天山雪岭云杉林地土壤汞的分布特征及影响因素

李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
引用本文: 李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
Citation: LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801

天山雪岭云杉林地土壤汞的分布特征及影响因素

    通讯作者: Tel:13139621233,E-mail:ecocsl@163.com
  • 基金项目:
    国家自然科学基金(U1503187)资助

Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest

    Corresponding author: CHANG Shunli, ecocsl@163.com
  • Fund Project: the National Natural Science Foundation of China (U1503187)
  • 摘要: 土壤汞的空间分布及其影响因素是研究森林系统汞循环的基础与关键。为了了解天山雪岭云杉林地土壤汞的分布特征及影响因素,以天山雪岭云杉8 hm2林地动态监测样地为研究对象,分析了总汞在土壤剖面及空间上的分布特征,并利用路径分析探究了土壤总汞与土壤有机碳、海拔高度、郁闭度等的关系。研究表明,天山雪岭云杉林0—60 cm土壤总汞均值为(35.43±24.53) ng·g−1,主要集中在0—20 cm土层;样地内土壤总汞随土壤深度增加而降低,0—20 cm土壤总汞水平空间差异显著,表现出北高南低,沟壑高坡顶低的特点;土壤中有机碳与总汞相关最显著,海拔、郁闭度和雪岭云杉胸径、树高、冠幅等因素对土壤总汞空间分布影响并不显著,说明雪岭云杉林土壤总汞空间分布主要由有机碳决定。本研究可为天山森林土壤汞储量的研究提供数据参考,同时为更深入了解天山雪岭云杉森林汞的生物地球化学循环过程提供必要的基础。
  • 近年来,药物和个人护理品(pharmaceutical and personal care products,PPCPs)在地下水、地表水和饮用水中被广泛检出,引起研究者们关注。双氯芬酸钠(diclofenac sodium,DCF)是一种典型的PPCPs,作为一种消炎止痛类药物已被广泛使用,因其具有难生物降解和生物积累性的特点,故给生态环境和人类健康带来极大的威胁。常规的处理技术无法有效地去除DCF,传统的生物处理技术对DCF的去除率只能达到30%左右[1]。因此,亟需寻找一种新型有效的处理方法去除水中的DCF。

    近年来,基于硫酸根自由基(SO4)的高级氧化技术受到研究者们的广泛关注[2-3]。与·OH相比,SO4具有氧化还原电位高、pH适用范围广及半衰期长等优点,有利于污染物的降解。过硫酸盐(persulfate,PS)可在紫外光、热、碱、过渡金属离子(Mn2+)和零价铁等活化下产生SO4。然而,不同的方法具有各自的优点和缺点,如:热活化不产生二次污染,但在使用过程中会消耗很多能量;过渡金属离子可以在室温下活化PS,但是易受溶液pH影响而产生沉淀。零价铁可以在室温下活化PS产生SO4,其主要反应如式(1)和式(2)所示。

    Fe0+S2O28Fe2++2SO4 (1)
    Fe2++S2O28Fe3++SO4+SO24 (2)

    零价铁的化学性质活泼,在制备和存储的过程中与氧气接触,会形成氧化膜覆盖在零价铁表面,从而影响其在反应过程中的活性。为了解决零价铁钝化问题,研究者们提出了一些改进方法,如利用纳米零价铁[4]、酸洗[5]、制备零价铁双金属[6]和氢气还原等[7]。这些方法可以在一定程度上改善零价铁去除污染物的活性,但是在实际应用方便仍然会存在一定的问题,如增加使用的成本、操作复杂等。有关磁场效应影响零价铁去除污染物的研究是近几年来新兴的研究方向,受到了研究者的广泛关注。KIM等[8]研究发现,在零价铁降解4-氯酚的过程中加入磁场时,可以提高4-氯酚的去除效率。研究者认为磁场可以加速零价铁的腐蚀作用,并促进氧气扩散到零价铁的表面,使其相互作用生成·OH降解污染物。一些研究对磁场强化零价铁降解污染物进行了一系列的探讨,证明了在不同的反应体系中,磁场均可以促进零价铁的腐蚀和Fe2+的溶出,可以不同程度地提高污染物的降解速率[9-13]。综上所述,磁场可以明显改善零价铁的反应活性,且操作简单、成本低、无二次污染。因此,将磁场与其他污染物处理技术相结合具有非常广泛的应用前景。由于零价铁是铁磁性物质,在磁场中磁化后离开磁场仍能保持剩磁,具有“磁记忆性”。因此,本研究利用零价铁的磁记效应来提高其反应活性,以DCF为模型污染物,采用预磁化零价铁活化PS体系对DCF进行降解,考察了零价铁投加量、PS投加量、pH等因素对DCF降解的影响,并探讨了DCF的降解机理,为DCF实际废水的降解提供了科学依据。

    过硫酸盐(K2S2O8,PS)、氢氧化钠(NaOH)、硫酸(H2SO4)购于天津科密欧试剂有限公司;盐酸羟胺(NH2OH·HCl)、邻菲啰啉(C12H8N2.H2O)购于天津博迪化工有限公司;双氯芬酸钠(C14H10Cl2NNaO2)购于北京百灵威科技有限公司;甲醇(CH3OH)、5,5-二甲基-1-吡咯啉-氮-氧化物(DMPO)均为色谱纯并购于上海阿拉丁生化科技股份有限公司,实验用水为超纯水。

    BS124S电子天平(赛多利斯科学仪器有限公司);PHS-3C型pH计(上海仪电科学仪器股份有限公司);VI-1501可见分光光度计(天津港东科技发展有限公司);D2004W搅拌器(上海司乐仪器有限公司);DH101-3BS型电热鼓风干燥箱(天津中环实验电炉有限公司);EMX-6/1电子自旋共振波谱仪(德国Bruker公司);FL2200液相色谱仪(浙江福立分析仪器有限公司)。

    实验采用1 000 mL的烧杯为反应器,以2片圆形钕-铁-硼永久磁铁提供磁场,用特斯拉计测定并调整所需磁场强度。将零价铁置于磁场中磁化2 min,磁化过程中以机械搅拌器搅拌使零价铁均匀悬浮于烧杯中。磁化后,将调节好pH的DCF溶液加入反应器中,然后加入一定量的PS开始计时,每隔一定的时间取样,最后加入叔丁醇终止反应,过0.22 μm滤膜后待测。同时,在其他条件相同的情况下,以非磁化零价铁作对照组。实验在常温常压下进行。

    DCF采用液相色谱法测定,流动相为甲醇∶水=75∶25(体积比),流速为1 mL·min−1,检测波长为278 nm,柱温为40 ℃,进样量为10 μL;铁离子浓度采用邻菲啰啉分光光度法测定;pH采用玻璃电极法测定;利用电子自选共振波谱法(electron spin resonance,ESR)测定体系中自由基产生情况。

    DCF的去除率计算方法如式(3)所示。

    R=(C0Ct)/C0×100% (3)

    DCF氧化分解的反应符合动力学一级反应的特征,拟一级动力学方程如式(4)所示。

    ln(Ct/C0)=kt (4)

