-
土壤作为农作物生产的基础和载体,其环境质量的优劣直接影响到农产品安全[1-2]。2014年全国土壤污染状况调查发现:耕地土壤点位超标率为19.4%,无机污染物超标点位数占全部超标点位的82.8%[3]。工业“三废”的排放、农田污水的灌溉等问题致使土壤中重金属含量不断累积,不仅导致农作物产量下降和质量降低,还可通过食物链危害人类健康[4-6]。
近年来,国内外学者对农业区土壤重金属污染含量、来源及风险评价进行大量的研究,Mungai等[7]对东非肯尼亚农田土壤中8种重金属Zn、Pb、Cr、Cu、As、Ni、Hg和Cd进行了研究分析,结果表明,8种重金属均超过美国农业土壤标准值,并分析发现农业土壤中8种重金属的污染源主要来自人为活动和自然风化。李伟迪等[8]以太湖流域土壤背景值为基准,利用单因子指数和内梅罗指数评价农田土壤重金属污染状况,结果表明87.29%样点的土壤重金属呈现轻度污染,5.93%样点呈现中度污染,6.78%样点呈现重度污染;卢鑫等[9]应用UNMIX模型进行了土壤重金属源解析的研究可知,云南省会泽县铅锌矿区农田土壤样品的3个土壤重金属污染来源分别为工业活动造成的人为污染源、燃煤和施肥导致的人为污染源与自然的综合污染源。王小莉等[10]对开封市城乡交错区农田土壤重金属(Cd、Pb、Cu、Ni、Zn和Cr)进行研究,结果表明该区农田土壤Cd和Hg为重度污染,Zn、Pb和Cu为轻度污染,Ni、Cr和As处于无污染状态,其来源主要与人类活动有关。开封市位于河南省中部偏东,黄河冲击平原的东端[11],西瓜是开封市重要的高效经济作物,常年西瓜种植面积保持在4万hm2以上,居全国前列[12]。开封市西瓜种植地土壤的环境质量直接影响着当地居民的食品安全和身体健康,开展以重金属为目标的开封市西瓜种植地土壤环境质量状况调查十分必要。
目前,开封市内土壤重金属的相关研究主要集中在城郊污灌区含量、分布及环境质量的评价[13-14]。然而针对开封市西瓜种植土壤重金属污染情况的调查以及来源分析,鲜有报道。本文采用野外调查和实验分析相结合,利用单因子指数和内梅罗指数评价土壤重金属污染状况。并在评价农田土壤重金属状况的基础上,结合主成分分析,明确开封市西瓜种植地土壤重金属的污染来源对土壤重金属污染情况,为该区土壤重金属污染防治、保障瓜果的食用安全提供科学依据。
开封市西瓜种植地土壤重金属污染及风险评价
Sources of heavy metal pollution and risk assessment of soil in watermelon planting areas in Kaifeng City
-
摘要: 为了解开封市西瓜种植区土壤重金属污染特征,选取范村、西姜寨、杏花营、朱仙镇等4个乡镇西瓜种植区,采用电感耦合等离子体质谱仪(ICP-MS)对种植区土壤样品中Cr、Ni、Cu、Zn、Cd、Pb等6种重金属进行检测分析。结果表明,以河南省A层土壤背景为依据,开封市西瓜地土壤重金属Cr、Ni、Cu、Zn、Cd、Pb均不同程度的超出背景值。6种重金属的变异系数均在10%—100%之间,其中Cr、Ni、Cu、Zn、Cd、Pb分别超出农用地土壤污染风险筛选值17.60%、0.75%、11.24%、13.11%、80.52%和0.75%。依照单因子指数法对各采样区土壤进行评价,西瓜种植区朱仙镇土壤Cr与Zn处于轻微污染,其余采样区无污染;各采样区Ni、Cu和Pb均处于无污染状态;Cd均处于轻微污染状态。内梅罗综合污染指数分析结果表明,西姜寨、杏花营、朱仙镇处于轻度污染状态,范村处于警戒级状态。潜在生态风险评价表明,西瓜种植区土壤Cd存在极强生态风险,其余均有轻微的生态风险,且Cd是构成生态危害的主要风险因子。由相关性以及主成分分析结果可知,pH与Cr、Cu、Ni、Zn、Cd、Pb均在0.01置信度水平下呈显著负相关,开封市西瓜种植地土壤重金属的污染源主要为农业源。Abstract: In order to evaluate the soil heavy mental pollution and health risk of watermelon planting region in Kaifeng, four watermelon planting region including Zhuxianzhen, Fancun, Xijiangzhai and Xinghuaying in Kaifeng city was selected as the study area, and the contents of Cr, Ni, Cu, Zn, Cd and Pb were monitored and analyzed by inductively coupled plasma mass spectrometer (ICP-MS). The results showed that heavy metals of Cr、Ni、Cu、Zn、Cd and Pb were all exceeded the A layer soil background value of Henan Province to a varying degree. The coefficient of variation of the six heavy metals was between 10% and 100%. The over-standard rate of Cr, Ni, Cu, Zn, Cd and Pb in the soil was calculated to be 17.60%, 0.75%, 11.24%, 13.11%, 80.52% and 0.75% respectively, by “soil pollution risk screening value of agricultural land”. According to the single-factor exponential method, the Zhuxianzhen watermelon planting region was slightly polluted by Cr and Zn, the remaining sampling areas had not been polluted. All sampling areas had not been polluted by Ni, Cu and Pb, while slightly polluted by Cd. The