Loading [MathJax]/jax/output/HTML-CSS/jax.js

天山雪岭云杉林地土壤汞的分布特征及影响因素

李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
引用本文: 李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
Citation: LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801

天山雪岭云杉林地土壤汞的分布特征及影响因素

    通讯作者: Tel:13139621233,E-mail:ecocsl@163.com
  • 基金项目:
    国家自然科学基金(U1503187)资助

Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest

    Corresponding author: CHANG Shunli, ecocsl@163.com
  • Fund Project: the National Natural Science Foundation of China (U1503187)
  • 摘要: 土壤汞的空间分布及其影响因素是研究森林系统汞循环的基础与关键。为了了解天山雪岭云杉林地土壤汞的分布特征及影响因素,以天山雪岭云杉8 hm2林地动态监测样地为研究对象,分析了总汞在土壤剖面及空间上的分布特征,并利用路径分析探究了土壤总汞与土壤有机碳、海拔高度、郁闭度等的关系。研究表明,天山雪岭云杉林0—60 cm土壤总汞均值为(35.43±24.53) ng·g−1,主要集中在0—20 cm土层;样地内土壤总汞随土壤深度增加而降低,0—20 cm土壤总汞水平空间差异显著,表现出北高南低,沟壑高坡顶低的特点;土壤中有机碳与总汞相关最显著,海拔、郁闭度和雪岭云杉胸径、树高、冠幅等因素对土壤总汞空间分布影响并不显著,说明雪岭云杉林土壤总汞空间分布主要由有机碳决定。本研究可为天山森林土壤汞储量的研究提供数据参考,同时为更深入了解天山雪岭云杉森林汞的生物地球化学循环过程提供必要的基础。
  • 随着工业的发展,大量重金属被排入土壤和水体,危害生态环境[1-2]。镉在天然水中含量很低,水体污染的镉主要来源是含镉工业如电镀、塑料加工、采矿业和液晶屏制造等产生的废水[3-4]。长期的工业化过程促使排放的镉不断积累,导致水体中镉污染日益严重。用镉污染的水,来进行灌溉,会造成粮食产区镉土壤污染问题,致使粮食中镉超标,并通过食物链积累威胁人类健康[5]。镉是有毒重金属,可致癌,能够在人体的肝、肾和骨等脏器和组织中富集,会导致多种病症的发生如贫血、高血压、神经痛、肾炎和分泌物紊乱等[6]

    纳米零价铁(nanoscale Zero-Valent Iron,简称nZVI)作为新型去除水体中重金属的材料具有高表面活性、强还原性和环境相容性,其修复技术已成为环境领域中极具潜力的新方向[7-9]。传统制备纳米零价铁的方法,即采用硼氢化物(如硼氢化钠)与二价或三价的铁盐(如FeSO4或FeCl3)反应生成纳米零价铁,由于硼氢化物为有毒物质,反应过程易燃易爆,并需氮气保护,制备成本高,限制纳米零价铁有效的应用于环境修复工程中。近年来,一种新型绿色合成纳米零价铁的方法即利用植物提取液与铁盐制备nZVI受到更多学者的青睐,该方法不含硼氢化物等危险物质,有利于植物资源化利用,同时反应成本低廉,其原理是利用植物提取液的有效成分如多酚类物质还原铁盐制备nZVI[10-12]

    纳米零价铁反应活性虽强,但稳定性较差,在空气中放置一段时间反应性明显降低[13],为了提高其稳定性和吸附效率,本研究拟构建石墨基纳米零价铁。石墨基材中膨胀石墨(expanded graphite,简称EG)具有多层次、丰富的孔结构和巨大的孔隙体积和比表面积,对重金属具有优良的吸附性能[14-16]。制备纳米零价铁与膨胀石墨相结合的复合吸附剂,更有利于对水中镉的去除。

    本文以黑茶提取液和硫酸亚铁绿色合成nZVI,在制备反应体系中,同时填加EG,合成膨胀石墨负载纳米零价铁(EG-nZVI)。对二者进行表征,并研究nZVI和EG-nZVI对水溶液中Cd(Ⅱ)的去除,通过考察各种因素对去除效果的影响,为构建石墨基负载零价铁的吸附剂对水中重金属的去除提供支持。

    可膨胀石墨(膨胀倍率150 mL·g−1,青岛南墅宏达石墨制品有限公司),黑茶(湖南华莱生物科技有限公司),盐酸,FeSO4·7H2O,硝酸镉,氢氧化钠,无水乙醇(分析纯,国药集团化学试剂有限公司).

    电子恒速搅拌器(D2010W,上海梅颖浦仪器仪表制造有限公司),箱式电阻炉(SX2-4-10,上海实验仪器厂),超纯水机(EPED-S2-90DF,上海技舟化工科技有限公司),恒温振荡器(SHZ-C,上海精密仪器仪表有限公司),真空干燥箱(DZF-6096,上海一恒科学仪器有限公司),水循环式多用真空泵(SHB-Ⅲ,郑州杜甫仪器厂),TDL-40B离心机(TDL-40B,上海安亭科学仪器厂),原子吸收光谱(SP-3520AA,上海光谱仪器),超声波反应器(KH-300DE,昆山禾创超声仪器有限公司),场发射电子显微镜(S4800,日本理学),透射电子显微镜(Tecnai G2 F20S-TWIN,美国FEI公司),比表面积测定仪(ASAP2460,美国麦克仪器),傅里叶转换红外光谱仪(Vertex 70v,德国布鲁克公司),X光衍射仪(D/max2200PC,日本理学株式会社).

    将5 g的可膨胀石墨放置于坩埚中,在700 ℃马弗炉中加热60 s后,得到膨胀石墨备用。

    称取60 g的黑茶,放入 1 L超纯水中,80 ℃水浴1 h,过滤,得到黑茶提取液备用。将100 mL黑茶提取液与0.1 mol·L−1 FeSO4溶液按照体积比2∶1慢慢混合,期间不断搅拌,反应约0.5 h,生成棕黑色的浑浊溶液。将棕黑色浑浊溶液于5000 r·min−1离心10 min,沉淀用超纯水和无水乙醇清洗两遍,置于真空干燥箱70 ℃干燥24 h以上,得到nZVI粉末[17]

    黑茶提取液制备同上,称取0.5 g EG加入到100 mL黑茶提取液中,充分混合,将0.5倍体积的0.1 mol·L−1 FeSO4溶液慢慢加入到混有EG的黑茶提取液中,期间不断搅拌,反应约0.5 h,溶液颜色至棕黑色,将富含EG的浑浊溶液分批用0.45 μm醋酸纤维滤膜真空抽滤,将滤膜上的EG复合材料置于真空干燥箱70 ℃干燥24 h,得到EG-nZVI。

    配制100 mg·L−1的Cd(Ⅱ)溶液。分别称取一定量EG-nZVI和nZVI置于50 mLCd(Ⅱ)溶液中,在超声波辅助下,设定不同时间、pH、投加量和Cd(Ⅱ)浓度,反应结束后,采用火焰原子吸收分光光度计测定反应前后溶液中Cd的浓度,复合材料对污染物Cd(Ⅱ)的去除效果评价,如公式(1)所示:

    R=C0CtC0×100 (1)

    式中,C0Ct分别为初始时刻与处理后t时刻的Cd浓度,mg·L−1

    在不同Cd(Ⅱ)初始浓度下,分别取50 mL置于两个锥形瓶中,分别加入一定量的nZVI和EG-nZVI,在25 ℃和50 ℃于超声波辅助下达到吸附平衡,用原子吸收光谱法进行Cd(Ⅱ)浓度的测定,并计算其吸附量。绘制两个温度下的吸附等温线并拟合。

