanjie, FU Guokai. Effect of current intensity on nitrogen removal and electricity generation in hybrid biocathode MFC for high-salinity wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122

电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响

    通讯作者: 付国楷(1979—),男,博士,副教授。研究方向:水污染控制与水体修复。E-mail:fuguokai@163.com
    作者简介: 张玉浩(1996—),男,硕士研究生。研究方向:水污染控制。E-mail:2474339121@qq.com
  • 1. 重庆大学环境与生态学院,重庆 400045
  • 2. 重庆大学,三峡库区环境与生态部重点实验室,重庆 400045
基金项目:
重庆市自然科学基金资助项目 (cstc2019jcyj-msxmX0573)

摘要: 构建了双室混合生物阴极微生物燃料电池(microbial fuel cell,MFC)处理高盐榨菜废水,探讨了不同电流强度对混合膜 MFC 脱氮的影响,并分析了产电特性及微生物群落特征。结果表明,高电流通量可缩短双室混合膜MFC的完全脱氮周期,且主要缩短的是稳定期周期。相对于其他3个实验组,电流强度最大的S3实验组硝酸盐平均去除速率((5.72±0.10) mg·(L·d)−1)与硝酸盐最高去除速率((8.45±0.15) mg·(L·d)−1)均最大,且实现总氮100%去除的时间最短(19 d),稳定期硝酸盐去除速率k (6.122 5 mg·(L·d)−1)最大,这说明增大电流强度可促进混合膜MFC 电营养反硝化。电营养反硝化菌可直接利用电子进行反硝化反应,而较大的电子通量给阴极电活性自养脱氮微生物提供了丰富的生命燃料。在产电方面,曝气阶段开路电压(S1、S2、S3、S4分别为750、729、721、699 mV)随外加电阻的增大而增大,最大功率密度相差却并不显著(1.09、0.94、1.04、1.02 W·m−3);停止曝气阶段,阴极室电子受体的减少,导致MFC产电性能普遍下降,外电阻最大的S1实验组开路电压(746 mV)与最大功率密度(0.77 W·m−3)为最高。高通量测序结果表明,承担电营养反硝化功能的菌群可能为norank_f_HydrogenophagaAzoarcus。以上研究结果可为后续双室混合膜 MFC处理高盐废水提供技术参考。

English Abstract

  • 榨菜加工过程中产生的废水含高浓度有机物(以COD计为300~2 000 mg·L−1)、高盐度(以NaCl计为15~25 g·L−1)与高氨氮(200~300 mg·L−1)[1-2]。此类废水以及其他高盐废水需高效处理后才能排放,否则将对土壤和水体环境造成极大的威胁[3]。厌氧和好氧技术通常被联合用于高盐废水治理[4-6]。然而,综合处理过程不但消耗了大量能量、易造成二次污染,而且常常不能同时达到氮和碳的排放标准[7]。值得注意的是,生物电化学系统(biological electrochemical system,BES)是一种可持续且具有成本效益的技术,已证明具有良好脱氮能力[8-10]。BES在处理C/N为0的含氮废水时,依然有着较高的硝酸盐去除率[11]

    就功能而言,混合生物阴极 MFC可实现BES中不同形式氮的转化与去除[11]。用厌氧泥与好氧泥依次混合接种MFC阴极的方式可实现良好的TN去除率(89.8%~97.6%)[12]。最近有研究[13]表明,混合生物阴极 MFC在处理榨菜废水时实现了完全脱氮,并提出脱氮机理包括盛宴阶段、饥荒阶段和稳定阶段共3个阶段的理论。

    在盛宴阶段、饥荒阶段与稳定阶段发生的主反应分别为异养硝化/好氧反硝化反应、自养硝化与电营养反硝化[13]。异养硝化/好氧反硝化菌可利用基底中的有机物作为电子供体,将不同形态的氮转化成N2[14]。异养硝化菌在碳源充足的条件下,将含氮的化合物氧化成NO2NO3,且大部分能在曝气的条件下将硝态氮还原成氮气,实现好氧反硝化[15]。相较于传统脱氮工艺,异养硝化/好氧反硝化可在同一个反应器中进行,且具有更高的氨氮去除效率[16]。异养硝化反应所产生的氨氮可作为异养硝化/好氧反硝化菌的反应物,从而实现同步硝化和反硝化效果[17]。目前,被报道出的异养硝化/好氧反硝化菌(属)有ParacoccusThauera、unclassified_f__RhodobacteraceaeFlavobacteriumArcobacterHalomonas[18-19]

