-
汞(Hg)是环境中通过大气进行长距离跨国界传输的全球性污染物[1]。随着2017年8月16日《关于汞的水俣公约》生效,学术界对汞的排放、传输、转化更加关注[2]。汞的排放来自人为源与自然源,其在大气中主要有3种形态,即气态元素汞(GEM, gaseous elemental mercury)、活性气态汞(RGM, reactive gaseous mercury)和颗粒态汞(PBM, particulate-bound mercury)。RGM与PBM化学性质活泼,会通过干湿沉降从大气中去除,在大气中停留时间较短,而GEM化学性质稳定且不溶于水,在大气中停留时间较长(约0.5—1年)[3]。尤其是森林的。森林系统占全球陆地总面积的31%[4],且生物量巨大,植物叶片可以通过气孔吸收大气中的元素汞,并以凋落物的方式积累于森林土壤中,因此森林对大气中汞的传输和转化过程起着十分重要的作用。此外母质岩石风化同样会对森林土壤汞有一些贡献[5-8]。汞在土壤中存在一系列的氧化还原和吸脱附过程,被积累的同时也会向大气进行再排放[9]。因而,研究森林土壤汞库存、空间分布规律及其影响因素是认识汞生物地球化学循环的重要基础。
天山雪岭云杉(Picea Schrenkiana)森林是我国西北干旱半干旱区森林生态系统的重要组成部分,在涵养水源、固碳、保育生物多样性等方面具有重要的生态作用[10]。利用大型森林动态监测样地不仅可以有效的探讨雪岭云杉林土壤总汞的空间分布特征,还可以利用长期的、大面积的生态研究数据,分析造成其空间分布特征的影响因素,进而更好的阐明雪岭云杉森林汞的生物地球化学循环过程[11]。已有研究表明,森林土壤总汞(THg)与土壤总有机碳(TOC)呈正相关[12],而凋落物作为汞进入森林土壤的重要渠道[13],其与海拔、林分结构及植物群落结构特征等因素有着密切的关系[14],因此推测森林土壤汞空间分布可能受土壤总有机碳、海拔、森林的林分结构及植物群落结构特征的影响。
鉴于此,本研究依托天山雪岭云杉8 hm2森林动态监测样地,通过样地调查和数据分析,探讨天山雪岭云杉林土壤THg的空间分布特征;天山雪岭云杉森林土壤THg与土壤TOC、海拔、郁闭度及雪岭云杉胸径、树高、冠幅之间的关系,为将来研究雪岭云杉森林汞的生物地球化学过程提供数据支撑及理论基础。
天山雪岭云杉林地土壤汞的分布特征及影响因素
Distribution characteristics and influencing factors of mercury on the soil profile of Picea Schrenkiana forest
-
摘要: 土壤汞的空间分布及其影响因素是研究森林系统汞循环的基础与关键。为了了解天山雪岭云杉林地土壤汞的分布特征及影响因素,以天山雪岭云杉8 hm2林地动态监测样地为研究对象,分析了总汞在土壤剖面及空间上的分布特征,并利用路径分析探究了土壤总汞与土壤有机碳、海拔高度、郁闭度等的关系。研究表明,天山雪岭云杉林0—60 cm土壤总汞均值为(35.43±24.53) ng·g−1,主要集中在0—20 cm土层;样地内土壤总汞随土壤深度增加而降低,0—20 cm土壤总汞水平空间差异显著,表现出北高南低,沟壑高坡顶低的特点;土壤中有机碳与总汞相关最显著,海拔、郁闭度和雪岭云杉胸径、树高、冠幅等因素对土壤总汞空间分布影响并不显著,说明雪岭云杉林土壤总汞空间分布主要由有机碳决定。本研究可为天山森林土壤汞储量的研究提供数据参考,同时为更深入了解天山雪岭云杉森林汞的生物地球化学循环过程提供必要的基础。Abstract: The spatial distribution of soil mercury and its influencing factors are the basis and key to study the mercury cycle in forest system.In order to understand the distribution characteristics and influencing factors of soil mercury in the forest land of Picea schrenkiana, the dynamic monitoring sample plot of 8 hm2 forest land of Picea schrenkiana was taken as the research object. The distribution characteristics of total mercury in soil profile and space were analyzed, and the relationship between total mercury and soil organic carbon, altitude, canopy density was explored by using path analysis. The results showed that: (1) The mean value of total mercury in 0—60 cm soil of Picea schrenkiana forest was (35.43 ± 24.53 )ng·g−1, mainly concentrated in 0—20 cm soil layer; (2) the total mercury in soil decreased with the increase of soil depth, and the spatial difference of total mercury in 0—20 cm soil was significant, showing the characteristics of high in the north and low in the south, high in the gully and low in the top of the slope; (3) the organic carbon and total mercury in soil were most significantly correlated, with the altitude and canopy density The spatial distribution of soil total mercury was not significantly affected by the DBH, height and crown diameter of Picea schrenkiana, which indicated that the spatial distribution of soil total mercury in Picea schrenkiana forest was mainly determined by organic carbon. This study provided data references for the study of soil mercury reserves in the Tianshan forest, and a necessary basis for a deeper understanding of the biogeochemical cycle of mercury in the Tianshan Picea Schrenkiana Forest.