    取一定量nZVI和EG-nZVI分别与100 mLCd(Ⅱ)溶液混合,常温常压在超声波辅助条件下初始5 min每隔1 min测定溶液的Cd(Ⅱ)浓度,之后每隔5 min测定溶液的Cd(Ⅱ)浓度,绘制吸附动力学曲线并拟合。

    EG图片见图1(a),片层之间有许多蜂窝状或网状多边形的微细孔隙;EG-nZVI图片见图1(b),从图中可以看出EG表面分散了细小的颗粒状物质,尺寸大小为纳米级,表明有纳米铁颗粒散布在膨胀石墨的孔隙层的表面;nZVI图片见图1(c),从图中看出nZVI的形状是直径约为40—50 nm的球状,分散性较好。

    图 1  不同样品的场发射电镜(FESEM)照片(a) EG,(b) EG-nZVI,(c) nZVI
    Figure 1.  FESEM of (a)EG, (b)EG-nZVI and (c)nZVI

    通过能谱仪检测两种样品中的元素组成见图2图2(a)显示了nZVI的主要元素组成为C(45.08%)、O(35.82%)、S(1.95%)、K(0.96%)、Si(0.71%)和Fe(11.64%),说明了新材料中含有纳米铁。图2(b)显示了EG-nZVI的主要元素组成为C(75.93%)、O(15.3%)、S(1.35%)、K(0.74%)、Si(0.88%)和Fe(6.7%),说明了膨胀石墨上确实负载了纳米铁,由于膨胀石墨作为载体,使得元素组成中C的含量大幅度增加。

    图 2  不同样品的EDS图(a) nZVI,(b) EG-nZVI
    Figure 2.  EDS of (a)nZVI and (b)EG-nZVI

    将合成的nZVI的形貌和粒径通过透射电镜来观察,其TEM图片如图3所示。由图3可以看出,所制备的纳米铁颗粒是近似球形的颗粒,分散性较好,纳米铁颗粒的粒径约为40—50 nm,同FESEM得出结果一致。另外,还可以看出,绿色合成纳米铁具有核壳结构,与传统方法合成的nZVI的形貌结构相近,其核心是零价铁,外壳可能是茶叶提取液中的有机物和铁的氧化物。

    图 3  nZVI的TEM图
    Figure 3.  TEM of nZVI

    EG的FTIR见图4。从图4a看出,EG在3444 cm−1处的吸收峰是O—H伸缩振动峰。在2927 cm−1和2855 cm−1处的峰对应于饱和烃C—H(—CH2、—CH3以及—CH=O)的伸缩振动;1150 cm−1处的吸收峰是C—O或C—O—C的伸缩振动峰;1370 cm−1处的吸收峰是C—C的伸缩振动峰,分析可知EG表面可能有羟基、醚基等官能团存在。由图4b看出,负载了零价铁后,EG-nZVI在884 cm−1和782 cm−1位置出现α-FeOOH的特征吸收峰,以及520 cm−1处的Fe2O3特征吸收峰。对比负载前EG的光谱图可知负载后EG上确有铁系物生成。

    图 4  不同样品的FTIR图(a) EG, (b) EG-nZVI
    Figure 4.  FTIR spectra of (a)EG and (b) EG-nZVI

    图5为不同样品的XRD图。从图5a可以看出,nZVI图谱中在2θ=44.8°附近有α-Fe体心立方结构晶面(110)的特征衍射宽峰[18],峰型不是很明显,可能是由于nZVI表面被有机物质包覆。2θ=23°—24°左右出现了1个宽驼峰,为作为封盖剂的黑茶提取物中的有机物质(茶多酚,维生素等)[19-20]。从图5b可以看出,EG在2θ为26.08°和54.6°附近具有石墨晶体(002)和(004)的特征衍生峰[21]。从图5c可以看出,负载了零价铁的膨胀石墨,EG-nZVI在2θ为26.08°和54.6°附近仍然存在EG衍射峰,且峰型尖锐,表明EG经负载后晶体依然完整;在2θ=44.92°处也有α-Fe 体心立方结构晶面(110)的特征峰,表明铁系物以晶体形式负载在EG表面,成型较好。

    图 5  不同样品的XRD图(a) nZVI, (b) EG, (c) EG-nZVI
    Figure 5.  XRD images: (a)nZVI, (b)EG, (c)EG-nZVI

    比表面积测定结果显示见表1,由于高比表面积的零价铁的均匀负载,使得EG-nZVI的比表面积为145.9 m2·g−1,略高于EG的137.5 m2·g−1。由于二者均有较高的孔体积,具备吸附重金属的结构基础。

    表 1  不同样品的比表面积
    Table 1.  Specific surface area of different specimens
    样品 Specimen比表面积/(m2 ·g−1) Specific surface area吸附累计孔体积/(cm3 ·g−1) Adsorption cumulative pore volume
    EG 137.5 0.227
    EG-nZVI 145.9 0.221
     | Show Table
    DownLoad: CSV

    图6为不同反应时间EG-nZVI和nZVI对Cd(Ⅱ)去除的效果。由图6可以看出,二者对水中Cd(II)的去除率先逐渐增加,然后趋缓,在30 min时达到吸附平衡。EG-nZVI对水中Cd(Ⅱ)的去除率明显高于nZVI。经过膨胀石墨负载以后的纳米零价铁,可有效防止纳米零价铁的氧化和团聚,并提高它的比表面积和化学稳定性,增加了纳米零价铁对Cd(Ⅱ)的吸附作用。

    图 6  反应时间对Cd(Ⅱ)去除率的影响
    Figure 6.  Effect of reaction time on the removal rate of Cd(Ⅱ)

    图7为不同投加量EG-nZVI和nZVI对Cd(Ⅱ)的去除效果。由图7可见,随着nZVI和EG-nZVI投加量的递增,Cd(Ⅱ)的去除率随之升高。当nZVI和EG-nZVI的投加量分别达到0.4 g·L−1和2 g·L−1时,继续增加投加量去除率基本不变,EG-nZVI的最大去除率(78.2%)明显高于nZVI(56.1%)。随着nZVI和EG-nZVI量的增加,其有效比表面积也相对应增加,所以吸附作用效果明显,去除率有效提高。但当投加量达到一定程度,吸附质与吸附剂饱和,若继续加入吸附剂,可能会导致零价铁发生团聚或者膨胀石墨间的混聚,导致吸附效果变差。

    图 7  不同样品投加量对Cd(Ⅱ)去除率的影响
    Figure 7.  Effect of dosage of different specimens on the removal rate of Cd(Ⅱ)

    图8为pH对EG-nZVI和nZVI去除Cd(Ⅱ)的影响。溶液pH较低时,Cd(Ⅱ)的去除效果较差,原因如下:(1)溶液中的H+浓度大,吸附剂表面会带正电,与溶液中的Cd(Ⅱ)排斥,吸附作用减弱。(2)溶液的H+浓度增大,H+可能会与溶液中的Cd(Ⅱ)竞争吸附剂表面的吸附点位。当pH逐渐从中性过度到碱性时,上述影响因素均减弱,Cd(Ⅱ)的去除效果明显提高。继续增大pH至8以上时,部分Cd(Ⅱ)生成Cd(OH)2沉淀,使得Cd(Ⅱ)的去除率依然小幅增加。考虑到溶液碱性过大,会导致二次污染,增加修复难度,同时碱性的增加使得Cd(Ⅱ)的去除效果增加并不明显,综合处理效果和经济成本因素考虑定为pH8较为合适。