    式中:R为DCF的去除率;C0为DCF的初始浓度,mg·L–1Ctt时间的DCF浓度,mg·L–1k为DCF降解的一级动力学速率常数,min−1

    实验对比了DCF在PS、零价铁、预磁化零价铁、Fe0/PS和Pre-Fe0/PS几种体系中的去除效果,结果如图1所示。在零价铁体系中,反应60 min仅有6.8%的DCF被去除;Pre-Fe0体系在60 min内可以去除9.8%的DCF;在PS体系中,反应60 min,DCF的去除率为29.3%。这3种体系对DCF去除率较低的原因是零价铁和预磁化零价铁在溶液中无法参与反应,对DCF有较低的去除可能是由于吸附作用,预磁化零价铁比表面积有所增加[14],对DCF的吸附作用比零价铁稍强。而PS体系中尽管其氧化还原电位较高[15],但仍无法有效降解DCF。当向零价铁体系中加入PS时,DCF的降解率可在60 min达到99%,说明零价铁可以有效活化PS氧化降解DCF。值得注意的是,Pre-Fe0/PS体系中,反应5 min时,DCF的降解率可达99.7%。前期研究[14]表明,预磁化可以加速体系中Fe2+溶出,因此,预磁化零价铁可以更快的催化PS产生更多的SO4,使污染物更快降解。

    图 1  不同体系对DCF去除率的影响
    Figure 1.  Removal efficiency of diclofenac sodium by different system

    体系中PS的浓度决定了产生SO4的量,进而影响DCF的降解率。为了研究不同PS投加量对DCF的降解,实验考察了PS浓度分别为0.125、0.25、0.5、1.0 mmol·L−1时,Pre-Fe0/PS和Fe0/PS体系对DCF的降解情况,结果如图2所示。由图2可知,随着PS浓度的增加,2种体系对DCF的去除率都呈升高趋势,Pre-Fe0/PS体系对DCF的去除率和去除速率均大于Fe0/PS体系。当PS投加量为0.125、0.25、0.5和1.0 mmol·L−1时,在反应30 min后,Fe0/PS体系对DCF的去除率分别为58.5%、70.2%、75.8%和96.8%;在Pre-Fe0/PS体系中,PS投加量为0.125 mmol·L−1和0.25 mmol·L−1时,反应30 min后,DCF的去除率为81.9%和98.1%;当PS的投加量为0.5 mmol·L−1时,反应进行10 min时,DCF的去除率可达98.2%,继续增加PS的量为1.0 mmol·L−1时,Pre-Fe0/PS体系对DCF的去除率在5 min达99.3%。这是因为随着PS的量增加,会有更多的SO4产生,故2种体系中DCF的去除速率均会升高。在Pre-Fe0/PS体系中,由于零价铁的腐蚀速率加快,会促进PS的分解加速产生SO4,进而使DCF的降解速率更快。利用拟一级动力学反应方程对2种体系在不同PS投加量时的实验结果进行拟合。当PS投加量由0.125 mmol·L−1增加到1.0 mmol·L−1时,Fe0/PS体系降解DCF的反应速率常数由0.029 min−1增加到0.152 min−1,在实验条件范围内,任一浓度过硫酸钾条件下,Pre-Fe0/PS体系降解DCF的反应速率常数均高于Fe0/PS体系,可从0.063 min−1提高到0.898 min−1

    图 2  过硫酸盐投加量对DCF降解过程的影响
    Figure 2.  Influence of dosage of PS on DCF degradation

    零价铁在反应过程中释放的铁离子对SO4的产生起着非常重要的作用[16],因此,零价铁的浓度对污染物的降解有较大影响。为了研究不同零价铁投加量对DCF去除过程的影响,实验选取了0.125、0.25、0.5、1.0 mol·L−1零价铁投加量,在DCF初始浓度为20 mg·L−1,初始pH为7,PS投加量为0.5 mol·L−1时,同浓度的零价铁体系中DCF的反应速率如图3所示。可以看出,随着零价铁投加量的增加,2种体系对DCF的去除率有很大提升,且在相同零价铁投加量时,Pre-Fe0/PS体系的去除速率远大于化Fe0/PS体系。当零价铁投加量为0.125 mmol·L−1时,反应60 min后,Fe0/PS体系对DCF的去除率分别为80%;当零价铁投加量为1.0 mmol·L−1时,DCF在30 min的去除率可以达到99%。其原因是因为随着零价铁投加量的增加,体系中能产生更多的铁离子,进而活化PS产生SO4,最终加速DCF的去除。而Pre-Fe0/PS体系中零价铁投加量为0.125 mmol·L−1时,反应20 min时,对DCF的去除率为83.3%;随着零价铁投加量的增加,Pre-Fe0/PS体系对DCF的去除速率迅速增加,当零价铁投加量为0.25 mmol·L−1时,反应20 min后DCF的降解率接近100%。原因可能是因为在Pre-Fe0/PS体系中零价铁腐蚀速率较快,当零价铁为0.25 mmol·L−1时,溶出的铁离子能够在短时间内将体系中DCF完全去除,当零价铁的投加量继续增大时,对Pre-Fe0/PS体系的影响较小。2种体系的反应速率常数如图3(c)所示。2种体系对DCF降解的表观速率常数随零价铁投加量的增加而升高,在Pre-Fe0/PS体系中,反应速率常数由0.132 min−1增大到0.719 min−1;Fe0/PS体系由0.034 min−1增加到0.209 min−1

    图 3  零价铁投加量对DCF降解过程的影响
    Figure 3.  Influence of dosage of Fe0 on DCF degradation

    为了更好地表明零价铁投加量在Pre-Fe0/PS体系中对DCF去除率的影响,本研究增加了DCF浓度(40 mg·L−1),结果如图4所示。由图4可知,当零价铁浓度由0.125 mmol·L−1增加到0.5 mmol·L−1时,DCF的去除率随着零价铁投加量的增加而升高;当零价铁浓度继续增加,DCF去除率基本不变,这是因为当零价铁投加量过大时,体系中产生过多的铁离子会与SO4发生反应[17]

    图 4  零价铁投加量对Pre-Fe0/PS体系降解DCF的影响
    Figure 4.  Influence of dosage of Fe0 on DCF degradation by Pre-Fe0/PS process

    实验考察了当DCF初始浓度为20 mg·L−1,零价铁投加量为0.5 mmol·L−1,PS投加量为0.5 mmol·L−1,初始pH分别为3,5,7,9和10时DCF的降解效果,结果如图5所示。由图5可知,在Fe0/PS体系中,在初始pH为3~10时,DCF的去除率随初始pH值的升高而下降,特别是初始pH为10时下降尤为明显。当初始pH为3,反应20 min时,DCF的去除率为99%;初始pH为10时,DCF在60 min的去除率为50%左右。在Pre-Fe0/PS体系中,当初始pH为3、反应15 min时,对DCF的去除率可达100%;初始pH为10时,DCF在60 min时的降解率可达90.4%。