-
Key words:
- soil mercury /
- soil profile /
- soil organic carbon /
- permanent plots /
- spruce forest
-
表 1 8 hm2固定样地不同深度土壤THg变化
Table 1. Change of soil THg in different depth of 8 hm2 fixed sample plot
深度/cm
Depth范围/(ng·g−1)Range 均值/(ng·g−1)AVG 中值/(ng·g−1)MED 峰度
Kurtosis偏度
SkewnessW检验/P值
Shapiro-Wilk标准偏差
SD0—10 22.40—125.02 67.83a 67.47 −0.92 0.13 0.164>0.05 28.27 10—20 16.78—68.73 30.75b 28.69 2.69 1.31 0.002<0.05 10.40 20—40 11.42—48.29 22.37c 21.45 8.10 1.88 0.00<0.05 5.85 40—60 13.48—31.33 20.78c 20.71 −0.11 0.29 0.734>0.05 3.99 不同小写字母代表THg在不同土层差异显著(P<0.05);相同小写字母代表THg在不同土层差异不显著(P>0.05)。 表 2 8 hm2固定样地不同深度土壤TOC变化
Table 2. Change of soil TOC in different depth of 8 hm2 fixed sample plot
深度/cm
Depth范围/(g·kg−1)Range 均值/(g·kg−1)AVG 中值/(g·kg−1)MED 峰度
Kurtosis偏度
SkewnessW检验/P值
Shapiro-Wilk标准偏差
SD0—10 25.84—251.77 112.36a 106.27 0.31 0.46 0.401>0.05 48.06 10—20 16.18—146.40 56.01b 48.83 1.64 1.23 0.001<0.05 26.92 20—40 3.62—41.33 19.80c 17.90 −0.55 0.30 0.334>0.05 9.95 40—60 2.11—35.62 16.25c 16.99 −0.28 0.33 0.272>0.05 8.70 不同小写字母代表TOC在不同土层差异显著(P<0.05);相同小写字母代表TOC在不同土层差异不显著(P>0.05)。 表 3 雪岭云杉林固定样地平均冠幅、胸径、树高及郁闭度数据
Table 3. Data of average crown, DBH, tree height and canopy density of Picea Schrenkiana forest
类型
Type范围
Range均值
AVG中值
MED峰度
Kurtosis偏度
SkewnessW检验/P值
Shapiro-Wilk标准偏差
SD平均冠幅/cm
Average crown width2.41—5.58 3.70 3.56 0.49 0.80 0.065>0.05 0.72 郁闭度
Canopy density0.4—0.9 0.70 0.725 −0.97 −0.42 0.005<0.05 0.16 平均胸径/cm
Mean DBH5.58—31.26 17.41 16.00 −0.03 0.29 0.697>0.05 5.64 平均树高/m
Average tree height3.96—20.34 13.59 13.69 −0.63 0.65 0.158>0.05 3.43 表 4 本研究土壤THg与国内外其他地区森林土壤THg比较
Table 4. Comparison of soil THg between in this study and other areas at home and abroad
-
[1] LINDQVIST O, JOHANSSON K, BRINGMARK L, et al. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods [J]. Water, Air, and Soil Pollution, 1991, 55(1-2): 1-261. [2] 王训, 袁巍; 冯新斌. 森林生态系统汞的生物地球化学过程 [J]. 化学进展, 2017, 29(9): 970-980. doi: 10.7536/PC170343 WANG X, YUAN W, FENG X B. Global review of mercury biogeochemical processes in forest ecosystems [J]. Progress in Chemistry, 2017, 29(9): 970-980(in Chinese). doi: 10.7536/PC170343
[3] SCHROEDER W H, ANLAUF K, BARRIE L, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530 [4] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 [J]. Forest Ecology and Management, 2015, 352: 9-20. doi: 10.1016/j.foreco.2015.06.014 [5] ZHANG L, WRIGHT L P; BLANCHARD P. A review of current knowledge concerning dry deposition of atmospheric mercury [J]. Atmospheric Environment, 2009, 43(37): 5853-5864. doi: 10.1016/j.atmosenv.2009.08.019 [6] SMITH‐DOWNEY N V, SUNDERLAND E M, JACOB D J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model [J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3): 227-235. [7] ERICKSEN J, GUSTIN M, SCHORRAN D, et al. Accumulation of atmospheric mercury in forest foliage [J]. Atmospheric Environment, 2003, 37(12): 1613-1622. doi: 10.1016/S1352-2310(03)00008-6 [8] FIORENTINO J C, ENZWEILER J, ANGELICA R S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: evidence of external input [J]. Water, Air, & Soil Pollution, 2011, 221(1-4): 63-75. [9] ZHENG W, LIANG L, GU B. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments [J]. Environmental Science & Technology, 2011, 46(1): 292-299. [10] 李翾然, 常顺利, 张毓涛. 天山雪岭云杉林粗木质残体储量特征 [J]. 生态学报, 2019, 39(10): 3730-3739. LI X R, CHANG S L, ZHANG Y T. Attributes of coarse woody debris in Picea schrenkiana forests of Tianshan Moutains [J]. Acta Ecologica Sinica, 2019, 39(10): 3730-3739(in Chinese).