    电营养反硝化是一种有潜力的脱氮新技术[13]。电营养反硝化一般机理为:阴极生物膜上存在一类电活性自养脱氮微生物,可直接利用电子,将阴极底物中的NO3NO2还原成N2。在生物电极脱氮过程中,电营养反硝化可减少传统反硝化反应对有机物的依赖[20]。目前已报道参与电营养反硝化的潜在菌(属)有ThaueraAcholeplasmtappia indicaXanthobacterAzoarcusPseudomonas stutzer[11,15,21]。混合生物阴极 MFC稳定阶段周期较长,主要原因为稳定阶段的电营养反硝化速率缓慢[13]。因此,探究电营养反硝化速率的影响因素,已成为混合膜 MFC走向实践应用所面临的一个关键。

    目前,关于生物电极脱氮电子传递机制的研究尚少。根据已有的研究,推测的传递方式可能为直接接触方式、电子中介体方式。电营养反硝化菌可以分泌电子介体,且外源电子介体可有效提高生物电极脱氮的效率[21]。非膜结合细胞色素蛋白、Rnf复合体、红素氧还蛋白、氢化酶与甲酸脱氢酶可能参与生物电极脱氮中电子的直接传递[22]。电子传递链的两端分别为阴极电子和硝酸盐,因此,电流强度对双室混合膜 MFC 的电营养反硝化具有直接影响,但关于这方面的研究目前鲜有报道。

    为优化混合生物阴极MFC处理高盐榨菜废水时的脱氮效果,本研究通过改变外电阻,设置了4组不同峰值电流强度(S1、S2、S3、S4分别为(0.24±0.03)、(0.37±0.03)、(0.55±0.11)、(0.5±0.2) mA)的实验,探讨了不同电流强度对高盐双室混合膜 MFC脱氮的影响,并分析了对应的产电特性和微生物群落,优化了反应器运行的最佳工况条件,为后续双室混合膜 MFC处理高盐废水研究提供思路与解决方法。

  • 阴极的榨菜废水源自重庆市某榨菜废水处理厂,为初沉池出水。阳极液采用调制后的生活污水。实验使用乙酸钠、NH4Cl、NaCl将COD、NH+4、盐度分别调至表1所示水质,原始废水中不含NO3NO2。调好的实验用水置于4 ℃的冰箱内保存。

  • 实验装置如图1所示,装置采用双室构型,阴阳极室的有效容积均为252 mL(长宽高为6 cm×6 cm×7 cm)。阴阳极室被阳离子交换膜隔开,阳离子交换膜的有效膜面积为42 cm2 (长宽为6 cm×7 cm)。阴阳两电极材料均为碳毡,通过钛丝与铜导线相连,装置启动连接外电阻为1 000 Ω,并连接电压采集器。

    本研究设置4组不同外接电阻(1 000、500、100、20 Ω)的实验(S1、S2、S3、S4),通过改变外电阻实现闭合电路中不同的电流强度。在曝气阶段,S1、S2、S3、S4双室混合膜 MFC的峰值电流分别为(0.33±0.01)、(0.44±0.03)、(1.39±0.19)、(0.85±0.2) mA;在停曝时期,S1、S2、S3、S4双室混合膜 MFC的峰值电流分别为(0.24±0.03)、(0.37±0.03)、(0.55±0.11)、(0.5±0.2) mA。实验的顺序先后为S1、S2、S3、S4。当总氮去除完毕时,1组实验结束,更换新鲜的阴极液与阳极液,并进行下一组实验。具体接种方式为:先在阳极接种10 mL来自榨菜废水处理厂厌氧池的厌氧污泥,使阳极的产电菌尽快富集并产电,阴极接种10 mL来自榨菜废水处理厂好氧池的好氧污泥,使阴极具有良好的硝化能力[13];待阳极电势高至−400~−500 mV并保持稳定后,再往阴极接种10 mL来自榨菜废水处理厂厌氧池的厌氧污泥,以加强其阴极的反硝化能力[13]。在污泥接种完毕后,待连续2个周期获得稳定的电压和TN的完全去除后,开始正式采集数据。