    图 5  初始pH对DCF降解过程的影响
    Figure 5.  Influence of initial pH on DCF degradation

    与Fe0/PS体系相比,在相同的pH下,Pre-Fe0/PS体系中DCF的去除率均有较大的提升,特别是在pH较低时,2种体系中DCF的降解较快。分析其原因可能是:零价铁在储存和运输过程中被氧化形成一层钝化膜覆盖其表面,当反应体系pH较低时,零价铁表面的氧化膜更容易被溶解[18]。因此,零价铁在体系pH较低时的腐蚀速率和反应活性较高,在反应过程中会产生更多的氢参与加成反应[19]。由图5(b)可知,随着体系初始pH的升高,Fe0/PS体系对DCF的去除率急剧下降;而Pre-Fe0/PS体系对DCF的去除率仍能保持在较高的水平,当pH为10时,对DCF的降解率在60 min时仍可达到90.4%,是Fe0/PS体系的2倍左右。

    图5(c)可知,2种体系的反应速率常数随初始pH的升高而迅速减小,Pre-Fe0/PS体系的反应速率常数是Fe0/PS体系的2.1~6.2倍,Pre-Fe0/PS体系对反应速率常数提升的倍数并没有因初始pH的升高而下降,其原因为当体系的初始pH较高时,零价铁在参与反应时会形成铁氧化物或铁氢氧化物钝化膜覆盖其表面阻止反应的进行。然而,目前有研究显示,预磁化可以加速零价铁的腐蚀,阻止钝化膜的形成[20],从而提高DCF的降解。因此,Pre-Fe0可以在一定程度上使该体系pH适用范围增大,减少其在应用过程中pH调节剂的使用,降低污染物的降解成本。

    1)铁离子的产生。在Fe0/PS体系中,零价铁可以与体系中的氧气、水和H+反应生成Fe2+,活化PS生成SO4,而本身被氧化为Fe3+,为了研究体系中零价铁、Fe2+和Fe3+的作用,实验测定了在近中性条件下,体系中亚铁离子和铁离子的变化。2种体系的反应过程中都没有测出Fe2+(测定方法的最低检测限为0.03 mg·L−1),这一现象与XIONG等[21]的研究结果吻合,即Fe2+的溶出是反应活化PS的限速步骤。实验研究了当DCF初始浓度为20 mg·L−1,零价铁投加量为0.5 mmol·L−1,PS投加量为0.5 mmol·L−1,自然初始pH下,体系中铁离子浓度和pH变化情况。

    图6为2种反应体系中总铁离子浓度的变化。由图6可见,Pre-Fe0/PS体系在反应过程中铁离子浓度高于Fe0/PS体系,说明在Pre-Fe0/PS体系中铁离子的快速溶出导致了DCF的降解效率的升高。此外,我们还测定了反应过程中体系pH的变化,随着反应的进行,2种体系的pH都呈降低的趋势。其原因可能是在反应过程中生成的Fe3+会发生水解作用产生H+(式(5)),另外,在部分SO4转化为·OH(式(6))的过程中也会产生H+,从而使体系pH下降。由于Pre-Fe0/PS体系中能产生更多的的Fe3+SO4,因此,Pre-Fe0/PS体系中的pH下降较Fe0/PS体系更为明显。

    图 6  反应过程中2种体系中铁离子浓度和pH变化
    Figure 6.  Changes of total iron concentration and pH in Fe0/PS and pre-Fe0/PS process.
    Fe3++xH2OFe(OH)3xx+xH+ (5)
    SO4+xH2OOH+H++SO24 (6)

    2)自由基的产生。自由基是降解污染物重要的活性物质,其在体系中的产生量决定了污染物的降解率。电子自旋共振波谱法(ESR)是测定短寿命自由基非常有效的手段,其信号可以半定量地反映自由基的产生量。由于自由基的寿命非常短暂,在水溶液中存在的时间小于10−4 s[22],实验过程中以5,5-二甲基-1-吡咯啉-氮-氧化物(DMPO)为捕获剂,生成寿命较长的自旋加合物进行测定。由图7可知,2种体系中均出现了DMPO-SO4和DMPO-OH加合物的典型特征峰[23]。对比图7(a)图7(b)可以看出,当反应条件相同时,Pre-Fe0/PS体系在任一取样时间点的加合物对应的峰高均大于Fe0/PS体系,即产生的SO4和·OH量比Fe0/PS体系中多。由图7还可以看出,Pre-Fe0/PS体系在2 min时产生的SO4和·OH比Fe0/PS体系在5 min时产生的量还要多,而且能在相当长的时间内保持较高的浓度水平,当取样时间为5 min时,DMPO-SO4和DMPO-OH加合物的信号峰仍然很强。然而,Fe0/PS体系中SO4和·OH产生速度相对较慢,DMPO-SO4和DMPO-OH加合物的信号峰衰减较快。这一结果解释了Pre-Fe0/PS体系对DCF的去除率大于Fe0/PS体系的原因。

    图 7  2体系反应过程中SO4和·OH的变化
    Figure 7.  Changes of SO4 and ·OH in two systems

    1)预磁化后的零价铁能够显著提升其对PS活化作用,进而提高其降解DCF的能力。

    2) PS浓度、零价铁投加量及初始pH对Pre-Fe0/PS和Fe0/PS体系降解DCF均有较大影响。其中,在零价铁投加量为0.125~1.0 mmol·L−1、PS浓度为0.125~1.0 mmol·L−1条件中,反应速率常数均呈升高趋势,而DCF可在Fe0为 0.5 mmol·L−1,PS为0.5 mmol·L−1条件下几乎被完全去除;2种体系的反应速率常数随初始pH的升高而迅速减小,Pre-Fe0/PS体系的反应速率常数是Fe0/PS体系的2.1~6.2倍,在pH为6~8的条件下有利于反应进行。

    3) Pre-Fe0/PS体系中铁离子溶出和pH下降趋势均比Fe0/PS体系快。

    4) ESR结果表明,2种体系中都会产生SO4和·OH,且其对污染物的降解起主要作用,预磁化可以加速SO4和·OH的产生,并能使其在较长的时间保持较高的浓度水平。

  • 图 1  天山雪岭云杉固定样地研究区概况图

    Figure 1.  Overview of the study area of fixed Picea Schrenkiana sample plot in Tianshan

    图 2  8 hm2固定样地不同深度土壤THg空间分布

    Figure 2.  Spatial distribution of soil THg in different depths of 8 hm2 fixed sample plot

    图 3  8 hm2固定样地不同深度土壤TOC空间分布

    Figure 3.  Spatial distribution of soil TOC in different depths of 8 hm2 fixed sample plot

    图 4  雪岭云杉林固定样地冠幅、郁闭度、胸径、树高空间分布

    Figure 4.  Spatial distribution of crown, canopy density, DBH and tree height of Picea Schrenkiana forest

    图 5  雪岭云杉林固定样地土壤THg与TOC相关性图

    Figure 5.  Correlation between THg and TOC of soil in fixed sample plot of Picea Schrenkiana forest

    图 6  雪岭云杉林0-10 cm土壤THg随各影响因子变化图

    Figure 6.  THg of 0—10 cm soil in Picea Schrenkiana forest changes with various influencing factors

    图 7  雪岭云杉林土壤THg与各因子路径分析图

    Figure 7.  Path analysis of soil THg and various factors of Picea Schrenkiana forest