[11] 张毓涛, 常顺利, 芦建江, 等. 天山云杉森林8hm~2样地的建立及三维可视化管理 [J]. 林业科学, 2011, 47(10): 179-183. doi: 10.11707/j.1001-7488.20111028 ZHANG Y T, CHANG S L, LU J J, et al. Large scale permanent plot developed and its three-dimension realized in Tianshan forest [J]. Scientia Silvae Sinicae, 2011, 47(10): 179-183(in Chinese). doi: 10.11707/j.1001-7488.20111028
[12] OBRIST D, JOHNSON D, LINDBERG S, et al. Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils [J]. Environmental Science & Technology, 2011, 45(9): 3974-3981. [13] DEMERS J D, DRISCOLL C T, FAHEY T J, et al. Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA [J]. Ecological Applications, 2007, 17(5): 1341-1351. doi: 10.1890/06-1697.1 [14] 吴毅, 刘文耀, 沈有信, 等. 滇石林地质公园喀斯特山地天然林和人工林凋落物与死地被物的动态特征 [J]. 山地学报, 2007, 25(3): 317-325. doi: 10.3969/j.issn.1008-2786.2007.03.009 WU Y, LIU W Y, SHEN Y X, et al. Dynamics of litterfall and litter on forest floor of natural forest and plantations in stone forestworld geological park [J]. Journal of Mountan Science, 2007, 25(3): 317-325(in Chinese). doi: 10.3969/j.issn.1008-2786.2007.03.009
[15] 阿米娜木·艾力, 常顺利, 张毓涛, 等. 天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素 [J]. 生态学报, 2014, 34(7): 1626-1634. AMINEM E L, CHANG S L, ZHANG Y T, et al. Altitudinal distribution rule of Picea schrenkiana forest’s soil organic carbon and its influencing factors [J]. Acta Ecologica Sinica, 2014, 34(7): 1626-1634(in Chinese).
[16] 仇瑶, 常顺利, 张毓涛, 等. 天山林区六种灌木生物量的建模及其器官分配的适应性 [J]. 生态学报, 2015, 35(23): 7842-7851. QIU Y, CHANG S L, ZHANG Y T, et al. Biomass estimation modeling and adaptability analysis of organ allocation in six common shrub species in Tianshan Mountains forests, China [J]. Acta Ecologica Sinica, 2015, 35(23): 7842-7851(in Chinese).
[17] 王丹红, 吴文晞, 涂满娣. 用直接测汞法快速测定土壤中总汞含量 [J]. 化学工程与装备, 2010(8): 148, 168-169. WANG D H, WU W X, TU M D. Rapid determination of total mercury in soil by method of directly determining mercury [J]. Chemical Engineering & Equipment, 2010(8): 148, 168-169(in Chinese).
[18] LY/T1237—1999. 森林土壤有机质的测定及碳氮比的计算[S]. 北京: 国家林业局, 1999. LY/T1237—1999. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio[S]. Beijing: State Forestry Administration, 1999(in Chinese).
[19] 姚俊强, 杨青, 刘志辉, 等. 中国西北干旱区降水时空分布特征 [J]. 生态学报, 2015, 35(17): 5846-5855. YAO J Q, YANG Q, LIU Z H, et al. Spatio-temporal change of precipitation in arid region of the Northwest China [J]. Acta Ecologica Sinica, 2015, 35(17): 5846-5855(in Chinese).