analysis results of Nemeruo comprehensive pollution index showed that Xijiangzhai, Xinhuaying and Zhuxianzhen were in a state of light pollution, and Fancun was in a state of alert. Based on the calculation of the potential ecological risk index, it was found that strong ecological harm in the investigated region with Cd as the major pollution factor, and other metals were of slight risk to the environment. From the correlation analysis and principal component analysis, it could be seen that pH was significantly negatively correlated with Cr, Cu, Ni, Zn, Cd and Pb at the level of 0.01 confidence, the pollution sources of heavy metals were mainly agricultural sources in watermelon planting soil in Kaifeng City.
-
表 1 潜在生态风险评价指标分级
Table 1. Classification of potential ecological risk assessment indicators
$ {E}_{r}^{i } $ 单因子生态危害程度
Single factor ecological harm degreeRI 总的潜在生态危害程度
Total potential ecological hazard<40 轻微Slight risk <150 轻微Slight risk 40—80 中等Medium risk 150—300 中等Medium risk 80—160 强Strong risk 300—600 强Strong risk 160—320 很强Very strong risk 600—1200 很强Very strong risk ≥320 极强Extremely strong risk ≥1200 极强Extremely strong risk 表 2 开封市西瓜地土壤重金属描述性统计分析(mg·kg−1)
Table 2. Descriptive statistical analysis of heavy metals in watermelon soil in Xiangfu District, Kaifeng City (mg·kg−1)
采样点Sampling site Cr Ni Cu Zn Cd Pb 西姜寨(pH8.06—9.46) 92.73 42.88 32.94 125.4 0.91 63.62 范村(pH8.54—5.59) 132.5 51.97 41.15 144.7 0.63 59.47 杏花营(pH7.76—9.49) 191.5 71.02 57.40 209.6 1.07 74.90 朱仙镇(pH8.84—9.60) 255.2 99.30 81.81 299.3 1.16 87.74 土壤标准值Soil standard value 250.0 190.0 100.0 300.0 0.60 170.0 土壤背景值Soil background value 62.50 26.10 19.20 58.40 0.07 19.10 平均值The average 181.7 71.00 57.40 209.3 0.97 73.54 最大值The maximum 708.7 280.7 241.4 798.6 4.34 186.6 最小值The minimum value 6.37 3.51 2.36 6.96 0.41 3.81 标准差The standard deviation 110.8 39.58 34.57 118.2 0.48 23.08 变异系数Coefficient of variation/% 60.95 55.74 60.22 56.48 49.87 31.38 超标率Exceeding rate/% 17.60 0.75 11.24 13.11 80.52 0.75 表 3 开封市西瓜地土壤重金属潜在生态风险评价分析
Table 3. Evaluation on Potential Ecological Risk of Heavy Metals in Soil of Watermelon in Xiangfu District, Kaifeng City
采样点Sampling site Cr Cu Zn Cd Pb RI 西姜寨 2.97 8.58 2.15 390.0 16.65 428.6 范村 4.24 10.72 2.48 270.0 15.57 313.0 杏花营 6.13 14.95 3.59 458.6 19.61 516.5 朱仙镇 8.17 21.30 5.13 497.1 22.97 573.7 开封市 5.81 14.95 3.58 415.0 19.25 472.2 表 4 采样区土壤重金属皮尔森相关系数
Table 4. Pearson correlation coefficient of soil heavy metals in sampling area
指标Indicators Cr Ni Cu Zn Cd Pb pH 采样区Sampling area Cr 1 Ni 0.524** 1 Cu 0.640** 0.919** 1 Zn 0.541** 0.883** 0.914** 1 Cd 0.443** 0.422** 0.521** 0.641** 1 Pb 0.279* 0.416** 0.475** 0.528** 0.677** 1 pH −0.257** −0.173 −0.229 −0.146 −0.124 −0.114 1 **在0.01水平(双侧)上显著相关;*在0.05水平(双侧)上显著相关.