    表 1  8 hm2固定样地不同深度土壤THg变化

    Table 1.  Change of soil THg in different depth of 8 hm2 fixed sample plot

    深度/cmDepth范围/(ng·g−1)Range均值/(ng·g−1)AVG中值/(ng·g−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1022.40—125.0267.83a67.47−0.920.130.164>0.0528.27
    10—2016.78—68.7330.75b28.692.691.310.002<0.0510.40
    20—4011.42—48.2922.37c21.458.101.880.00<0.055.85
    40—6013.48—31.3320.78c20.71−0.110.290.734>0.053.99
      不同小写字母代表THg在不同土层差异显著(P<0.05);相同小写字母代表THg在不同土层差异不显著(P>0.05)。
    深度/cmDepth范围/(ng·g−1)Range均值/(ng·g−1)AVG中值/(ng·g−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1022.40—125.0267.83a67.47−0.920.130.164>0.0528.27
    10—2016.78—68.7330.75b28.692.691.310.002<0.0510.40
    20—4011.42—48.2922.37c21.458.101.880.00<0.055.85
    40—6013.48—31.3320.78c20.71−0.110.290.734>0.053.99
      不同小写字母代表THg在不同土层差异显著(P<0.05);相同小写字母代表THg在不同土层差异不显著(P>0.05)。
    下载: 导出CSV

    表 2  8 hm2固定样地不同深度土壤TOC变化

    Table 2.  Change of soil TOC in different depth of 8 hm2 fixed sample plot

    深度/cmDepth范围/(g·kg−1)Range均值/(g·kg−1)AVG中值/(g·kg−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1025.84—251.77112.36a106.270.310.460.401>0.0548.06
    10—2016.18—146.4056.01b48.831.641.230.001<0.0526.92
    20—403.62—41.3319.80c17.90−0.550.300.334>0.059.95
    40—602.11—35.6216.25c16.99−0.280.330.272>0.058.70
    不同小写字母代表TOC在不同土层差异显著(P<0.05);相同小写字母代表TOC在不同土层差异不显著(P>0.05)。
    深度/cmDepth范围/(g·kg−1)Range均值/(g·kg−1)AVG中值/(g·kg−1)MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    0—1025.84—251.77112.36a106.270.310.460.401>0.0548.06
    10—2016.18—146.4056.01b48.831.641.230.001<0.0526.92
    20—403.62—41.3319.80c17.90−0.550.300.334>0.059.95
    40—602.11—35.6216.25c16.99−0.280.330.272>0.058.70
    不同小写字母代表TOC在不同土层差异显著(P<0.05);相同小写字母代表TOC在不同土层差异不显著(P>0.05)。
    下载: 导出CSV

    表 3  雪岭云杉林固定样地平均冠幅、胸径、树高及郁闭度数据

    Table 3.  Data of average crown, DBH, tree height and canopy density of Picea Schrenkiana forest

    类型Type范围Range均值AVG中值MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    平均冠幅/cmAverage crown width2.41—5.583.703.560.490.800.065>0.050.72
    郁闭度Canopy density0.4—0.90.700.725−0.97−0.420.005<0.050.16
    平均胸径/cmMean DBH5.58—31.2617.4116.00−0.030.290.697>0.055.64
    平均树高/mAverage tree height3.96—20.3413.5913.69−0.630.650.158>0.053.43
    类型Type范围Range均值AVG中值MED峰度Kurtosis偏度SkewnessW检验/P值Shapiro-Wilk标准偏差SD
    平均冠幅/cmAverage crown width2.41—5.583.703.560.490.800.065>0.050.72
    郁闭度Canopy density0.4—0.90.700.725−0.97−0.420.005<0.050.16
    平均胸径/cmMean DBH5.58—31.2617.4116.00−0.030.290.697>0.055.64
    平均树高/mAverage tree height3.96—20.3413.5913.69−0.630.650.158>0.053.43
    下载: 导出CSV

    表 4  本研究土壤THg与国内外其他地区森林土壤THg比较

    Table 4.  Comparison of soil THg between in this study and other areas at home and abroad

    地点Site森林类型Forest typesTHg范围/(ng·g−1 )THg Range
    西北欧Galicia森林[22]落叶林、针叶林25.20—305.00
    挪威Langtjern森林[23]针叶林37.00—172.00
    美国Whiteface Mountain[24]针叶林69.00—416.00
    中国东北长白山[25]混交林70.00—730.00
    加拿大旱地北方森林Albert国家公园[26]针叶林84.00—318.00
    中国天山雪岭云杉林针叶林11.42—125.02
    中国青藏高原地区[27]针叶林27.00—187.00
    中国西南地区铁山坪森林[28]针叶林63.00—187.00
    地点Site森林类型Forest typesTHg范围/(ng·g−1 )THg Range
    西北欧Galicia森林[22]落叶林、针叶林25.20—305.00
    挪威Langtjern森林[23]针叶林37.00—172.00
    美国Whiteface Mountain[24]针叶林69.00—416.00
    中国东北长白山[25]混交林70.00—730.00
    加拿大旱地北方森林Albert国家公园[26]针叶林84.00—318.00
    中国天山雪岭云杉林针叶林11.42—125.02
    中国青藏高原地区[27]针叶林27.00—187.00
    中国西南地区铁山坪森林[28]针叶林63.00—187.00
    下载: 导出CSV
  • [1] LINDQVIST O, JOHANSSON K, BRINGMARK L, et al. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods [J]. Water, Air, and Soil Pollution, 1991, 55(1-2): 1-261.
    [2] 王训, 袁巍; 冯新斌. 森林生态系统汞的生物地球化学过程 [J]. 化学进展, 2017, 29(9): 970-980. doi: 10.7536/PC170343

    WANG X, YUAN W, FENG X B. Global review of mercury biogeochemical processes in forest ecosystems [J]. Progress in Chemistry, 2017, 29(9): 970-980(in Chinese). doi: 10.7536/PC170343

    [3] SCHROEDER W H, ANLAUF K, BARRIE L, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530
    [4] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 [J]. Forest Ecology and Management, 2015, 352: 9-20. doi: 10.1016/j.foreco.2015.06.014
    [5] ZHANG L, WRIGHT L P; BLANCHARD P. A review of current knowledge concerning dry deposition of atmospheric mercury [J]. Atmospheric Environment, 2009, 43(37): 5853-5864. doi: 10.1016/j.atmosenv.2009.08.019
    [6] SMITH‐DOWNEY N V, SUNDERLAND E M, JACOB D J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model [J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3): 227-235.
    [7] ERICKSEN J, GUSTIN M, SCHORRAN D, et al. Accumulation of atmospheric mercury in forest foliage [J]. Atmospheric Environment, 2003, 37(12): 1613-1622. doi: 10.1016/S1352-2310(03)00008-6
    [8] FIORENTINO J C, ENZWEILER J, ANGELICA R S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: evidence of external input [J]. Water, Air, & Soil Pollution, 2011, 221(1-4): 63-75.
    [9] ZHENG W, LIANG L, GU B. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments [J]. Environmental Science & Technology, 2011, 46(1): 292-299.
    [10] 李翾然, 常顺利, 张毓涛. 天山雪岭云杉林粗木质残体储量特征 [J]. 生态学报, 2019, 39(10): 3730-3739.

    LI X R, CHANG S L, ZHANG Y T. Attributes of coarse woody debris in Picea schrenkiana forests of Tianshan Moutains [J]. Acta Ecologica Sinica, 2019, 39(10): 3730-3739(in Chinese).