    图 8  pH值对和Cd(Ⅱ)去除率的影响
    Figure 8.  Effect of pH on the removal rate of dyes and Cd(Ⅱ)

    图9为Cd(Ⅱ)初始浓度对EG-nZVI和nZVI去除效果的影响。从图9可知,随着Cd(Ⅱ)初始浓度的增加,二者对Cd(Ⅱ)去除率逐渐降低。说明当投加的吸附剂量一定时,可提供的吸附位点是具有饱和性的,能够吸附溶液中吸附质的量是基本固定的,如果继续增大吸附质(Cd(Ⅱ))的量,由于吸附位点的相对不足,因此去除率逐渐降低。

    图 9  Cd(Ⅱ)初始浓度对nZVI和EG-nZVI去除效果的影响
    Figure 9.  Effect of Cd(Ⅱ) concentration on the removal rate

    纳米零价铁反应活性高,易被空气氧化而失去反应活性(如还原效应,吸附效应)。为了测定EG-nZVI和nZVI的稳定性,将新制备的EG-nZVI和nZVI放置于常温常压下,每隔一段时间测试其对溶液中Cd(Ⅱ)的去除效果。图10为EG-nZVI和nZVI的放置天数对Cd(Ⅱ)去除率的影响,结果显示随着放置时间的增加,二者对Cd(Ⅱ)去除的反应活性均下降,说明纳米零价铁被空气中氧气氧化,反应活性降低。放置15 d后EG-nZVI对Cd(Ⅱ)的去除效能损失约34%,而nZVI对Cd(Ⅱ)的去除效能损失约82%,说明EG的负载,其介孔结构在一定程度上有助于保护nZVI的反应活性,降低氧气对nZVI的氧化作用。

    图 10  EG-nZVI和nZVI放置天数对Cd(Ⅱ)去除率的影响
    Figure 10.  Storage days of EG-nZVI and nZVI on the removal rate of Cd(Ⅱ)

    采用Langmuir和Freundlich吸附等温方程进行实验数据分析。Langmuir方程主要用于描述单层吸附,而Freundlich方程主要用来描述多层吸附。根据固-液吸附经验公式,通过Langmuir和Freundlich等温吸附模型,对nZVI吸附含镉废水的吸附结果进行线性拟合,结果如图11所示。Langmuir和Freundlich等温吸附模型相关参数和修正系数如表2所示。

    图11表2可以发现,无论对于EG-nZVI还是nZVI,对于Cd(Ⅱ)的去除,Langmuir模型较之Freundich模型的拟合效果要好,Langmuir吸附模型的相关系数(R2)较高,均为0.99以上,说明吸附是单层吸附,EG-nZVI和nZVI对Cd(Ⅱ)反应过程可能为化学吸附。Freundich模型系数1/n处于0.1—0.5范围内,说明吸附过程容易进行。

    图 11  吸附等温曲线拟合:(a) Langmuir型(nZVI对Cd(Ⅱ)),(b) Freundlich(nZVI对Cd(Ⅱ)),(c) Langmuir型(EG-nZVI对Cd(Ⅱ)),(d) Freundlich(EG-nZVI对Cd(Ⅱ))
    Figure 11.  Linearized adsorption isotherms: (a)Langmuir(nZVI on Cd(Ⅱ)), (b)Freundlich(nZVI on Cd(Ⅱ)),(c)Langmuir(EG-nZVI on Cd(Ⅱ)) and (d)Freundlich(EG-nZVI on Cd(Ⅱ))
    表 2  不同温度下不同样品对水中Cd(Ⅱ)吸附等温线
    Table 2.  Isotherm constants of different specimens adsorption on Cd(Ⅱ) at different temperature
    样品Specimen温度Temperature/KLangmuir 方程参数Langmuir isotherm constantsFreundlich 方程参数Freundlich isotherm constants
    Langmuir 常数KL/(mg·g−1)理论最大平衡吸附量qm/(mg·g−1)相关系数R2Freundlich 常数Kf /(mg·g−1)Freundlich作用强度系数1/n相关系数R2
    nZVI 298323 0.29 200 0.9993 56.19 0.2988 0.9138
    0.33 217.39 0.9991 66.109 0.2833 0.9099
    EG-nZVI 298 0.31 99.01 0.9983 25.24 0.3425 0.9229
    323 0.51 102.04 0.999 33.84 0.2793 0.9234
     | Show Table
    DownLoad: CSV

    为描述EG-nZVI和nZVI对Cd(Ⅱ)的去除机理和动力学行为,利用伪一级动力学方程(式2)和伪二级动力学方程(式3) 对数据进行拟合,结果如图12所示,拟合参数分别见表3

    ln(qeqqt)=lnqeqK1t (2)

    式中,qeq为平衡吸附量(mg·g−1);qt为任意时刻t的吸附量(mg·g−1);K1为伪一级方程吸附速率常数(min−1)。

    t/tqtqt=1/1K2K2q2eq+t/tqeqqeq (3)

    式中,qeq为平衡吸附量(mg·g−1);qt为任意时刻t的吸附量(mg·g−1);K2为伪二级速率常数(g·(mol·min)−1).

    表3的拟合曲线均与伪二级动力学方程具有高的契合度。nZVI和EG-nZVI对Cd(Ⅱ)的伪二级动力学方程的回归系数分别是0.9692和0.9956,明显高于伪一级动力学方程0.9135和0.8996,伪二级动力学方程计算得出的理论平衡吸附量(qeq)与实验测得的平衡吸附量(qexp) 最符合。由此说明nZVI和EG-nZVI对Cd(Ⅱ)的去除更符合准二级速率模型,说明化学吸附是限速步骤。

    图 12  吸附动力学曲线拟合(a)伪一级动力学方程(nZVI对Cd(Ⅱ)),(b)伪二级动力学方程(nZVI对Cd(Ⅱ)),(c)伪一级动力学方程(EG-nZVI对Cd(Ⅱ)),(d)伪二级动力学方程(EG-nZVI对Cd(Ⅱ))
    Figure 12.  Adsorption kinetics fitting: (a)pseudo-first-order(nZVI on Cd(Ⅱ)), (b)pseudo-second-order(nZVI on Cd(Ⅱ)),(c)pseudo-first-order(EG-nZVI on Cd(Ⅱ)) and (d)pseudo-second-order(EG-nZVI on Cd(Ⅱ))
    表 3  不同样品去除Cd(Ⅱ)的动力学参数
    Table 3.  Constants for the kinetics for the removal of Cd(Ⅱ) on different specimens
    样品Specimen实际平衡吸附量qexq/(mg·g-1)伪一级动力学模型Pseudo-first-orde kinetics model伪二级动力学模型Pseudo-second-order kinetics model
    伪一级方程吸附速率常数 k1/(min-1)平衡吸附量qeq/(mg·g-1)相关系数R2伪二级方程吸附速率常数 k2/(mg mg-1 min-1)平衡吸附量qeq/(mg·g-1)相关系数R2
    nZVI 142.4 0.0451 133.64 0.9135 0.174 139.16 0.9692
    EG-nZVI 39.5 0.1142 31.6 0.8996 0.203 36.7 0.9956
     | Show Table
    DownLoad: CSV

    化学吸附的成因如下:由于Fe2+/Fe标准电极电位为−0.44,而Cd2+/Cd标准电极电位为−0.40,致使nZVI内核Fe原子难以起到还原作用,nZVI与Cd(Ⅱ)之间的反应更多是nZVI表面钝化层FeOOH与Cd(Ⅱ)之间的表面电荷吸附或化学络合吸附[22]