    原理图如图2所示,阳极与阴极均以高盐废水为底物,NH+4与H+通过阳离子交换膜在阳极室和阴极室进行交换。阳极中的产电菌消耗高盐废水中的耗氧有机物(以COD计)而产生电流。阴极室中有曝气头,盛宴期氧气与碳源充足,异养硝化/好氧反硝化菌将阴极液中的NH+4-N转化为N2,同时含碳有机物被微生物的生命活动所利用并转化为CO2[18];在饥荒期,碳源不足,自养硝化细菌将残余的NH+4-N转化为硝态氮,且最终转化为NO3,过程伴随着一定的内碳源反硝化;稳定期处于无曝气状态,阴极上的电营养反硝化菌直接利用阳极有机物降解产生的电子进行NO3的还原,NO3被还原成N2,从而达到阴极榨菜废水中总氮的完全去除[13]。阴极前期硝化反应所需要的氧气由气泵提供,曝气量通过手动转动转子流量计阀门调节。曝气速率根据杨茜等[23]的研究,控制在100 mL·min−1,阴极曝气时期溶解氧浓度维持在3~4 mg·L−1。当阴极检测出的氨氮值为0后,停止曝气。本研究中S1、S2、S3、S4停曝时间点分别为第11、9、7、13 d。通过持续给阳极补充乙酸钠试剂以维持电压的恒定,保证充足的电子供给。每次补加,使混合后阳极液的COD大致维持在2 000 mg·L−1

  • 电压的测量采用电压采集卡(PSIO813U,Honggeo.Ltd.Taiwan,China);盐度(以NaCl计)采用FE-30K型电导率仪测定;pH由PHS-3J酸度计测定;DO由WTW Oxi 7310溶解氧仪测定。COD、NH+4-N、NO2NO3、TN的检测采用国标法,由HACHDR6000紫外分光光度仪测定;取样及测量方法为:缓慢的抽取约8 mL样品溶液于称量瓶中,测量样品溶液的COD、NH+4-N、NO2NO3、TN、pH、DO,测量完成后将多余的样品溶液缓慢的注射回各极室内,每次消耗的溶液量大约为1 mL。功率密度曲线与极化曲线的测量参考文献中的方法[1]。实验结束后,将实验阴极膜以及接种泥取出,于 −80 ℃下保存,送检进行高通量测序。

  • 输出电压由电压采集卡每隔1 min测量1次,MFC功率通过式(1)进行计算,电流通过式(2)进行计算,硝酸盐平均去除速率由式(3)进行计算。

    式中:P为MFC的功率,W;I为电流,A;U为输出电压,V。

    式中:I为电流,A;R为外电阻阻值,Ω。

    式中:V为硝酸盐平均去除速率,mg·(L·d)−1C为硝酸盐的峰值浓度,mg·L−1t为硝酸盐达到峰值到完全耗尽的时间,d。

    硝酸盐平均去除速率无法精确的表征MFC的电营养反硝化作用。这主要是由于硝酸盐的峰值浓度通常发生在饥荒期,而饥荒期是一个不稳定的时期,存在硝化与内碳源反硝化的现象[13]。在稳定期虽然也发生内部碳源反硝化,但影响很小[6],因此,可用稳定期硝酸盐去除速率表述电营养反硝化速率。稳定期硝酸盐去除速率[12]由式(4)计算。