    [11] 张毓涛, 常顺利, 芦建江, 等. 天山云杉森林8hm~2样地的建立及三维可视化管理 [J]. 林业科学, 2011, 47(10): 179-183. doi: 10.11707/j.1001-7488.20111028

    ZHANG Y T, CHANG S L, LU J J, et al. Large scale permanent plot developed and its three-dimension realized in Tianshan forest [J]. Scientia Silvae Sinicae, 2011, 47(10): 179-183(in Chinese). doi: 10.11707/j.1001-7488.20111028

    [12] OBRIST D, JOHNSON D, LINDBERG S, et al. Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils [J]. Environmental Science & Technology, 2011, 45(9): 3974-3981.
    [13] DEMERS J D, DRISCOLL C T, FAHEY T J, et al. Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA [J]. Ecological Applications, 2007, 17(5): 1341-1351. doi: 10.1890/06-1697.1
    [14] 吴毅, 刘文耀, 沈有信, 等. 滇石林地质公园喀斯特山地天然林和人工林凋落物与死地被物的动态特征 [J]. 山地学报, 2007, 25(3): 317-325. doi: 10.3969/j.issn.1008-2786.2007.03.009

    WU Y, LIU W Y, SHEN Y X, et al. Dynamics of litterfall and litter on forest floor of natural forest and plantations in stone forestworld geological park [J]. Journal of Mountan Science, 2007, 25(3): 317-325(in Chinese). doi: 10.3969/j.issn.1008-2786.2007.03.009

    [15] 阿米娜木·艾力, 常顺利, 张毓涛, 等. 天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素 [J]. 生态学报, 2014, 34(7): 1626-1634.

    AMINEM E L, CHANG S L, ZHANG Y T, et al. Altitudinal distribution rule of Picea schrenkiana forest’s soil organic carbon and its influencing factors [J]. Acta Ecologica Sinica, 2014, 34(7): 1626-1634(in Chinese).

    [16] 仇瑶, 常顺利, 张毓涛, 等. 天山林区六种灌木生物量的建模及其器官分配的适应性 [J]. 生态学报, 2015, 35(23): 7842-7851.

    QIU Y, CHANG S L, ZHANG Y T, et al. Biomass estimation modeling and adaptability analysis of organ allocation in six common shrub species in Tianshan Mountains forests, China [J]. Acta Ecologica Sinica, 2015, 35(23): 7842-7851(in Chinese).

    [17] 王丹红, 吴文晞, 涂满娣. 用直接测汞法快速测定土壤中总汞含量 [J]. 化学工程与装备, 2010(8): 148, 168-169.

    WANG D H, WU W X, TU M D. Rapid determination of total mercury in soil by method of directly determining mercury [J]. Chemical Engineering & Equipment, 2010(8): 148, 168-169(in Chinese).

    [18] LY/T1237—1999. 森林土壤有机质的测定及碳氮比的计算[S]. 北京: 国家林业局, 1999.

    LY/T1237—1999. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio[S]. Beijing: State Forestry Administration, 1999(in Chinese).

    [19] 姚俊强, 杨青, 刘志辉, 等. 中国西北干旱区降水时空分布特征 [J]. 生态学报, 2015, 35(17): 5846-5855.

    YAO J Q, YANG Q, LIU Z H, et al. Spatio-temporal change of precipitation in arid region of the Northwest China [J]. Acta Ecologica Sinica, 2015, 35(17): 5846-5855(in Chinese).

    [20] 袁方, 黄力, 魏玉洁, 等. 中国天然林凋落物量特征及其与气候因子的关系 [J]. 生态学杂志, 2018, 37(10): 3038-3046.

    YUAN F, HUANG L, WEI Y J, et al. Litterfall production and its relationships with climatic factors in Chinese natural forests [J]. Chinese Journal of Ecology, 2018, 37(10): 3038-3046(in Chinese).

    [21] 刘旭. 氮添加对新疆天山雪岭云杉凋落物分解和林下土壤性质的影响[D]. 乌鲁木齐: 新疆大学, 2019.

    LIU X. Effects of nitrogen addition on litter decomposition and soil properties under the forest of Picea schrenkiana in Tianshan Mountain, Xinjiang[D]. Urumqi: Xinjiang University, 2019(in Chinese).

    [22] NOVOA-MUNOZ J, PONTEVEDRA-POMBAL X, MARTINEZ-CORTIZAS A, et al. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain) [J]. Science of the Total Environment, 2008, 394(2-3): 303-312. doi: 10.1016/j.scitotenv.2008.01.044
    [23] LARSSEN T, DE WIT H A, WIKER M, et al. Mercury budget of a small forested boreal catchment in southeast Norway [J]. Science of the Total Environment, 2008, 404(2-3): 290-296. doi: 10.1016/j.scitotenv.2008.03.013
    [24] BLACKWELL B D, DRISCOLL C T. Deposition of mercury in forests along a montane elevation gradient [J]. Environmental Science & Technology, 2015, 49(9): 5363-5370.
    [25] WANG S, XING D, WEI Z, et al. Spatial and seasonal variations in soil and river water mercury in a boreal forest, Changbai Mountain, Northeastern China [J]. Geoderma, 2013, 206: 123-132. doi: 10.1016/j.geoderma.2013.04.026
    [26] FRIEDLI H, RADKE L, PAYNE N, et al. Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada [J]. Journal of Geophysical Research: Biogeosciences, 2007: 112. doi: 10.1029/2005JG000061
    [27] 吴飞, 王训, 罗辑, 等. 青藏高原林线森林汞的空间分布格局及对大气环境汞污染的指示 [J]. 环境化学, 2019, 38(7): 1619-1627. doi: 10.7524/j.issn.0254-6108.2018092302

    WU F, WANG X, LUO J, et al. Spatial distribution of total mercury in timberline forest of tibetan plateau regions and its implications of atmospheric mercury pollution [J]. Environmental Chemistry, 2019, 38(7): 1619-1627(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092302

    [28] 王琼, 罗遥, 杜宝玉, 等. 重庆铁山坪森林土壤汞释放通量的影响因子研究 [J]. 环境科学, 2014, 35(5): 1922-1927.

    WANG Q, LUO Y, DU B Y, et al. Influencing factors of mercury emission flux from forest soil at Tieshanping, Chongqing [J]. Environmental Science, 2014, 35(5): 1922-1927(in Chinese).

    [29] WANG X, LUO J, YIN R, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau [J]. Environmental Science & Technology, 2016, 51(2): 801-809.
    [30] ZHANG H, YIN R S, FENG X B, et al. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures [J]. Scientific Reports, 2013(3): 3322. doi: 10.1038/srep03322
    [31] ZHENG W, OBRIST D, WEIS D, et al. Mercury isotope compositions across North American forests [J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. doi: 10.1002/2015GB005323
    [32] Fu X W, XU Y, Lang X F, et al. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China [J]. Atmospheric Chemistry and Physics , 2016, 16(18): 11547-11562. doi: 10.5194/acp-16-11547-2016
    [33] WAN Q, FENG X, LU J, et al. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes [J]. Environmental Research, 2009, 109(6): 721-727. doi: 10.1016/j.envres.2009.05.006
    [34] XU Z L, CHANG Y P, LI L, et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains [J]. PloS One, 2018, 13(11): e0204130. doi: 10.1371/journal.pone.0204130
    [35] 张孟孟. 溶解性有机质对土壤吸附汞的影响及其机理的研究[D]. 济南: 山东大学, 2011.