**Correlation is significant at the 0.01 level; *Correlation is significant at the 0.05 level.表 5 采样区土壤重金属主成分分析结果
Table 5. Principal component analysis results of heavy metals in sampling area
元素Element 因子载荷Factor loading 西姜寨 范村 杏花营 朱仙镇 PC1(58.44%) PC2(25.74%) PC1(61.13%) PC2(18.90%) PC1(83.50%) PC1(82.61%) Cr 0.82 — 0.71 — 0.89 0.94 Ni 0.97 — 0.88 — 0.96 0.98 Cu 0.98 — 0.91 — 0.95 0.97 Zn 0.94 — 0.91 — 0.98 0.98 Cd — 0.83 0.53 0.74 0.86 0.60 Pb — 0.87 0.68 0.56 0.87 0.93 方差贡献率/% 58.44 25.74 61.13 18.9 83.5 82.61 累积贡献率/% 58.44 84.18 61.13 80.04 83.5 82.61 注:百分数为各因子(各主成分)在总变量中的贡献率;“—”表示该元素在对应的主成分上载荷小于0.4.
Note: the percentage is the contribution rate of each factor (principal component) in the total variable; “--” means that the element's load on the corresponding principal component is less than 0.4. -
[1] 杨新明, 庄涛, 韩磊, 等. 小清河污灌区农田土壤重金属形态分析及风险评价 [J]. 环境化学, 2019, 38(3): 644-652. YANG X M, ZHUANG T, HAN L, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River [J]. Environmental Chemistry, 2019, 38(3): 644-652(in Chinese).
[2] 林海, 靳晓娜, 董颖博, 等. 膨润土对不同类型农田土壤重金属形态及生物有效性的影响 [J]. 环境科学, 2019, 40(2): 945-952. LIN H, JIN X N, DONG Y B, et al. Effects of bentonite on chemical forms and bioavailability of heavy metals in different types of farmland soils [J]. Environmental Science, 2019, 40(2): 945-952(in Chinese).
[3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报 [J]. 中国环保产业, 2014, 36(5): 10-11. Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China [J]. Environmental Protection Industry, 2014, 36(5): 10-11(in Chinese).
[4] 谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤-农作物重金属空间变异特征与健康风险评价 [J]. 农业环境科学学报, 2019, 38(3): 544-554. doi: 10.11654/jaes.2018-1315 XIE T H, GUO J X, CHEN Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining areain Fujian Province, China [J]. Journal of Agro-Environment Science, 2019, 38(3): 544-554(in Chinese). doi: 10.11654/jaes.2018-1315
[5] 张军, 董洁, 梁青芳, 等. 宝鸡市区土壤重金属污染影响因子探测及其源解析 [J]. 环境科学, 2019, 40(8): 3774-3783. ZHANG J, DONG J, LIANG Q F, et al. Heavy metal pollution characteristics and influencing factors in Baoji Arban Soils [J]. Environmental Science, 2019, 40(8): 3774-3783(in Chinese).
[6] 赵慧, 何博, 孟晶, 等. 典型城市化地区蔬菜重金属的累积特征与健康风险研究 [J]. 中国生态农业学报(中英文), 2019, 27(12): 1892-1902. ZHAO H, HE B, MENG J, et al. Accumulation characteristics and health risks of heavy metals in vegetables in typical urbanized areas [J]. Chinese Journal of Eco-Agriculture, 2019, 27(12): 1892-1902(in Chinese).
[7] MUNGAI T M, OWINO A A, MAKOKHA V A, et al. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa [J]. Environmental Science and Pollution Research, 2016, 23(18): 1-9. [8] 李伟迪, 崔云霞, 曾撑撑, 等. 太滆运河流域农田土壤重金属污染特征与来源解析 [J]. 环境科学, 2019, 40(11): 5073-5081. LI W D, CUI Y M, ZENG C C, et al. Pollution characteristics and source analysis of heavy metals in farmland soils in the Taige Canal Valley [J]. Environmental Science, 2019, 40(11): 5073-5081(in Chinese).