    式中:Cs为稳定期硝酸盐浓度,mg·L−1k为稳定期硝酸盐去除速率,mg·(L·d)−1ts为运行时间,d;b为系数。

  • 4组工况的阴极室进出水COD及去除率的变化如图3所示。其中S1、S2、S3、S4分别表示峰值电流为(0.24±0.03)、(0.37±0.03)、(0.55±0.11)、(0.5±0.2) mA时的工况。4组工况的阴极室进水COD去除率均在90%左右,其中S3实验组的COD去除率最高,达到了(91.44±1.29)%。相比较单室MFC[24-26],双室MFC的COD去除率同样较好。双室MFC是一种高效的有机物去除工艺,且可产生电能[27]

    混合生物阴极MFC的1个运行周期可分为3个阶段:盛宴期,饥荒期与稳定期[12]。如图4所示,盛宴期主要特征为COD与NH+4的快速下降,但未检测出硝态氮,主要发生异养硝化/好氧反硝化反应;在饥荒期,由于阴极溶液中可被利用的耗氧有机物(以COD计)消耗殆尽,异养硝化/好氧反硝化反应随之减慢,自养硝化反应逐渐占主导地位,并伴随着一定的内碳源反硝化,此期间NH+4-N全部转化为硝酸盐并发生硝态氮的累积,TN的去除速率低;在稳定期,硝酸盐被电营养反硝化菌快速去除,且硝酸盐浓度的沿程变化呈线性下降趋势。盛宴期与饥荒期的区分指标为饥荒期开始出现NO2NO3,而盛宴期的NO2NO3浓度为0 mg·L−1。饥荒期与稳定期的区分方法为稳定期开始出现稳定的硝酸盐去除率,而饥荒期的硝酸盐去除率波动不定。停止曝气后DO基本维持在1~2 mg·L−1,溶解氧的偏高主要是由于阴极液的自然富氧作用[13]。另外,系统的pH对氮浓度的变化也有相应的响应。例如,阴极在NH+4耗尽之前,整个系统的pH趋于降低,这是由于硝化作用引起的碱度消耗大于反硝化和氧还原过程中的碱度产生[13]。随着电化学反硝化作用和氧还原的进一步增强,系统的pH有所升高。

    阳极室NH+4-N、COD和pH的沿程变化如图5所示。由于阳极室COD采用的投加方式为阶段补充,其变化曲线成锯齿形,控制其峰值大约在2 000 mg·L−1。阳极室的NH+4-N大致的趋势为先上升后下降,这是由于阳极室NH+4的增减主要是通过离子扩散作用,而非阳极微生物的降解作用[26]。初期阳极室的NH+4较阴极室低,阴极室的NH+4向阳极室迁移,所以,初期的氨氮呈上升趋势;而后期随着阴极室NH+4的不断减少,阳极室NH+4低于阴极室,故向阴极室迁移[13]。因此,阳极室的氨氮去除速率亦能反映阴极微生物的硝化能力,并且由于阳离子交换膜的分隔,阳极室的NH+4-N去除具有滞后性。在本研究中,S3阳极室和阴极室的氨氮完全去除时间(9 d和7 d)最短,而其余3组分别为S1 (13 d和11 d)、S2 (11 d和9 d)和S4 (15 d和13 d)。