[20] 袁方, 黄力, 魏玉洁, 等. 中国天然林凋落物量特征及其与气候因子的关系 [J]. 生态学杂志, 2018, 37(10): 3038-3046. YUAN F, HUANG L, WEI Y J, et al. Litterfall production and its relationships with climatic factors in Chinese natural forests [J]. Chinese Journal of Ecology, 2018, 37(10): 3038-3046(in Chinese).
[21] 刘旭. 氮添加对新疆天山雪岭云杉凋落物分解和林下土壤性质的影响[D]. 乌鲁木齐: 新疆大学, 2019. LIU X. Effects of nitrogen addition on litter decomposition and soil properties under the forest of Picea schrenkiana in Tianshan Mountain, Xinjiang[D]. Urumqi: Xinjiang University, 2019(in Chinese).
[22] NOVOA-MUNOZ J, PONTEVEDRA-POMBAL X, MARTINEZ-CORTIZAS A, et al. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain) [J]. Science of the Total Environment, 2008, 394(2-3): 303-312. doi: 10.1016/j.scitotenv.2008.01.044 [23] LARSSEN T, DE WIT H A, WIKER M, et al. Mercury budget of a small forested boreal catchment in southeast Norway [J]. Science of the Total Environment, 2008, 404(2-3): 290-296. doi: 10.1016/j.scitotenv.2008.03.013 [24] BLACKWELL B D, DRISCOLL C T. Deposition of mercury in forests along a montane elevation gradient [J]. Environmental Science & Technology, 2015, 49(9): 5363-5370. [25] WANG S, XING D, WEI Z, et al. Spatial and seasonal variations in soil and river water mercury in a boreal forest, Changbai Mountain, Northeastern China [J]. Geoderma, 2013, 206: 123-132. doi: 10.1016/j.geoderma.2013.04.026 [26] FRIEDLI H, RADKE L, PAYNE N, et al. Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada [J]. Journal of Geophysical Research: Biogeosciences, 2007: 112. doi: 10.1029/2005JG000061 [27] 吴飞, 王训, 罗辑, 等. 青藏高原林线森林汞的空间分布格局及对大气环境汞污染的指示 [J]. 环境化学, 2019, 38(7): 1619-1627. doi: 10.7524/j.issn.0254-6108.2018092302 WU F, WANG X, LUO J, et al. Spatial distribution of total mercury in timberline forest of tibetan plateau regions and its implications of atmospheric mercury pollution [J]. Environmental Chemistry, 2019, 38(7): 1619-1627(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092302
[28] 王琼, 罗遥, 杜宝玉, 等. 重庆铁山坪森林土壤汞释放通量的影响因子研究 [J]. 环境科学, 2014, 35(5): 1922-1927. WANG Q, LUO Y, DU B Y, et al. Influencing factors of mercury emission flux from forest soil at Tieshanping, Chongqing [J]. Environmental Science, 2014, 35(5): 1922-1927(in Chinese).
[29] WANG X, LUO J, YIN R, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau [J]. Environmental Science & Technology, 2016, 51(2): 801-809. [30] ZHANG H, YIN R S, FENG X B, et al. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures [J]. Scientific Reports, 2013(3): 3322. doi: 10.1038/srep03322 [31] ZHENG W, OBRIST D, WEIS D, et al. Mercury isotope compositions across North American forests [J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. doi: 10.1002/2015GB005323 [32] Fu X W, XU Y, Lang X F, et al. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China [J]. Atmospheric Chemistry and Physics , 2016, 16(18): 11547-11562. doi: 10.5194/acp-16-11547-2016 [33] WAN Q, FENG X, LU J, et al. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes [J]. Environmental Research, 2009, 109(6): 721-727. doi: 10.1016/j.envres.2009.05.006 [34] XU Z L, CHANG Y P, LI L, et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains [J]. PloS One, 2018, 13(11): e0204130. doi: 10.1371/journal.pone.0204130 [35] 张孟孟. 溶解性有机质对土壤吸附汞的影响及其机理的研究[D]. 济南: 山东大学, 2011. ZHANG M M. Research on the effect and the mechanism of dissolved organic matter on the adsorption of Hg2+ by soils[D]. Jinan: Shandong University, 2011(in Chinese).
[36] MIRETZKY P, BISINOTI M C, JARDIM W F, et al. Factors affecting Hg (II) adsorption in soils from the Rio Negro basin (Amazon) [J]. Química Nova, 2005, 28(3): 438-443.