    (1)采用绿色合成法制备两种新型吸附剂EG-nZVI和nZVI。经FESEM和TEM表征nZVI为直径40—50 nm的球状,分散性较好,经EG负载后,纳米零价铁散布在膨胀石墨的孔隙层的表面。FTIR,EDS和XRD检测二者样品中均有铁元素的存在。BET测定显示EG-nZVI有较高的比表面积和孔体积。

    (2)EG-nZVI和nZVI对含有100 mg·L −1 Cd(Ⅱ)水溶液处理的单因素优化工艺为:添加EG-nZVI 2.0 g·L −1或nZVI 0.4 g·L −1,常温下,pH 8,在超声波辅助下反应30 min,Cd(Ⅱ)去除率分别为78.4%和56.3%。在最适条件下,EG-nZVI对Cd(Ⅱ)的去除效果优于nZVI。

    (3)在空气中放置不同的天数进行测定,结果显示随着放置时间的增加,EG-nZVI和nZVI对Cd(Ⅱ)去除的反应活性均下降,说明纳米零价铁在空气中被氧化,反应活性降低。放置15 d后EG-nZVI对Cd(Ⅱ)的去除效能损失(约34%)远小于nZVI对Cd(Ⅱ)的去除效能损失(约82%),说明负载EG后,对零价铁反应活性起到一定的保护作用。

    (4)EG-nZVI和nZVI对Cd(Ⅱ)的去除过程拟合更符合伪二级动力学模型和Langmuir吸附等温模型。

  • 图 1  天山雪岭云杉固定样地研究区概况图

    Figure 1.  Overview of the study area of fixed Picea Schrenkiana sample plot in Tianshan

    图 2  8 hm2固定样地不同深度土壤THg空间分布

    Figure 2.  Spatial distribution of soil THg in different depths of 8 hm2 fixed sample plot

    图 3  8 hm2固定样地不同深度土壤TOC空间分布

    Figure 3.  Spatial distribution of soil TOC in different depths of 8 hm2 fixed sample plot

    图 4  雪岭云杉林固定样地冠幅、郁闭度、胸径、树高空间分布

    Figure 4.  Spatial distribution of crown, canopy density, DBH and tree height of Picea Schrenkiana forest

    图 5  雪岭云杉林固定样地土壤THg与TOC相关性图

    Figure 5.  Correlation between THg and TOC of soil in fixed sample plot of Picea Schrenkiana forest

    图 6  雪岭云杉林0-10 cm土壤THg随各影响因子变化图

    Figure 6.  THg of 0—10 cm soil in Picea Schrenkiana forest changes with various influencing factors

    图 7  雪岭云杉林土壤THg与各因子路径分析图

    Figure 7.  Path analysis of soil THg and various factors of Picea Schrenkiana forest

    表 1  8 hm2固定样地不同深度土壤THg变化

    Table 1.  Change of soil THg in different depth of 8 hm2 fixed sample plot

    深度/cmDepth范围/(ng·g−1)Range均值/(ng·g−1)AVG中值/(ng·g−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1022.40—125.0267.83a67.47−0.920.130.164>0.0528.27
    10—2016.78—68.7330.75b28.692.691.310.002<0.0510.40
    20—4011.42—48.2922.37c21.458.101.880.00<0.055.85
    40—6013.48—31.3320.78c20.71−0.110.290.734>0.053.99
      不同小写字母代表THg在不同土层差异显著(P<0.05);相同小写字母代表THg在不同土层差异不显著(P>0.05)。
    深度/cmDepth范围/(ng·g−1)Range均值/(ng·g−1)AVG中值/(ng·g−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1022.40—125.0267.83a67.47−0.920.130.164>0.0528.27
    10—2016.78—68.7330.75b28.692.691.310.002<0.0510.40
    20—4011.42—48.2922.37c21.458.101.880.00<0.055.85
    40—6013.48—31.3320.78c20.71−0.110.290.734>0.053.99
      不同小写字母代表THg在不同土层差异显著(P<0.05);相同小写字母代表THg在不同土层差异不显著(P>0.05)。
    下载: 导出CSV

    表 2  8 hm2固定样地不同深度土壤TOC变化

    Table 2.  Change of soil TOC in different depth of 8 hm2 fixed sample plot

    深度/cmDepth范围/(g·kg−1)Range均值/(g·kg−1)AVG中值/(g·kg−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1025.84—251.77112.36a106.270.310.460.401>0.0548.06
    10—2016.18—146.4056.01b48.831.641.230.001<0.0526.92
    20—403.62—41.3319.80c17.90−0.550.300.334>0.059.95
    40—602.11—35.6216.25c16.99−0.280.330.272>0.058.70
    不同小写字母代表TOC在不同土层差异显著(P<0.05);相同小写字母代表TOC在不同土层差异不显著(P>0.05)。
    深度/cmDepth范围/(g·kg−1)Range均值/(g·kg−1)AVG中值/(g·kg−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1025.84—251.77112.36a106.270.310.460.401>0.0548.06
    10—2016.18—146.4056.01b48.831.641.230.001<0.0526.92
    20—403.62—41.3319.80c17.90−0.550.300.334>0.059.95
    40—602.11—35.6216.25c16.99−0.280.330.272>0.058.70
    不同小写字母代表TOC在不同土层差异显著(P<0.05);相同小写字母代表TOC在不同土层差异不显著(P>0.05)。
    下载: 导出CSV

    表 3  雪岭云杉林固定样地平均冠幅、胸径、树高及郁闭度数据

    Table 3.  Data of average crown, DBH, tree height and canopy density of Picea Schrenkiana forest

    类型Type范围Range均值AVG中值MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    平均冠幅/cmAverage crown width2.41—5.583.703.560.490.800.065>0.050.72
    郁闭度Canopy density0.4—0.90.700.725−0.97−0.420.005<0.050.16
    平均胸径/cmMean DBH5.58—31.2617.4116.00−0.030.290.697>0.055.64
    平均树高/mAverage tree height3.96—20.3413.5913.69−0.630.650.158>0.053.43
    类型Type范围Range均值AVG中值MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    平均冠幅/cmAverage crown width2.41—5.583.703.560.490.800.065>0.050.72
    郁闭度Canopy density0.4—0.90.700.725−0.97−0.420.005<0.050.16
    平均胸径/cmMean DBH5.58—31.2617.4116.00−0.030.290.697>0.055.64
    平均树高/mAverage tree height3.96—20.3413.5913.69−0.630.650.158>0.053.43
    下载: 导出CSV

    表 4  本研究土壤THg与国内外其他地区森林土壤THg比较

    Table 4.  Comparison of soil THg between in this study and other areas at home and abroad