    4组工况在3个阶段的周期与氮去除率情况见表2。电流强度对盛宴期周期长短没有显著影响,均为(2±1) d,这可能是由于盛宴期周期很短。电流强度对MFC的稳定期周期影响最大,最大的稳定期周期为(30±1) d,而最小的稳定期周期为(7±1) d,变化幅度较大,且大致呈现出电流强度越大,稳定期周期越短的趋势。值得注意的是,电流强度对饥荒期周期长短也有影响,这说明随着硝酸盐的产生,生物电营养反硝化反应在饥荒期也扮演了一个不可忽略的角色。在盛宴期,4组反应器的NH+4-N去除率(58.91%~67.61%)与TN去除率(58.14%~67.55%)均很高;在饥荒期,随着耗氧有机物(以COD计)的耗尽,氨氧化反应持续进行,但TN的去除率大幅度减慢,4组反应器的NH+4-N去除率为32.39%~41.82%,TN去除率在15.43%~21.45%;在稳定期,NO3被还原成N2,最后实现完全脱氮。与S1 (3.618 1 mg·(L·d)−1)、S2 (5.593 8 mg·(L·d)−1)、S4 (2.771 3 mg·(L·d)−1)相比,S3稳定期硝酸盐去除速率k (6.122 5 mg·(L·d)−1)最大,说明电流强度的增大有利于电营养反硝化反应进行,大的电子通量有利于电营养反硝化菌的生存。值得注意的是,相对于其他3组,S4的停曝期峰值电流(0.5±0.2 mA)较大,但稳定期硝酸盐去除速率并不高,为2.771 3 mg·(L·d)−1。这可能是由于S4的过低阴极电势(开路阴极电势为−110 mV)所造成的。在电营养反硝化系统中,阴极电势与电流强度同样重要[9,28]。与之前的研究类似,过低的阴极电势会导致硝酸盐的去除速率变低[12]。POUS等[28]研究了宽范围阴极电势(−703~597 mV)对BES中NO3去除速率的影响,发现阴极电势由597 mV降低至−403 mV的过程中,NO3的去除速率增加,但当阴极电势低于−403 mV时,NO3的去除速率却趋于平稳。另外,外电阻的减小,电子主要被非反硝化菌与氧气所消耗,也会导致系统的硝酸盐去除速率不佳。

    图6所示,S1、S2、S3、S4实验组的硝酸盐平均去除速率分别达到(2.34±0.10)、(4.96±0.15)、(5.72±0.10)、(2.76±0.10) mg·(L·d)−1;硝酸盐最高去除速率分别为(5.18±0.15)、(7.65±0.13)、(8.45±0.15)、(5.05±0.11) mg·(L·d)−1。在4组实验中,S3实验组的硝酸盐平均去除速率与硝酸盐最高去除速率相对最高,这说明电流强度越大,反硝化速率越快。

    阴极室4组工况的总氮去除率如图7所示。总氮去除速率变化趋势为先增大后减少,这主要是由于盛宴期占主导优势的异养硝化/好氧反硝化脱氮速率大于饥荒期与稳定期的自养硝化与电营养反硝化[13]。与传统好氧/厌氧脱氮工艺相比较,异养硝化/好氧反硝化的TN去除速率更高[16]。本实验的总氮去除速率最高为7.20 mg·(L·d)−1。S1、S2、S3、S4的总氮去除率基本均在第5天达到最高值,为70%左右,且分别在第30、24、19、48天时实现完全脱氮。本实验最佳工况中总氮的去除负荷是0.111 kg·(m3·d)−1,而生物电化学的脱氮系统中的总氮的去除负荷通常是0.1~0.4 kg·(m3·d)−1[29-30],基本与本研究的结果相符。

  • 图8所示,S1、S2、S3、S4曝气阶段峰值输出电压分别为(329±17)、(221±16)、(139±19)、(17±4) mV,由欧姆定律可知,与图8中上述数据对应的峰值电流分别为(0.33±0.01)、(0.44±0.03)、(1.39±0.19)、(0.85±0.2) mA;S1、S2、S3、S4停曝气阶段的峰值输出电压分别为(240±34)、(186±16)、(55±11)、(14±4) mV,同样上述数据对应的峰值电流分别是(0.24±0.03)、(0.37±0.03)、(0.55±0.11)、(0.5±0.2) mA。4组工况曝气状况下的电压与电流均大于非曝气状况。首先,停曝气阶段的阴极室溶解氧骤减,氧还原反应的减少将导致阴极电势与电流的降低[31]。其次,主要电子受体从氧气到硝酸盐的转变也是停曝阶段电流与电压降低的原因[32]。溶解氧的升高会带来输出电压的升高,系统的产电性能较好[33]。除了S1产电周期在144 h左右,S2,S3,S4产电周期均在72 h左右。