    ZHANG M M. Research on the effect and the mechanism of dissolved organic matter on the adsorption of Hg2+ by soils[D]. Jinan: Shandong University, 2011(in Chinese).

    [36] MIRETZKY P, BISINOTI M C, JARDIM W F, et al. Factors affecting Hg (II) adsorption in soils from the Rio Negro basin (Amazon) [J]. Química Nova, 2005, 28(3): 438-443.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.7 %DOWNLOAD: 2.7 %HTML全文: 91.2 %HTML全文: 91.2 %摘要: 6.1 %摘要: 6.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.8 %其他: 94.8 %XX: 1.5 %XX: 1.5 %上海: 0.1 %上海: 0.1 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %北京: 1.5 %北京: 1.5 %宜春: 0.1 %宜春: 0.1 %巴彦淖尔: 0.1 %巴彦淖尔: 0.1 %常州: 0.1 %常州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.4 %深圳: 0.4 %郑州: 0.6 %郑州: 0.6 %银川: 0.1 %银川: 0.1 %长沙: 0.1 %长沙: 0.1 %阳泉: 0.1 %阳泉: 0.1 %鸡西: 0.1 %鸡西: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他XX上海临汾乌鲁木齐北京宜春巴彦淖尔常州沈阳深圳郑州银川长沙阳泉鸡西龙岩Highcharts.com
图( 7) 表( 4)
计量
  • 文章访问数:  3053
  • HTML全文浏览数:  3053
  • PDF下载数:  94
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-28
  • 刊出日期:  2021-06-27
李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
引用本文: 李俭, 王训, 常顺利, 张毓涛. 天山雪岭云杉林地土壤汞的分布特征及影响因素[J]. 环境化学, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801
Citation: LI Jian, WANG Xun, CHANG Shunli, ZHANG Yutao. Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest[J]. Environmental Chemistry, 2021, 40(6): 1723-1732. doi: 10.7524/j.issn.0254-6108.2020012801

天山雪岭云杉林地土壤汞的分布特征及影响因素

    通讯作者: Tel:13139621233,E-mail:ecocsl@163.com
  • 1. 新疆大学资源与环境科学学院绿洲生态教育部重点实验室,乌鲁木齐,830046
  • 2. 西南大学资源与环境科学学院,重庆,400700
  • 3. 新疆林业科学研究院森林生态研究所,乌鲁木齐,830063
基金项目:
国家自然科学基金(U1503187)资助

摘要: 土壤汞的空间分布及其影响因素是研究森林系统汞循环的基础与关键。为了了解天山雪岭云杉林地土壤汞的分布特征及影响因素,以天山雪岭云杉8 hm2林地动态监测样地为研究对象,分析了总汞在土壤剖面及空间上的分布特征,并利用路径分析探究了土壤总汞与土壤有机碳、海拔高度、郁闭度等的关系。研究表明,天山雪岭云杉林0—60 cm土壤总汞均值为(35.43±24.53) ng·g−1,主要集中在0—20 cm土层;样地内土壤总汞随土壤深度增加而降低,0—20 cm土壤总汞水平空间差异显著,表现出北高南低,沟壑高坡顶低的特点;土壤中有机碳与总汞相关最显著,海拔、郁闭度和雪岭云杉胸径、树高、冠幅等因素对土壤总汞空间分布影响并不显著,说明雪岭云杉林土壤总汞空间分布主要由有机碳决定。本研究可为天山森林土壤汞储量的研究提供数据参考,同时为更深入了解天山雪岭云杉森林汞的生物地球化学循环过程提供必要的基础。

English Abstract

  • 汞(Hg)是环境中通过大气进行长距离跨国界传输的全球性污染物[1]。随着2017年8月16日《关于汞的水俣公约》生效,学术界对汞的排放、传输、转化更加关注[2]。汞的排放来自人为源与自然源,其在大气中主要有3种形态,即气态元素汞(GEM, gaseous elemental mercury)、活性气态汞(RGM, reactive gaseous mercury)和颗粒态汞(PBM, particulate-bound mercury)。RGM与PBM化学性质活泼,会通过干湿沉降从大气中去除,在大气中停留时间较短,而GEM化学性质稳定且不溶于水,在大气中停留时间较长(约0.5—1年)[3]。尤其是森林的。森林系统占全球陆地总面积的31%[4],且生物量巨大,植物叶片可以通过气孔吸收大气中的元素汞,并以凋落物的方式积累于森林土壤中,因此森林对大气中汞的传输和转化过程起着十分重要的作用。此外母质岩石风化同样会对森林土壤汞有一些贡献[5-8]。汞在土壤中存在一系列的氧化还原和吸脱附过程,被积累的同时也会向大气进行再排放[9]。因而,研究森林土壤汞库存、空间分布规律及其影响因素是认识汞生物地球化学循环的重要基础。

    天山雪岭云杉(Picea Schrenkiana)森林是我国西北干旱半干旱区森林生态系统的重要组成部分,在涵养水源、固碳、保育生物多样性等方面具有重要的生态作用[10]。利用大型森林动态监测样地不仅可以有效的探讨雪岭云杉林土壤总汞的空间分布特征,还可以利用长期的、大面积的生态研究数据,分析造成其空间分布特征的影响因素,进而更好的阐明雪岭云杉森林汞的生物地球化学循环过程[11]。已有研究表明,森林土壤总汞(THg)与土壤总有机碳(TOC)呈正相关[12],而凋落物作为汞进入森林土壤的重要渠道[13],其与海拔、林分结构及植物群落结构特征等因素有着密切的关系[14],因此推测森林土壤汞空间分布可能受土壤总有机碳、海拔、森林的林分结构及植物群落结构特征的影响。

    鉴于此,本研究依托天山雪岭云杉8 hm2森林动态监测样地,通过样地调查和数据分析,探讨天山雪岭云杉林土壤THg的空间分布特征;天山雪岭云杉森林土壤THg与土壤TOC、海拔、郁闭度及雪岭云杉胸径、树高、冠幅之间的关系,为将来研究雪岭云杉森林汞的生物地球化学过程提供数据支撑及理论基础。

  • 本研究在天山森林生态系统定位研究站开展,位于天山中段北坡距乌鲁木齐市50 km的板房沟林场(如图1所示)。研究区属温带大陆性气候,年均气温为2—3 ℃,年总辐射量5.85×105 J· cm−2· a−1,年降水量400—600 mm,年蒸发量980—1150 mm,年平均相对湿度65%,最大积雪深度65 cm。天山云杉森林是以雪岭云杉为单优树种的温带针叶林,林下灌木主要有异果小檗(Berberisheteropoda)、黑果栒子(Cotoneaster melanocarpus)、金丝桃叶绣线菊(Spiraea hypericifolia)、新疆方枝柏(Juniperus pseudosabina)、锦鸡儿(Caragana turkestanica)、刚毛忍冬(Lonicera hispida)、密刺蔷薇(Rosa spinosissima)等。林下土壤为灰褐色森林土,土壤发育程度高,剖面分化明显,腐殖质层较厚[15-16]