    地点Site森林类型Forest typesTHg范围/(ng·g−1 )THg Range
    西北欧Galicia森林[22]落叶林、针叶林25.20—305.00
    挪威Langtjern森林[23]针叶林37.00—172.00
    美国Whiteface Mountain[24]针叶林69.00—416.00
    中国东北长白山[25]混交林70.00—730.00
    加拿大旱地北方森林Albert国家公园[26]针叶林84.00—318.00
    中国天山雪岭云杉林针叶林11.42—125.02
    中国青藏高原地区[27]针叶林27.00—187.00
    中国西南地区铁山坪森林[28]针叶林63.00—187.00
    地点Site森林类型Forest typesTHg范围/(ng·g−1 )THg Range
    西北欧Galicia森林[22]落叶林、针叶林25.20—305.00
    挪威Langtjern森林[23]针叶林37.00—172.00
    美国Whiteface Mountain[24]针叶林69.00—416.00
    中国东北长白山[25]混交林70.00—730.00
    加拿大旱地北方森林Albert国家公园[26]针叶林84.00—318.00
    中国天山雪岭云杉林针叶林11.42—125.02
    中国青藏高原地区[27]针叶林27.00—187.00
    中国西南地区铁山坪森林[28]针叶林63.00—187.00
    下载: 导出CSV
  • [1] LINDQVIST O, JOHANSSON K, BRINGMARK L, et al. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods [J]. Water, Air, and Soil Pollution, 1991, 55(1-2): 1-261.
    [2] 王训, 袁巍; 冯新斌. 森林生态系统汞的生物地球化学过程 [J]. 化学进展, 2017, 29(9): 970-980. doi: 10.7536/PC170343

    WANG X, YUAN W, FENG X B. Global review of mercury biogeochemical processes in forest ecosystems [J]. Progress in Chemistry, 2017, 29(9): 970-980(in Chinese). doi: 10.7536/PC170343

    [3] SCHROEDER W H, ANLAUF K, BARRIE L, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530
    [4] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 [J]. Forest Ecology and Management, 2015, 352: 9-20. doi: 10.1016/j.foreco.2015.06.014
    [5] ZHANG L, WRIGHT L P; BLANCHARD P. A review of current knowledge concerning dry deposition of atmospheric mercury [J]. Atmospheric Environment, 2009, 43(37): 5853-5864. doi: 10.1016/j.atmosenv.2009.08.019
    [6] SMITH‐DOWNEY N V, SUNDERLAND E M, JACOB D J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model [J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3): 227-235.
    [7] ERICKSEN J, GUSTIN M, SCHORRAN D, et al. Accumulation of atmospheric mercury in forest foliage [J]. Atmospheric Environment, 2003, 37(12): 1613-1622. doi: 10.1016/S1352-2310(03)00008-6
    [8] FIORENTINO J C, ENZWEILER J, ANGELICA R S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: evidence of external input [J]. Water, Air, & Soil Pollution, 2011, 221(1-4): 63-75.
    [9] ZHENG W, LIANG L, GU B. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments [J]. Environmental Science & Technology, 2011, 46(1): 292-299.
    [10] 李翾然, 常顺利, 张毓涛. 天山雪岭云杉林粗木质残体储量特征 [J]. 生态学报, 2019, 39(10): 3730-3739.

    LI X R, CHANG S L, ZHANG Y T. Attributes of coarse woody debris in Picea schrenkiana forests of Tianshan Moutains [J]. Acta Ecologica Sinica, 2019, 39(10): 3730-3739(in Chinese).

    [11] 张毓涛, 常顺利, 芦建江, 等. 天山云杉森林8hm~2样地的建立及三维可视化管理 [J]. 林业科学, 2011, 47(10): 179-183. doi: 10.11707/j.1001-7488.20111028

    ZHANG Y T, CHANG S L, LU J J, et al. Large scale permanent plot developed and its three-dimension realized in Tianshan forest [J]. Scientia Silvae Sinicae, 2011, 47(10): 179-183(in Chinese). doi: 10.11707/j.1001-7488.20111028

    [12] OBRIST D, JOHNSON D, LINDBERG S, et al. Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils [J]. Environmental Science & Technology, 2011, 45(9): 3974-3981.
    [13] DEMERS J D, DRISCOLL C T, FAHEY T J, et al. Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA [J]. Ecological Applications, 2007, 17(5): 1341-1351. doi: 10.1890/06-1697.1
    [14] 吴毅, 刘文耀, 沈有信, 等. 滇石林地质公园喀斯特山地天然林和人工林凋落物与死地被物的动态特征 [J]. 山地学报, 2007, 25(3): 317-325. doi: 10.3969/j.issn.1008-2786.2007.03.009

    WU Y, LIU W Y, SHEN Y X, et al. Dynamics of litterfall and litter on forest floor of natural forest and plantations in stone forestworld geological park [J]. Journal of Mountan Science, 2007, 25(3): 317-325(in Chinese). doi: 10.3969/j.issn.1008-2786.2007.03.009

    [15] 阿米娜木·艾力, 常顺利, 张毓涛, 等. 天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素 [J]. 生态学报, 2014, 34(7): 1626-1634.

    AMINEM E L, CHANG S L, ZHANG Y T, et al. Altitudinal distribution rule of Picea schrenkiana forest’s soil organic carbon and its influencing factors [J]. Acta Ecologica Sinica, 2014, 34(7): 1626-1634(in Chinese).

    [16] 仇瑶, 常顺利, 张毓涛, 等. 天山林区六种灌木生物量的建模及其器官分配的适应性 [J]. 生态学报, 2015, 35(23): 7842-7851.

    QIU Y, CHANG S L, ZHANG Y T, et al. Biomass estimation modeling and adaptability analysis of organ allocation in six common shrub species in Tianshan Mountains forests, China [J]. Acta Ecologica Sinica, 2015, 35(23): 7842-7851(in Chinese).

    [17] 王丹红, 吴文晞, 涂满娣. 用直接测汞法快速测定土壤中总汞含量 [J]. 化学工程与装备, 2010(8): 148, 168-169.

    WANG D H, WU W X, TU M D. Rapid determination of total mercury in soil by method of directly determining mercury [J]. Chemical Engineering & Equipment, 2010(8): 148, 168-169(in Chinese).

    [18] LY/T1237—1999. 森林土壤有机质的测定及碳氮比的计算[S]. 北京: 国家林业局, 1999.

    LY/T1237—1999. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio[S]. Beijing: State Forestry Administration, 1999(in Chinese).

    [19] 姚俊强, 杨青, 刘志辉, 等. 中国西北干旱区降水时空分布特征 [J]. 生态学报, 2015, 35(17): 5846-5855.

    YAO J Q, YANG Q, LIU Z H, et al. Spatio-temporal change of precipitation in arid region of the Northwest China [J]. Acta Ecologica Sinica, 2015, 35(17): 5846-5855(in Chinese).

    [20] 袁方, 黄力, 魏玉洁, 等. 中国天然林凋落物量特征及其与气候因子的关系 [J]. 生态学杂志, 2018, 37(10): 3038-3046.

    YUAN F, HUANG L, WEI Y J, et al. Litterfall production and its relationships with climatic factors in Chinese natural forests [J]. Chinese Journal of Ecology, 2018, 37(10): 3038-3046(in Chinese).

    [21] 刘旭. 氮添加对新疆天山雪岭云杉凋落物分解和林下土壤性质的影响[D]. 乌鲁木齐: 新疆大学, 2019.

    LIU X. Effects of nitrogen addition on litter decomposition and soil properties under the forest of Picea schrenkiana in Tianshan Mountain, Xinjiang[D]. Urumqi: Xinjiang University, 2019(in Chinese).

