-
沉积物作为湖泊生态系统的重要组成部分,累积了大量污染物质[1]。随着经济的快速发展,工农业废水与生活污水大量排放,重金属污染已成为湖泊的重要生态环境问题之一[2]。重金属在湖泊沉积物中的残留、释放、迁移和转化,极易造成水体的二次污染[2-3],且因其本身所具有的持久性、生物累积性及食物链放大性等特性[4-5],对水生动植物的生长发育及人类健康具有潜在威胁[5-6]。根据已有文献报道,水体沉积物中铜、铅的污染范围最广[7],在中国主要淡水湖泊沉积物中的被检出频次达60次以上[8],其平均浓度在所有重金属中排名前列[9]。因此,如何降低或防止沉积物中铜、铅等重金属离子的二次释放已成为环境污染治理的研究热点。
近年来,国内外研究学者对湖泊沉积物的重金属污染问题展开了许多有益的探索与研究。结果显示,以生物炭为覆盖材料的原位修复技术,因其成本低廉,性质稳定且不易对生态系统造成干扰的特点而比其他修复方法更受欢迎[10]。此外,经过化学修饰后的改性生物炭会比原始生物炭更具吸附活性[11],且氨基的负载将有助于生物炭表面对其他官能团的锚定[12]。马天行等[13]通过化学负载法制备纳米零价铁改性氨基生物炭提高了对Cd(Ⅱ)的吸附性能,Yang等[12]报道了氨基改性生物炭对废水中Cu(Ⅱ)的吸附能力提高了5—8倍。但是,目前将氨基生物炭直接应用于沉积物中重金属污染控制的研究仍相对较少,且多围绕于单一离子的吸附,而复合重金属污染环境其实更能真实的反映自然条件下重金属的协同、竞争状态。
基于此,本研究以沉积物中污染问题突出且具有代表性的重金属铜、铅作为研究对象,通过酸碱改性法对原始生物炭进行氨基修饰,在高浓度重金属污染沉积物中开展氨基生物炭原位覆盖处理,结合传统化学提取法,研究不同水体酸碱度下Cu(Ⅱ)、Pb(Ⅱ)的释放规律与氨基生物炭原位覆盖对高污染沉积物中Cu(Ⅱ)、Pb(Ⅱ)的修复效果,并采用零级动力学方程和Elovich方程对沉积物中Cu(Ⅱ)、Pb(Ⅱ)的释放动力学进行拟合,采用单因子水质标准比较法和USEPA的健康风险评价模型对模拟湖泊水体中重金属的污染情况与健康风险进行评价。以期为高污染湖泊沉积物的修复治理提供理论基础与数据支撑,对环境风险调控具有重要意义。
氨基生物炭覆盖对沉积物中铜、铅释放的影响
Effect of amino biochar cover on copper and lead release in sediments
-
摘要: 沉积物是湖泊重金属污染物的源与汇,原位控制沉积物中重金属污染物的二次释放一直是研究关注的热点问题。本研究采用氨基生物炭对重金属污染沉积物进行原位覆盖,研究了不同水体酸碱度下Cu(Ⅱ)、Pb(Ⅱ)的释放规律与氨基生物炭原位覆盖对重金属污染沉积物中Cu(Ⅱ)、Pb(Ⅱ)的释放控制效果,并采用零级动力学方程和Elovich方程对Cu(Ⅱ)、Pb(Ⅱ)的释放过程进行了动力学拟合,采用单因子水质标准比较法和USEPA的健康风险评价模型对模拟湖泊水体中重金属的污染情况与健康风险进行了评价。研究结果表明,5%的氨基生物炭可降低沉积物中Cu(Ⅱ)、Pb(Ⅱ)释放量达0.744—1.015 μg·mL−1,有效减小了水体重金属的污染水平与健康风险;是否覆盖氨基生物炭,沉积物中重金属的释放过程均符合零级动力学方程;当水体pH=7时,更有利于氨基生物炭原位修复技术的实施。Abstract: Sediment is the source and sink of heavy metals contaminants in lakes. It is of growing concern for the in-situ control of the secondary release of heavy metals from contaminated sediments. In this study, the lake sediment-water environment was simulated, amino modified biochar was used as the covering material, the release law of Cu(Ⅱ) and Pb(Ⅱ) from sediment to water was explored with different pH, the in-situ control effects of amino biochar coverage on Cu(Ⅱ) and Pb(Ⅱ) in sediments were also evaluated. In addition, the kinetic fitting of the release process of Cu(Ⅱ) and Pb(Ⅱ) were performed using zero order equation and Elovich equation, the pollution status and health risk of heavy metals in water were evaluated by single factor water quality comparison method and USEPA’s health risk assessment model. The results showed that 5% amino biochar could effectively inhibit the release of Cu(Ⅱ) and Pb(Ⅱ) in sediments by 0.744—1.015 μg·mL−1 and reduce the pollution level and health risk of heavy metals in water. No matter whether the amino biochar was covered, the release process of heavy metals conformed to zero order equation. When the overlying water was in neutral condition, it was beneficial to the in-situ remediation of amino biochar coverage.