    在系统运行的过程中,输出电压出现了不太稳定的情况。首先,当加入新鲜的阴极电解液时,普通好氧异养菌氧化有机物迅速增殖,好氧异养生物的竞争能力超过了阴极亲氧细菌或自养生物,对阴极电势和电池电压造成不利影响[34-35]。其次,生物硝化反应会消耗阴极室中的DO,阴极室电子受体的减少导致MFC产电性能的降低[32,36]。一旦有机物和NH+4耗尽,输出电压将逐渐上升并最终稳定。

    4组工况曝气与停曝阶段的极化曲线如图9图10所示。由图9图10中的数据可求得4组工况曝气与停曝阶段的MFC开路电压、最大功率密度及内部电阻,结果如表3所示。停曝阶段的最大功率密度变化趋势同开路电压变化趋势基本一致,且有随外电阻减小而减小的趋势,而曝气阶段的MFC性能差异并不显著。在混合生物阴极MFC的运行过程中,最大功率密度由实验开始的1.09 W·m−3减少至结束的0.21 W·m−3,开路电压也减少至412 mV,均有较大幅度地下降。造成MFC产电性能减少的原因有2个方面:第一,随着外部电阻的减小,由外部电阻获得的电压也越小[20],MFC的产电性能下降;第二,MFC长时间运行会加剧某些副反应的产生[37],如阳极的产甲烷反应[38]、质子交换膜污染[39]会降低MFC的输出功率与开路电压。

    图11图12所示,在开路状况下,曝气阶段S1、S2、S3、S4的阴极电位分别为186,184,180,175 mV,阳极电位分别为−564、−545、−541、−524 mV,开路电压分别为750、729、721、699 mV;停曝气阶段S1、S2、S3、S4的阴极电位分别为186、40、−90、−110 mV,阳极电位分别为−560、−557、−552、−522 mV,开路电压分别为746、597、462、412 mV。曝气阶段的阴极电势普遍高于停曝阶段,这主要是由于高浓度的DO电子受体较多,导致较高的阴极电势,且DO越高,阴极过电势越低 [10]。与先前的研究类似[12],曝气与停曝阶段的阳极电势非常稳定。而阴极电势随着外电阻的增加,呈现出增大的趋势。

  • 图13为门水平下阴极生物膜、接种厌氧泥与接种好氧泥的微生物群落分析。在门水平下,阴极生物膜相对丰度大于1% 的优势菌种为Planctomycetes (28.53%)、Chloroflexi (24.25%)、Proteobacteria (18.17%)、Actinobacteria (14.75%)、Euryarchaeota (4.06%)、Bacteroidetes (3.21%)、Deinococcus-Thermus (1.57%)、Hydrogenedentes (1.51%)、Firmicutes (1.24%)。接种厌氧泥的优势菌种为Proteobacteria (35.58%)、Bacteroidetes (21.43%)、Chloroflexi (13.42%)、Firmicutes (11.63%)、Euryarchaeota (5.62%)、Actinobacteria (3.52%)、Tenericutes (1.58%)、Planctomycetes (1.45%)、Thermotogae (1.20%)。接种好氧泥的优势菌种为Proteobacteria (29.56%)、Chloroflexi (19.79%)、Planctomycetes (13.50%)、Bacteroidetes (13.40%)、Actinobacteria (9.98%)、Deinococcus-Thermus (1.65%)、Thaumarchaeota (1.60%)、Patescibacteria (1.41%)。与接种污泥相比较,经MFC驯化后的生物阴极菌(门)落结构发生了改变,如生物阴极最大优势菌群为Planctomycetes,而接种厌氧泥与接种好氧泥则均为Proteobacteria。接种好氧泥与接种厌氧泥丰度均相对较高的Bacteroidetes,在阴极生物膜中仅占3.21%。Planctomycetes广泛的存于MFC阴极生物膜中,对生物阴极脱氮起着十分重要的作用[40]。ZHANG等[12]和WRIGHTON等[41]的研究表明,Proteobacteria是一类典型的高盐废水脱氮菌(门)落。ProteobacteriaBacteroidetes是2种广泛存在的电化学活性菌(门),可较大幅度的提升MFC的产电性能[12,42]