    [22] NOVOA-MUNOZ J, PONTEVEDRA-POMBAL X, MARTINEZ-CORTIZAS A, et al. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain) [J]. Science of the Total Environment, 2008, 394(2-3): 303-312. doi: 10.1016/j.scitotenv.2008.01.044
    [23] LARSSEN T, DE WIT H A, WIKER M, et al. Mercury budget of a small forested boreal catchment in southeast Norway [J]. Science of the Total Environment, 2008, 404(2-3): 290-296. doi: 10.1016/j.scitotenv.2008.03.013
    [24] BLACKWELL B D, DRISCOLL C T. Deposition of mercury in forests along a montane elevation gradient [J]. Environmental Science & Technology, 2015, 49(9): 5363-5370.
    [25] WANG S, XING D, WEI Z, et al. Spatial and seasonal variations in soil and river water mercury in a boreal forest, Changbai Mountain, Northeastern China [J]. Geoderma, 2013, 206: 123-132. doi: 10.1016/j.geoderma.2013.04.026
    [26] FRIEDLI H, RADKE L, PAYNE N, et al. Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada [J]. Journal of Geophysical Research: Biogeosciences, 2007: 112. doi: 10.1029/2005JG000061
    [27] 吴飞, 王训, 罗辑, 等. 青藏高原林线森林汞的空间分布格局及对大气环境汞污染的指示 [J]. 环境化学, 2019, 38(7): 1619-1627. doi: 10.7524/j.issn.0254-6108.2018092302

    WU F, WANG X, LUO J, et al. Spatial distribution of total mercury in timberline forest of tibetan plateau regions and its implications of atmospheric mercury pollution [J]. Environmental Chemistry, 2019, 38(7): 1619-1627(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092302

    [28] 王琼, 罗遥, 杜宝玉, 等. 重庆铁山坪森林土壤汞释放通量的影响因子研究 [J]. 环境科学, 2014, 35(5): 1922-1927.

    WANG Q, LUO Y, DU B Y, et al. Influencing factors of mercury emission flux from forest soil at Tieshanping, Chongqing [J]. Environmental Science, 2014, 35(5): 1922-1927(in Chinese).

    [29] WANG X, LUO J, YIN R, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau [J]. Environmental Science & Technology, 2016, 51(2): 801-809.
    [30] ZHANG H, YIN R S, FENG X B, et al. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures [J]. Scientific Reports, 2013(3): 3322. doi: 10.1038/srep03322
    [31] ZHENG W, OBRIST D, WEIS D, et al. Mercury isotope compositions across North American forests [J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. doi: 10.1002/2015GB005323
    [32] Fu X W, XU Y, Lang X F, et al. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China [J]. Atmospheric Chemistry and Physics , 2016, 16(18): 11547-11562. doi: 10.5194/acp-16-11547-2016
    [33] WAN Q, FENG X, LU J, et al. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes [J]. Environmental Research, 2009, 109(6): 721-727. doi: 10.1016/j.envres.2009.05.006
    [34] XU Z L, CHANG Y P, LI L, et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains [J]. PloS One, 2018, 13(11): e0204130. doi: 10.1371/journal.pone.0204130
    [35] 张孟孟. 溶解性有机质对土壤吸附汞的影响及其机理的研究[D]. 济南: 山东大学, 2011.

    ZHANG M M. Research on the effect and the mechanism of dissolved organic matter on the adsorption of Hg2+ by soils[D]. Jinan: Shandong University, 2011(in Chinese).

    [36] MIRETZKY P, BISINOTI M C, JARDIM W F, et al. Factors affecting Hg (II) adsorption in soils from the Rio Negro basin (Amazon) [J]. Química Nova, 2005, 28(3): 438-443.
  • 加载中
图( 7) 表( 4)
计量
  • 文章访问数:  3112
  • HTML全文浏览数:  3112
  • PDF下载数:  94
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-28
  • 刊出日期:  2021-06-27
李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
引用本文: 李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
Citation: LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801

天山雪岭云杉林地土壤汞的分布特征及影响因素

    通讯作者: Tel:13139621233,E-mail:ecocsl@163.com
  • 1. 新疆大学资源与环境科学学院绿洲生态教育部重点实验室,乌鲁木齐,830046
  • 2. 西南大学资源与环境科学学院,重庆,400700
  • 3. 新疆林业科学研究院森林生态研究所,乌鲁木齐,830063
基金项目:
国家自然科学基金(U1503187)资助

摘要: 土壤汞的空间分布及其影响因素是研究森林系统汞循环的基础与关键。为了了解天山雪岭云杉林地土壤汞的分布特征及影响因素,以天山雪岭云杉8 hm2林地动态监测样地为研究对象,分析了总汞在土壤剖面及空间上的分布特征,并利用路径分析探究了土壤总汞与土壤有机碳、海拔高度、郁闭度等的关系。研究表明,天山雪岭云杉林0—60 cm土壤总汞均值为(35.43±24.53) ng·g−1,主要集中在0—20 cm土层;样地内土壤总汞随土壤深度增加而降低,0—20 cm土壤总汞水平空间差异显著,表现出北高南低,沟壑高坡顶低的特点;土壤中有机碳与总汞相关最显著,海拔、郁闭度和雪岭云杉胸径、树高、冠幅等因素对土壤总汞空间分布影响并不显著,说明雪岭云杉林土壤总汞空间分布主要由有机碳决定。本研究可为天山森林土壤汞储量的研究提供数据参考,同时为更深入了解天山雪岭云杉森林汞的生物地球化学循环过程提供必要的基础。

English Abstract

  • 汞(Hg)是环境中通过大气进行长距离跨国界传输的全球性污染物[1]。随着2017年8月16日《关于汞的水俣公约》生效,学术界对汞的排放、传输、转化更加关注[2]。汞的排放来自人为源与自然源,其在大气中主要有3种形态,即气态元素汞(GEM, gaseous elemental mercury)、活性气态汞(RGM, reactive gaseous mercury)和颗粒态汞(PBM, particulate-bound mercury)。RGM与PBM化学性质活泼,会通过干湿沉降从大气中去除,在大气中停留时间较短,而GEM化学性质稳定且不溶于水,在大气中停留时间较长(约0.5—1年)[3]。尤其是森林的。森林系统占全球陆地总面积的31%[4],且生物量巨大,植物叶片可以通过气孔吸收大气中的元素汞,并以凋落物的方式积累于森林土壤中,因此森林对大气中汞的传输和转化过程起着十分重要的作用。此外母质岩石风化同样会对森林土壤汞有一些贡献[5-8]。汞在土壤中存在一系列的氧化还原和吸脱附过程,被积累的同时也会向大气进行再排放[9]。因而,研究森林土壤汞库存、空间分布规律及其影响因素是认识汞生物地球化学循环的重要基础。

    天山雪岭云杉(Picea Schrenkiana)森林是我国西北干旱半干旱区森林生态系统的重要组成部分,在涵养水源、固碳、保育生物多样性等方面具有重要的生态作用[10]。利用大型森林动态监测样地不仅可以有效的探讨雪岭云杉林土壤总汞的空间分布特征,还可以利用长期的、大面积的生态研究数据,分析造成其空间分布特征的影响因素,进而更好的阐明雪岭云杉森林汞的生物地球化学循环过程[11]。已有研究表明,森林土壤总汞(THg)与土壤总有机碳(TOC)呈正相关[12],而凋落物作为汞进入森林土壤的重要渠道[13],其与海拔、林分结构及植物群落结构特征等因素有着密切的关系[14],因此推测森林土壤汞空间分布可能受土壤总有机碳、海拔、森林的林分结构及植物群落结构特征的影响。

    鉴于此,本研究依托天山雪岭云杉8 hm2森林动态监测样地,通过样地调查和数据分析,探讨天山雪岭云杉林土壤THg的空间分布特征;天山雪岭云杉森林土壤THg与土壤TOC、海拔、郁闭度及雪岭云杉胸径、树高、冠幅之间的关系,为将来研究雪岭云杉森林汞的生物地球化学过程提供数据支撑及理论基础。