  • 研究团队于2009年借鉴热带森林科学研究中心(Center for Tropical Forest Science,CTFS)大型固定样地建设思路和方法,设立了天山雪岭云杉8 hm2森林动态监测样地(43°25′—43°26′N,87°27′—87°29′E),样地为400 m(东西向等高)×200 m(南北向上坡),海拔介于1958—2188 m之间,用全站仪将整个大样地划分成200个20 m×20 m的样方。在2019年7月样地复查过程中,用“S”型取样法,每隔5个样方采集4层混合土样(0—10、10—20、20—40、40—60 cm,共计176个),每一层约500 g,装入自封袋进行编号并带回实验室,对采集土样的44个小样地,利用胸径尺、勃鲁莱氏测高器和皮卷尺逐一调查所有雪岭云杉的胸径,树高,冠幅,利用样线法调查样地郁闭度,并利用手持GPS记录每个样方的海拔。

  • 将带回的土样置于通风、阴凉、干燥的室内自然风干,研磨后过0.149 mm(100目)筛备用。用万分之一天平称取约0.1 g样品,采用DMA-80总汞仪(Milstone, Italy)测定土样的THg[17],每10个样品做1个重复,以GBW07407(GSS-7)土壤成分分析标准物质为质控标样,每隔30个样品测1个标样,样品回收率范围为90%—110%。采用重铬酸钾氧化-外加热法测土壤TOC[18]

  • 本研究用Microsoft Excel 2016和IBM SPSS Statistics 21软件进行数据处理,采用Matlab软件做土壤THg、土壤TOC及影响因子分布图,用Origin8.1对土壤THg与各影响因子进行相关性分析,用Amos Graphics软件对土壤THg与各影响因子进行路径分析。

  • 天山雪岭云杉林8 hm2固定样地0—60 cm土壤THg均值为(35.43±24.53) ng·g−1,变化范围是11.42—125.02 ng·g−1。垂直分布上,THg主要集中在0—20 cm土层,表层至底层土壤THg均值分别(67.83±28.27)、(30.75±10.40)、(22.37±5.85)、(20.78±3.99 )ng·g−1,随土壤深度的增加而减小(图2表1)。土壤THg标准偏差随土壤深度增加而减少,说明其THg水平空间变化也在逐渐减小。由图2可以看出,样地0—20 cm土层THg水平空间差异显著,呈现出北高南低(固定样地纬度增加方向为由南至北,经度增加方向为由西至东),沟壑高坡顶低的特点,而20 cm以下土层THg含量较低,且无显著水平空间差异。

  • 固定样地的0—60 cm土壤TOC均值为(51.11±47.85) g·kg−1,变化范围是2.11—251.77 g·kg−1。土壤TOC的空间分布与土壤THg相似,垂直分布上土壤TOC随土壤深度增加而减小(图3表2)且主要集中在0—20 cm土层,表层至底层土壤TOC均值分别是(112.36±48.06)、(56.01±26.92)、(19.80±9.95)、(16.25±8.70 )g·kg−1。由图3可以看出,0—20 cm土层TOC水平空间分布差异显著,与THg一样,呈现出北高南低,沟壑高坡顶低的特点,而20—60 cm土层TOC含量较低,几乎看不出明显水平空间变化。

  • 固定样地的雪岭云杉林冠幅均值为(3.7±0.72) m,中值为3.56 m,变化范围是2.41—5.58 m;郁闭度均值为0.7±0.16,中值为0.725,变化范围是0.4—0.9;胸径均值为(17.41±5.64 )cm,中值为16.00 cm,变化范围是5.58—31.26 cm;树高平均为(13.59±3.43 )m,中值为13.69 m,变化范围是3.96—20.34 m(表3)。由图4可以看出,与0—20 cm土壤THg一样,样地雪岭云杉平均冠幅、平均胸径和平均树高呈现出了北高南低的特点,不同的是,样地坡顶处雪岭云杉冠幅、胸径、树高要较高于沟壑处。郁闭度空间特征较为不同,样地东部郁闭度较高于样地西部的,且坡顶郁闭度较低。

  • 对雪岭云杉林固定样地0—60 cm的土壤THg和TOC进行pearson相关性分析,结果如图5所示,雪岭云杉林土壤THg与TOC之间有极显著正相关关系(P<0.001),说明雪岭云杉土壤TOC对土壤THg具有显著影响。

    由于郁闭度的Shapiiro-Wilk检验不符合正态性分布(表3),因此对固定样地地表层土THg和郁闭度进行Spearman相关性分析,对固定样地地表层土THg和其他各因子进行Pearson相关性分析,结果如图6所示,表层土THg和TOC之间表现的正相关性是最显著的(P <0.001,R2=0.754),同时表层土和雪岭云杉树高及胸径之间也表现出了极显著正相关性(平均树高P<0.01,R2=0.211;平均胸径P<0.01,R2=0.183),和海拔之间表现出了显著负相关关系(P<0.05,R2=0.137),但和森林郁闭度及雪岭云杉冠幅之间则没有明显相关性。

    进一步对雪岭云杉林土壤THg和与其相关性显著的因子(海拔、雪岭云杉胸径、树高、土壤TOC)利用结构方程模型进行路径分析,并将分析结果标准化后,得到路径分析图(图7)。对每一层土壤THg拟合的R²分别是0.77、0.55、0.40和0.19,这说明随着土壤深度增加,影响因子对土壤总汞的影响在逐渐减小。图中箭头方向表示因果关系,箭头附近数字为标准化系数,标准化系数的大小表明影响程度的大小。土壤THg和各因子路径分析中的标准化系数介于−0.09—0.82。土壤TOC对土壤THg标准化系数要比其他因素的大,表层土壤TOC与表层土壤THg标准化系数最大,随土壤深度加深,土壤TOC与土壤THg标准化系数逐渐减小,分别为0.82、0.62、0.53和0.26。0—40 cm土壤TOC对土壤THg影响极为显著,P值均小于0.001,而第四层土壤TOC对土壤THg影响并不显著,P值为0.077。与相关性研究中显示的结果不同,路径分析结果显示海拔、雪岭云杉胸径和树高对表层土THg的标准化系数很小,仅为−0.09、0.10和−0.04,并且P值分别为0.62、0.59、0.59,说明海拔、雪岭云杉胸径和树高对表层土THg影响并不显著,他们虽然有和土壤THg一样的变化趋势(相关性显著),但并不是导致土壤THg分布差异的原因。由图还可以看出,第一、二层和第三、四层土壤的THg会互相影响,且影响极显著(P<0.01)。

  • 天山雪岭云杉林土壤THg范围是11.42—125.02 ng·g−1,明显低于国内外落叶林土壤THg范围,也略低于国内外针叶林土壤THg(表4),天山雪岭云杉森林土壤THg含量较低可能是天山位处我国西北干旱半干旱区,降水量较少[19],而降水量会直接影响大气汞湿沉降的量[10],所以雪岭云杉森林通过大气湿沉降进入土壤的汞比其他地区森林的少。