[9] 卢鑫, 胡文友, 黄标, 等. 基于UNMIX模型的矿区周边农田土壤重金属源解析 [J]. 环境科学, 2018, 39(3): 1421-1429. LU X, HU W Y, HUANG B, et al. Source apportionment of heavy metals in farmland soils around mining area based on UNMIX Model [J]. Environmental Science, 2018, 39(3): 1421-1429(in Chinese).
[10] 王小莉, 陈志凡, 魏张东, 等. 开封市城乡交错区农田土壤重金属污染及潜在生态风险评价 [J]. 环境化学, 2018, 37(3): 513-522. WANG X L, CHEN Z F, WEI Z D, et al. Heavy metal pollution and potential ecological risk assessment in agricultural soils located in the peri-urban area of Kaifeng City [J]. Environmental Chemistry, 2018, 37(3): 513-522(in Chinese).
[11] 李肃秋, 陈光华. 1987-2016年开封市气候特征分析 [J]. 现代农业科技, 2017(23): 192, 198. LI S Q, CHEN G H. Analysis on climate characteristics of Kaifeng from 1987 to 2016 [J]. Xiandai Nongye Keji, 2017(23): 192, 198(in Chinese).
[12] 张存松, 吴占清, 张先亮, 等. 推进农业供给侧结构性改革下看开封西瓜产业如何发展 [J]. 农业科技通讯, 2019(4): 47-49. ZHANG C X, WU Z Q, ZHANG X L, et al. How to promote the agricultural supply-side structural reform to see the development of the watermelon industry in Kaifeng [J]. Communications on Agricultural Science and Technology, 2019(4): 47-49(in Chinese).
[13] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价 [J]. 环境科学, 2016, 36(3): 1037-1043. LI Y M, MA J H, LIU D X, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China [J]. Environmental Science, 2016, 36(3): 1037-1043(in Chinese).
[14] 马建华, 马诗院, 陈云增. 河南某污灌区土壤-作物-人发系统重金属迁移与积累 [J]. 环境科学学报, 2014, 34(6): 1517-1526. MA J H, MA S Y, CHEN Y Z. Migration and accumulation of heavy metals in soil-crop-hair system in a sewage irrigation area, Henan, China [J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1517-1526(in Chinese).
[15] 姜玉玲, 阮心玲, 杨玲, 等. 开封市城市土壤剖面Hg、As和Sb分布特征分析 [J]. 环境化学, 2017, 36(5): 1036-1046. JIANG Y L, RUAN X L, YANG L, et al. Distribution of Hg, As and Sb concentrations in urban soil profiles of Kaifeng City, Henan Province [J]. Environmental Chemistry, 2017, 36(5): 1036-1046(in Chinese).
[16] 张东明, 吕新, 王海江, 等. 工业区周边农田重金属污染评价及来源分析 [J]. 土壤通报, 2017, 48(3): 715-723. ZHANG D M, LV Xin, WANG Hai Jiang, et al. Heavy metal pollution assessment and source analysis on farmland soil around an industrial area [J]. Soil notification, 2017, 48(3): 715-723(in Chinese).
[17] 吴健, 王敏, 张辉鹏, 等. 复垦工业场地土壤和周边河道沉积物重金属污染及潜在生态风险 [J]. 环境科学, 2018, 39(12): 5620-5627. WU J, WANG M, ZHANG H P, et al. Heavy metal pollution and potential ecological risk of soil from reclaimed industrial sites and surrounding river sediments [J]. Environmental Science, 2018, 39(12): 5620-5627(in Chinese).
[18] 王春光, 刘军省, 殷显阳, 等. 基于IDW的铜陵地区土壤重金属空间分析及污染评价 [J]. 安全与环境学报, 2018, 18(5): 1989-1996. WANG C G, LIU J S, YIN X Y, et al. Spatial analysis and pollution assessment of heavy metals in the soils of Tongling urban area based on IDW [J]. Journal of Safety and Environment, 2018, 18(5): 1989-1996(in Chinese).
[19] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [20] 邵丰收, 周皓韵. 河南省主要元素的土壤环境背景值 [J]. 河南农业, 1998(10): 28. SHAO F S, ZHOU H Y. The background value of soil environment of main elements in Henan Province [J]. Henan Agriculture, 1998(10): 28(in Chinese).