  • 本研究在天山森林生态系统定位研究站开展,位于天山中段北坡距乌鲁木齐市50 km的板房沟林场(如图1所示)。研究区属温带大陆性气候,年均气温为2—3 ℃,年总辐射量5.85×105 J· cm−2· a−1,年降水量400—600 mm,年蒸发量980—1150 mm,年平均相对湿度65%,最大积雪深度65 cm。天山云杉森林是以雪岭云杉为单优树种的温带针叶林,林下灌木主要有异果小檗(Berberisheteropoda)、黑果栒子(Cotoneaster melanocarpus)、金丝桃叶绣线菊(Spiraea hypericifolia)、新疆方枝柏(Juniperus pseudosabina)、锦鸡儿(Caragana turkestanica)、刚毛忍冬(Lonicera hispida)、密刺蔷薇(Rosa spinosissima)等。林下土壤为灰褐色森林土,土壤发育程度高,剖面分化明显,腐殖质层较厚[15-16]

  • 研究团队于2009年借鉴热带森林科学研究中心(Center for Tropical Forest Science,CTFS)大型固定样地建设思路和方法,设立了天山雪岭云杉8 hm2森林动态监测样地(43°25′—43°26′N,87°27′—87°29′E),样地为400 m(东西向等高)×200 m(南北向上坡),海拔介于1958—2188 m之间,用全站仪将整个大样地划分成200个20 m×20 m的样方。在2019年7月样地复查过程中,用“S”型取样法,每隔5个样方采集4层混合土样(0—10、10—20、20—40、40—60 cm,共计176个),每一层约500 g,装入自封袋进行编号并带回实验室,对采集土样的44个小样地,利用胸径尺、勃鲁莱氏测高器和皮卷尺逐一调查所有雪岭云杉的胸径,树高,冠幅,利用样线法调查样地郁闭度,并利用手持GPS记录每个样方的海拔。

  • 将带回的土样置于通风、阴凉、干燥的室内自然风干,研磨后过0.149 mm(100目)筛备用。用万分之一天平称取约0.1 g样品,采用DMA-80总汞仪(Milstone, Italy)测定土样的THg[17],每10个样品做1个重复,以GBW07407(GSS-7)土壤成分分析标准物质为质控标样,每隔30个样品测1个标样,样品回收率范围为90%—110%。采用重铬酸钾氧化-外加热法测土壤TOC[18]

  • 本研究用Microsoft Excel 2016和IBM SPSS Statistics 21软件进行数据处理,采用Matlab软件做土壤THg、土壤TOC及影响因子分布图,用Origin8.1对土壤THg与各影响因子进行相关性分析,用Amos Graphics软件对土壤THg与各影响因子进行路径分析。

  • 天山雪岭云杉林8 hm2固定样地0—60 cm土壤THg均值为(35.43±24.53) ng·g−1,变化范围是11.42—125.02 ng·g−1。垂直分布上,THg主要集中在0—20 cm土层,表层至底层土壤THg均值分别(67.83±28.27)、(30.75±10.40)、(22.37±5.85)、(20.78±3.99 )ng·g−1,随土壤深度的增加而减小(图2表1)。土壤THg标准偏差随土壤深度增加而减少,说明其THg水平空间变化也在逐渐减小。由图2可以看出,样地0—20 cm土层THg水平空间差异显著,呈现出北高南低(固定样地纬度增加方向为由南至北,经度增加方向为由西至东),沟壑高坡顶低的特点,而20 cm以下土层THg含量较低,且无显著水平空间差异。

  • 固定样地的0—60 cm土壤TOC均值为(51.11±47.85) g·kg−1,变化范围是2.11—251.77 g·kg−1。土壤TOC的空间分布与土壤THg相似,垂直分布上土壤TOC随土壤深度增加而减小(图3表2)且主要集中在0—20 cm土层,表层至底层土壤TOC均值分别是(112.36±48.06)、(56.01±26.92)、(19.80±9.95)、(16.25±8.70 )g·kg−1。由图3可以看出,0—20 cm土层TOC水平空间分布差异显著,与THg一样,呈现出北高南低,沟壑高坡顶低的特点,而20—60 cm土层TOC含量较低,几乎看不出明显水平空间变化。

  • 固定样地的雪岭云杉林冠幅均值为(3.7±0.72) m,中值为3.56 m,变化范围是2.41—5.58 m;郁闭度均值为0.7±0.16,中值为0.725,变化范围是0.4—0.9;胸径均值为(17.41±5.64 )cm,中值为16.00 cm,变化范围是5.58—31.26 cm;树高平均为(13.59±3.43 )m,中值为13.69 m,变化范围是3.96—20.34 m(表3)。由图4可以看出,与0—20 cm土壤THg一样,样地雪岭云杉平均冠幅、平均胸径和平均树高呈现出了北高南低的特点,不同的是,样地坡顶处雪岭云杉冠幅、胸径、树高要较高于沟壑处。郁闭度空间特征较为不同,样地东部郁闭度较高于样地西部的,且坡顶郁闭度较低。

  • 对雪岭云杉林固定样地0—60 cm的土壤THg和TOC进行pearson相关性分析,结果如图5所示,雪岭云杉林土壤THg与TOC之间有极显著正相关关系(P<0.001),说明雪岭云杉土壤TOC对土壤THg具有显著影响。

    由于郁闭度的Shapiiro-Wilk检验不符合正态性分布(表3),因此对固定样地地表层土THg和郁闭度进行Spearman相关性分析,对固定样地地表层土THg和其他各因子进行Pearson相关性分析,结果如图6所示,表层土THg和TOC之间表现的正相关性是最显著的(P <0.001,R2=0.754),同时表层土和雪岭云杉树高及胸径之间也表现出了极显著正相关性(平均树高P<0.01,R2=0.211;平均胸径P<0.01,R2=0.183),和海拔之间表现出了显著负相关关系(P<0.05,R2=0.137),但和森林郁闭度及雪岭云杉冠幅之间则没有明显相关性。

    进一步对雪岭云杉林土壤THg和与其相关性显著的因子(海拔、雪岭云杉胸径、树高、土壤TOC)利用结构方程模型进行路径分析,并将分析结果标准化后,得到路径分析图(图7)。对每一层土壤THg拟合的R²分别是0.77、0.55、0.40和0.19,这说明随着土壤深度增加,影响因子对土壤总汞的影响在逐渐减小。图中箭头方向表示因果关系,箭头附近数字为标准化系数,标准化系数的大小表明影响程度的大小。土壤THg和各因子路径分析中的标准化系数介于−0.09—0.82。土壤TOC对土壤THg标准化系数要比其他因素的大,表层土壤TOC与表层土壤THg标准化系数最大,随土壤深度加深,土壤TOC与土壤THg标准化系数逐渐减小,分别为0.82、0.62、0.53和0.26。0—40 cm土壤TOC对土壤THg影响极为显著,P值均小于0.001,而第四层土壤TOC对土壤THg影响并不显著,P值为0.077。与相关性研究中显示的结果不同,路径分析结果显示海拔、雪岭云杉胸径和树高对表层土THg的标准化系数很小,仅为−0.09、0.10和−0.04,并且P值分别为0.62、0.59、0.59,说明海拔、雪岭云杉胸径和树高对表层土THg影响并不显著,他们虽然有和土壤THg一样的变化趋势(相关性显著),但并不是导致土壤THg分布差异的原因。由图还可以看出,第一、二层和第三、四层土壤的THg会互相影响,且影响极显著(P<0.01)。