    同时天山雪岭云杉森林是以雪岭云杉为单一优势种的常绿针叶林,群落结构简单,其凋落物量要远远低于落叶林凋落物量[20],且西北干旱半干旱区干躁的气候会使雪岭云杉森林凋落物分解的速率比其他地区要小,据研究,雪岭云杉林凋落物年分解率不到30%[21],而凋落物的降解是汞进入森林生态系统土壤的主要途径,因此雪岭云杉林通过凋落物降解进入土壤的汞要低于其他地区森林的,这导致了天山雪岭云杉森林土壤THg低于其他地区森林土壤THg。

  • 土壤THg主要集中在0—20 cm土层,具有显著的水平空间差异,而20 cm以下土层THg较少,且都几乎没有水平上空间差异,因此外界影响因素对土壤THg的影响主要集中在0—20 cm土层。雪岭云杉森林土壤THg随土壤深度增加而减小(表1),通过结构方程模型进行路径分析发现,这种垂直递减分布主要受土壤TOC影响导致的。在路径分析中,土壤TOC对土壤THg标准化系数最大,尤其是土壤THg含量最多的表层土,标准化系数达到0.82,这说明雪岭云杉林土壤TOC是对土壤THg影响最大的因素。通过相关分析可以看出土壤THg与土壤TOC呈极显著正相关关系(R2=0.843,P<0.001),这与Obrist在美国北方森林的研究结果相一致[10],土壤TOC随土壤深度增加而逐渐减小,因此土壤THg也随土壤深度增加而减少。

    尽管降水会造成大气汞湿沉降,但其可能并不是森林土壤汞的主要来源。在我国青藏高原与西南地区雷公山森林系统利用汞同位素研究发现,降雨与温度通过控制凋落物的生物量间接影响土壤汞的累积,美国数十个森林站点的研究表明,降水控制下的植被生物产量是影响森林土壤汞浓度的主要因素,国内很多区域也有大量研究显示凋落物汞沉降远大于湿沉降,因此凋落物汞的沉降才是山地森林土壤汞的主要来源[29-32]。与天山纬度类似的东北长白山地区Hg的干沉降占比为70.6%[33],天山地处干旱半干旱区,降雨量更少,而降雨量会直接影响汞的湿沉降量,因此相较于通过凋落物分解输入天山雪岭云杉森林土壤的Hg,当地湿沉降的Hg并不是主要部分,所以降雨并不是影响雪岭云杉森林土壤汞空间差异的主要因素。天山雪岭云杉林是以雪岭云杉为单优势种,云杉林下土壤呼吸较弱,且雪岭云杉是浅根种植物[34],分解的凋落物只有很少一部分能进入深层土壤,根系也主要集中在土壤表层,因此地表上的枯落物和植物根系分解所形成的有机碳先进入土壤表层,再经表层往下进入更深层次的土壤中,因此土壤TOC随土壤深度增加而减小。同样,凋落物在分解过程中汞也是先进入表层土壤,再由表层土往下进入更深层土壤,不仅如此,凋落物在腐解过程中经微生物作用会产生腐殖酸,腐殖酸对Hg具有较黏土矿物和氧化物高的多的吸附容量[35]。有研究发现,汞的吸收与腐殖酸的络合有很大关系,土壤中有机质是一种很有效的Hg吸附剂,土壤对Hg的吸附量与其腐殖酸的含量成正比[36],所以土壤THg与土壤TOC之间具有非常显著的正相关性(R2=0.843,P<0.001),随着土壤深度增加,由凋落物分解进入土壤的汞逐渐减少,同时土壤TOC也逐渐减小,腐殖酸的含量也就逐渐减少,因此土壤对汞的吸附逐渐降低,这也解释了随土壤深度增加,土壤THg受土壤TOC的影响越来越小,甚至40—60 cm土层土壤TOC不是土壤THg最主要的因素的原因。

    虽然海拔、雪岭云杉胸径、树高与表层土THg的相关性显著,但通过路径分析显示,在多元模型中时,其并不是影响土壤THg的重要因素(P值分别为0.62、0.59、0.59,影响不显著)。主要可能是因为这三个因素是通过影响凋落物量来间接影响土壤THg,导致路径分析中影响程度较差(标准化系数很低),也可能是因为这三个因素虽然与凋落物量有关,但对凋落物量的影响较小,凋落物量更多的受到其他因素的控制,例如地形因素等。海拔、雪岭云杉胸径、树高与表层土THg相关性显著是因为其有同样的变化趋势,因此在两个变量的关系研究中展示出了显著的相关性,但放到整体的研究中,通多路径分析结果可以看出,海拔、雪岭云杉胸径、树高并未与表层土THg变化产生因果关系。通过路径分析得出,除了土壤TOC,邻近层土壤THg也会互相影响,这可能是因为除了干湿沉降进入土壤的汞的由上层渗入下层,还有来自母质层风化的汞由下层进入上层对雪岭云杉土壤汞有所贡献。根据土壤汞的空间分布可以看出,地形是影响雪岭云杉林土壤汞的一个重要因素,沟壑处的土壤THg要高于坡顶处的,这可能是由于降雨及积雪消融形成的地表径流,使山坡上的凋落物在沟壑处形成堆积,因此沟壑处凋落物量要大于山坡上凋落物量,从而间接影响到了土壤THg的分布,这一观点还需进一步的研究和验证。但通过这一现象可以得知,在以后研究森林土壤汞时,既不能只采集坡顶处土壤,也不能只采集沟壑处土壤,否则都会对研究结果造成影响。

    总体而言,天山雪岭云杉森林土壤的THg分布特征最主要是受到土壤TOC的影响,但除此之外还有其他多种因素的综合影响。利用大样地研究森林土壤THg不仅可以分析森林土壤THg含量,探讨其空间分布特征,还有助于揭示影响土壤THg变化的多重因素。以往对森林土壤汞的研究中,尚缺通过观测大样地进行分析和探讨的,这可能会给研究结果造成一定的偏差和局限性。而本研究利用大样地对雪岭云杉森林土壤汞进行空间分布研究,初步了解了天山雪岭云杉森林土壤汞的含量及空间特征,并讨论了其影响因素,可以为将来研究森林土壤汞及样品采集过程提供科学的参考意见。目前研究工作还处于起步阶段,未能完整的探明环境因子对汞的影响,未来可以对天山雪岭云杉土壤汞的储量影响因素分析、汞的迁移转化过程做相应的研究分析,进一步深入了解其内在机制,为将来研究森林生态系统汞的生物地球化学过程提供更合理的依据。

  • (1)天山雪岭云杉森林土壤THg较低,处于国内外其他森林土壤THg范围下限。土壤THg主要集中在0—20 cm土层,且具有明显水平空间分布差异,垂直剖面上土壤THg随土壤深度增加而减小。

    (2)天山雪岭云杉林土壤THg分布受土壤TOC影响最大,受林分结构及植物群落结构特征影响并不显著。

    (3)本文虽然对天山雪岭云杉林土壤THg进行了初步分析,但是其凋落物汞的数据还尚未掌握,后期需要对天山雪岭云杉及林下灌木的枯枝落叶进行汞沉降通量研究。

参考文献 (36)

返回顶部

目录

/

返回文章
返回