[21] 马牧源, 于一雷, 郭嘉, 等. 襄阳入江中小河流表层沉积物重金属污染特征及其潜在的生态风险评价 [J]. 环境科学学报, 2019, 39(9): 3144-3153. MA M Y, YU Y L, GUO J, et al. Heavy metal pollution characteristics and potential ecological risk assessment of surface sediments in the middle and small rivers of the Yangtze River in the Yangtze River [J]. Journal of Environmental Science, 2019, 39(9): 3144-3153(in Chinese).
[22] 何博, 赵慧, 王铁宇, 等. 典型城市化区域土壤重金属污染的空间特征与风险评价 [J]. 环境科学, 2019(6): 1-11. HE B, ZHAO H, WANG T Y, et al. Spatial characteristics and risk assessment of heavy metal pollution in typical urbanized areas [J]. Environmental Science, 2019(6): 1-11(in Chinese).
[23] 王洪涛, 张俊华, 丁少峰, 等. 开封城市河流表层沉积物重金属分布、污染来源及风险评估 [J]. 环境科学学报, 2016, 36(12): 4520-4530. WANG H T, ZHANG J H, DING S F, et al. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng [J]. Journal of Environmental Science, 2016, 36(12): 4520-4530(in Chinese).
[24] 郭欣, 姚苹, 杜焰玲, 等. 典型土地利用方式下土壤重金属污染物分布特征与源解析——以成都平原干溪河流域为例 [J]. 环境工程, 2019, 37(1): 1-5. GUO X, YAO P, DU Y L, et al. Distribution characteristics and source apportionment of heavy metals in soils under typical land use patterns— A case study on the ganxi river basin of Chengdu plain [J]. Environmental Engineering, 2019, 37(1): 1-5(in Chinese).
[25] MA J H, LI J, SONG B. Contamination and spatial distribution of heavy metals in the soils ofdifferentoperating sectionsa long the Zhengzhou-K aifeng highway [J]. Acta Scientiae Circumstantiae, 2007, 27(10): 1734-1743. [26] 白一茹, 张兴, 赵云鹏, 等. 基于GIS和受体模型的枸杞地土壤重金属空间分布特征及来源解析 [J]. 环境科学, 2019, 40(6): 2885-2894. BAI Y R, ZHANG X, ZHAO Y P, et al. Spatial distributioncharacteristics and source apportionment of soil heavy metals in Chinese wolfberry land based on GIS and the receptor model [J]. Environmental Science, 2019, 40(6): 2885-2894(in Chinese).
[27] 陈枭嘉, 邹广彬, 王昭君, 等. 沼气发酵等对长江下游典型规模化畜牧养殖业污染排放特征的影响 [J]. 江苏农业学报, 2019, 35(2): 329-339. doi: 10.3969/j.issn.1000-4440.2019.02.013 CHEN X J, ZOU G B, WANG Z J, et al. Effects of biogas fermentation on the pollutant emission characteristics of large-scale livestock breeding in the lower reaches of Yangtze River [J]. Acta agriculturae Jiangsu, 2019, 35(2): 329-339(in Chinese). doi: 10.3969/j.issn.1000-4440.2019.02.013
[28] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价 [J]. 环境科学, 2018, 39(6): 2884-2892. ZHOU Y, CHEN Q, DENG S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn Mine in Southwestern China [J]. Environmental Science, 2018, 39(6): 2884-2892(in Chinese).
[29] BRESSI M, SCIARE J, GHERSI V, et al. Sources and geographical origins of fine aerosols in Paris (France) [J]. Atmospheric Chemistry and Physics, 2014, 14(16): 8813-8839. doi: 10.5194/acp-14-8813-2014 [30] JIANG Y X, CHAO S H, LIU Y Y, et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China [J]. Chemosphere, 2017, 168: 1658-1668. doi: 10.1016/j.chemosphere.2016.11.088 [31] 张璐, 聂建欣, 赵著燕, 等. 典型地膜残留地区土壤重金属残留测定及其健康风险评价 [J]. 有色金属材料与工程, 2017, 38(1): 35-39. ZHANG L, NIE J X, ZHAO Z Y, et al. Field survey on the heavy metal concentration and health risk assessment in the soil with plastic residue [J]. Non-Ferrous Metal Materials And Engineering, 2017, 38(1): 35-39(in Chinese).