  • 天山雪岭云杉林土壤THg范围是11.42—125.02 ng·g−1,明显低于国内外落叶林土壤THg范围,也略低于国内外针叶林土壤THg(表4),天山雪岭云杉森林土壤THg含量较低可能是天山位处我国西北干旱半干旱区,降水量较少[19],而降水量会直接影响大气汞湿沉降的量[10],所以雪岭云杉森林通过大气湿沉降进入土壤的汞比其他地区森林的少。

    同时天山雪岭云杉森林是以雪岭云杉为单一优势种的常绿针叶林,群落结构简单,其凋落物量要远远低于落叶林凋落物量[20],且西北干旱半干旱区干躁的气候会使雪岭云杉森林凋落物分解的速率比其他地区要小,据研究,雪岭云杉林凋落物年分解率不到30%[21],而凋落物的降解是汞进入森林生态系统土壤的主要途径,因此雪岭云杉林通过凋落物降解进入土壤的汞要低于其他地区森林的,这导致了天山雪岭云杉森林土壤THg低于其他地区森林土壤THg。

  • 土壤THg主要集中在0—20 cm土层,具有显著的水平空间差异,而20 cm以下土层THg较少,且都几乎没有水平上空间差异,因此外界影响因素对土壤THg的影响主要集中在0—20 cm土层。雪岭云杉森林土壤THg随土壤深度增加而减小(表1),通过结构方程模型进行路径分析发现,这种垂直递减分布主要受土壤TOC影响导致的。在路径分析中,土壤TOC对土壤THg标准化系数最大,尤其是土壤THg含量最多的表层土,标准化系数达到0.82,这说明雪岭云杉林土壤TOC是对土壤THg影响最大的因素。通过相关分析可以看出土壤THg与土壤TOC呈极显著正相关关系(R2=0.843,P<0.001),这与Obrist在美国北方森林的研究结果相一致[10],土壤TOC随土壤深度增加而逐渐减小,因此土壤THg也随土壤深度增加而减少。

    尽管降水会造成大气汞湿沉降,但其可能并不是森林土壤汞的主要来源。在我国青藏高原与西南地区雷公山森林系统利用汞同位素研究发现,降雨与温度通过控制凋落物的生物量间接影响土壤汞的累积,美国数十个森林站点的研究表明,降水控制下的植被生物产量是影响森林土壤汞浓度的主要因素,国内很多区域也有大量研究显示凋落物汞沉降远大于湿沉降,因此凋落物汞的沉降才是山地森林土壤汞的主要来源[29-32]。与天山纬度类似的东北长白山地区Hg的干沉降占比为70.6%[33],天山地处干旱半干旱区,降雨量更少,而降雨量会直接影响汞的湿沉降量,因此相较于通过凋落物分解输入天山雪岭云杉森林土壤的Hg,当地湿沉降的Hg并不是主要部分,所以降雨并不是影响雪岭云杉森林土壤汞空间差异的主要因素。天山雪岭云杉林是以雪岭云杉为单优势种,云杉林下土壤呼吸较弱,且雪岭云杉是浅根种植物[34],分解的凋落物只有很少一部分能进入深层土壤,根系也主要集中在土壤表层,因此地表上的枯落物和植物根系分解所形成的有机碳先进入土壤表层,再经表层往下进入更深层次的土壤中,因此土壤TOC随土壤深度增加而减小。同样,凋落物在分解过程中汞也是先进入表层土壤,再由表层土往下进入更深层土壤,不仅如此,凋落物在腐解过程中经微生物作用会产生腐殖酸,腐殖酸对Hg具有较黏土矿物和氧化物高的多的吸附容量[35]。有研究发现,汞的吸收与腐殖酸的络合有很大关系,土壤中有机质是一种很有效的Hg吸附剂,土壤对Hg的吸附量与其腐殖酸的含量成正比[36],所以土壤THg与土壤TOC之间具有非常显著的正相关性(R2=0.843,P<0.001),随着土壤深度增加,由凋落物分解进入土壤的汞逐渐减少,同时土壤TOC也逐渐减小,腐殖酸的含量也就逐渐减少,因此土壤对汞的吸附逐渐降低,这也解释了随土壤深度增加,土壤THg受土壤TOC的影响越来越小,甚至40—60 cm土层土壤TOC不是土壤THg最主要的因素的原因。

    虽然海拔、雪岭云杉胸径、树高与表层土THg的相关性显著,但通过路径分析显示,在多元模型中时,其并不是影响土壤THg的重要因素(P值分别为0.62、0.59、0.59,影响不显著)。主要可能是因为这三个因素是通过影响凋落物量来间接影响土壤THg,导致路径分析中影响程度较差(标准化系数很低),也可能是因为这三个因素虽然与凋落物量有关,但对凋落物量的影响较小,凋落物量更多的受到其他因素的控制,例如地形因素等。海拔、雪岭云杉胸径、树高与表层土THg相关性显著是因为其有同样的变化趋势,因此在两个变量的关系研究中展示出了显著的相关性,但放到整体的研究中,通多路径分析结果可以看出,海拔、雪岭云杉胸径、树高并未与表层土THg变化产生因果关系。通过路径分析得出,除了土壤TOC,邻近层土壤THg也会互相影响,这可能是因为除了干湿沉降进入土壤的汞的由上层渗入下层,还有来自母质层风化的汞由下层进入上层对雪岭云杉土壤汞有所贡献。根据土壤汞的空间分布可以看出,地形是影响雪岭云杉林土壤汞的一个重要因素,沟壑处的土壤THg要高于坡顶处的,这可能是由于降雨及积雪消融形成的地表径流,使山坡上的凋落物在沟壑处形成堆积,因此沟壑处凋落物量要大于山坡上凋落物量,从而间接影响到了土壤THg的分布,这一观点还需进一步的研究和验证。但通过这一现象可以得知,在以后研究森林土壤汞时,既不能只采集坡顶处土壤,也不能只采集沟壑处土壤,否则都会对研究结果造成影响。

    总体而言,天山雪岭云杉森林土壤的THg分布特征最主要是受到土壤TOC的影响,但除此之外还有其他多种因素的综合影响。利用大样地研究森林土壤THg不仅可以分析森林土壤THg含量,探讨其空间分布特征,还有助于揭示影响土壤THg变化的多重因素。以往对森林土壤汞的研究中,尚缺通过观测大样地进行分析和探讨的,这可能会给研究结果造成一定的偏差和局限性。而本研究利用大样地对雪岭云杉森林土壤汞进行空间分布研究,初步了解了天山雪岭云杉森林土壤汞的含量及空间特征,并讨论了其影响因素,可以为将来研究森林土壤汞及样品采集过程提供科学的参考意见。目前研究工作还处于起步阶段,未能完整的探明环境因子对汞的影响,未来可以对天山雪岭云杉土壤汞的储量影响因素分析、汞的迁移转化过程做相应的研究分析,进一步深入了解其内在机制,为将来研究森林生态系统汞的生物地球化学过程提供更合理的依据。

  • (1)天山雪岭云杉森林土壤THg较低,处于国内外其他森林土壤THg范围下限。土壤THg主要集中在0—20 cm土层,且具有明显水平空间分布差异,垂直剖面上土壤THg随土壤深度增加而减小。

    (2)天山雪岭云杉林土壤THg分布受土壤TOC影响最大,受林分结构及植物群落结构特征影响并不显著。

    (3)本文虽然对天山雪岭云杉林土壤THg进行了初步分析,但是其凋落物汞的数据还尚未掌握,后期需要对天山雪岭云杉及林下灌木的枯枝落叶进行汞沉降通量研究。

参考文献 (36)

返回顶部

目录

/

返回文章
返回