    为了进一步剖析微生物的具体功能,对属水平下阴极生物膜、接种厌氧泥与接种好氧泥的微生物群落组成进行了更深一步阐述。如图14所示,阴极接种物和阴极生物膜之间在功能细菌种类在发生了巨大的变化。阴极膜与好氧接种泥相比,主要的AOB和NOB展现出差异性。好氧接种泥中主要的AOB为Nitrosomonas(1.78%)[43],阴极膜中仅含0.05%;好氧接种泥中主要的NOB为Nitrospira(1.47%),阴极生物膜中仅含0.06%。阴极生物膜中主要的AOB为SM1A02(22.12%),好氧接种泥仅含0.34%;阴极膜中主要的NOB为unclassified_f__Nitrosococcaceae (1.02%),好氧接种泥中仅含0.50%。厌氧接种泥主要的反硝化菌为Thauera (25.72%),而在阴极膜中仅为0.17%。阴极膜主要的反硝化菌为unclassified_f_Rhodobacteraceae(2.70%)、norank_f_Hydrogenedensaceae(1.5%)、unclassified_f_Anaerolineaceae (1.4%)、Oceanimonas (1.1%)、Azoarcus (0.7%)[30,44]Nitrospira在好氧的环境下将NO2氧化成NO3[45]Thauera是一类万能菌,可实现异养硝化/好氧反硝化,也是一种电营养反硝化菌[46-47]Oceanimonas常出现在高盐废水处理的生物阴极中,可在厌氧的条件下将NO3还原成N2[48]

    unclassified_f__Rhodobacteraceae (2.70%)具有异养硝化/好氧反硝化的功能[45],能将垃圾渗滤液中的NH+4-N转化为NO2NO3,又可以在曝气的条件下实现NO3的去除[15,44]。与其他研究异养硝化/好氧反硝化菌的相对丰度(5.06%)比相比较[13],本研究(2.70%)较低,这可能是由于S4实验组的“饥饿”时间较长导致的,长时间无碳源不利于异养硝化/好氧反硝化菌的生长[15]。SM1A02经常出现在高盐废水MFC的阴极生物膜检测结果中,是一类典型的高盐废水AOB[13]。unclassified_f__Nitrosococcaceae可将亚硝酸盐转化为硝酸盐[43]。生物阴极膜中承担起自养硝化功能的菌属有SM1A02、unclassified_f__NitrosococcaceaeHydrogenophagaAzoarcus可利用无机物作为电子供体发生反硝化反应[49-50]Hydrogenophaga已被证明是一类典型的电活性菌属,可提升MFC的产电性能[48]。值得注意的是,Azoarcu以被证明具有电营养反硝化功能[13]。生物阴极膜中可能承担着电营养反硝化功能的菌属为HydrogenophagaAzoarcus

  • 1)高电流强度可缩短双室混合生物阴极MFC的完全脱氮周期,且主要缩短混合生物阴极MFC的稳定期周期。在4组实验中,当电流强度((0.55±0.11) mA)最大时,硝酸盐去除速率最大,实现总氮完全去除的时间(19 d)最短。

    2)电流强度的增大有利于混合生物阴极MFC电营养反硝化反应的进行,但过小的外接电阻会造成阴极电势的降低,从而降低硝酸盐去除速率。

    3)在曝气阶段,混合生物阴极MFC系统外加电阻越大,电池的开路电压亦越大,而最大功率密度却相差不大;在停止曝气阶段,由于阴极室电子受体的减少,MFC产电性能普遍下降,且系统的开路电压与最大功率密度均随着外加电阻的增大而增大。

    4)高通量测序的结果表明,承担起氮的去除功能的相关微生物有SM1A02、unclassified_f__Rhodobacteraceae、unclassified_f__Nitrosococcaceae、norank_f_Hydrogenedensaceae、unclassified_f_AnaerolineaceaeOceanimonasAzoarcus、unclassified_f_Rhodobacteraceae。其中norank_f_HydrogenophagaAzoarcus可能承担电营养反硝化功能。

参考文献 (50)

返回顶部

目录

/

返回文章
返回