-
Key words:
- Cu(Ⅱ) /
- Pb(Ⅱ) /
- lake /
- amino modification of biochar /
- in-situ remediation
-
表 1 上覆水pH对重金属离子释放的动力学拟合
Table 1. Kinetic fitting of the release of heavy metal ions by water-covered pH
重金属离子
Heavy metal ion扰动强度
Hydrodynamic生物炭覆盖量
Biochar coveragepH 零级动力学方程
Zero-order kinetic equationElovich方程
Elovich equationR2 k R2 a b Cu(Ⅱ) 100 r·min−1 0% 5 0.9803 0.0456 0.8978 −0.1141 0.2853 7 0.9263 0.0382 0.7489 −0.1687 0.2594 9 0.9227 0.0324 0.7441 −0.1448 0.2206 Pb(Ⅱ) 100 r·min−1 0% 5 0.9310 0.0691 0.9312 −0.1364 0.4239 7 0.9262 0.0495 0.7515 −0.2186 0.3367 9 0.9314 0.0404 0.7679 −0.1739 0.2743 表 2 氨基生物炭覆盖量对重金属离子释放的动力学拟合
Table 2. Kinetic fitting of heavy metal ion release by amino biochar coverage
重金属离子
Heavy metal ion扰动强度
Hydrodynamic生物炭覆盖量
Biochar coveragepH 零级动力学方程
Zero-order kinetic equationElovich方程
Elovich equationR2 k R2 a b Cu(Ⅱ) 100 r·min−1 0% 7 0.9263 0.0382 0.7489 −0.1687 0.2594 5% 0.6598 0.0016 0.4479 −0.0093 0.0111 Pb(Ⅱ) 100 r·min−1 0% 7 0.9262 0.0495 0.7515 −0.2186 0.3367 5% ND ND ND ND ND 表 3 不同氨基生物炭覆盖量下的重金属释放风险评价指标
Table 3. The release risk evaluation index of heavy metals under different amino biochar coverage
重金属离子
Heavy metal ion评价指标
Evaluation index0%氨基生物炭覆盖量
0% bio-carbon cover5%氨基生物炭覆盖量
5% bio-carbon coverCu(Ⅱ) 释放量/(μg·mL−1) 0.786 0.042 HQin/a−1 8.23×10−8 4.40×10−9 HQd/a−1 3.26×10−10 1.74×10−11 国家地表水Ⅲ类标准限值/(μg·mL−1) ≤1.0 Pb(Ⅱ) 释放量/(μg·mL−1) 1.015 0 HQin/a−1 3.80×10−7 0 HQd/a−1 1.50×10−9 0 国家地表水Ⅲ类标准限值/(μg·mL−1) ≤0.05 合计 HQin/a−1 4.62×10−7 4.40×10−9 HQd/a−1 1.83×10−9 1.74×10−11 注:实验环境为100 r·min−1扰动强度,上覆水pH=7,(25±0.5) ℃条件下.
Notes: The condition is 100 r·min−1 hydrodynamic, overlying water pH=7, (25±0.5) ℃. -
[1] 季斌, 杭小帅, 梁斌, 等. 湖泊沉积物重金属污染研究进展 [J]. 污染防治技术, 2013, 26(5): 33-40. JI B, HANG X S, LIANG B, et al. Advances in heavy metals contamination of lake sediment [J]. Pollution Control Technology, 2013, 26(5): 33-40(in Chinese).
[2] 田林锋, 胡继伟, 秦樊鑫, 等. 红枫湖沉积物重金属元素地球化学特征及风险评价 [J]. 环境化学, 2011, 30(9): 1590-1598. TIAN L F, HU J W, QIN F X, et al. Geochemical characteristics and risk assessment of heavy metals in sediments from Hongfeng lake [J]. Environmental Chemistry, 2011, 30(9): 1590-1598(in Chinese).
[3] KUNWAR P S, DINESH M, VINOD K S, et al. Studies on distribution and fractionation of heavy metals in Gomti River sediments-a tributary of the Ganges, India [J]. Journal of Hydrology, 2005, 312(1-4): 14-27. doi: 10.1016/j.jhydrol.2005.01.021 [4] YI Y J, WANG Z Y, ZHANG K, et al. Sediment pollution and its effect on fish through food chain in the Yangtze River [J]. International Journal of Sediment Research, 2008, 23(4): 338-347. doi: 10.1016/S1001-6279(09)60005-6 [5] 孟梅, 华玉妹, 朱端卫, 等. 生物炭对重金属污染沉积物的修复效果 [J]. 环境化学, 2016, 35(12): 2543-2552. doi: 10.7524/j.issn.0254-6108.2016.12.2016042803 MENG M, HUA Y M, ZHU D W, et al. Remediation effect of biochar on sediment contaminated by heavy metals [J]. Environmental Chemistry, 2016, 35(12): 2543-2552(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.12.2016042803
[6] ARNASON J G, FLETCHER B A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA [J]. Environmental Pollution, 2003, 123(3): 383-391. doi: 10.1016/S0269-7491(03)00015-0 [7] 陈明, 蔡青云, 徐慧, 等. 水体沉积物重金属污染风险评价研究进展 [J]. 生态环境学报, 2015, 24(6): 1069-1074. CHENG M, CAI Q Y, XU H, et al. Research Progress of risk assessment of heavy metals pollution in water body sediments [J]. Ecology and Environmental Sciences, 2015, 24(6): 1069-1074(in Chinese).
[8] 滑丽萍, 华珞, 高娟, 等. 中国湖泊底泥的重金属污染评价研究 [J]. 土壤, 2006, 38(4): 366-373. doi: 10.3321/j.issn:0253-9829.2006.04.003 HUA L P, HUA L, GAO J, et al. Heavy metal pollution of sediments of lakes in China [J]. Soils, 2006, 38(4): 366-373(in Chinese). doi: 10.3321/j.issn:0253-9829.2006.04.003
[9] 刘昔, 王智, 王学雷, 等. 应用物种敏感性分布评价中国湖泊水体中重金属污染的生态风险 [J]. 湖泊科学, 2018, 30(5): 1206-1217. doi: 10.18307/2018.0504 LIU X, WANG Z, WANG X L, et al. Ecological risks assessment of selected heavy metals in the waters of Chinese lakes based on species sensitivity distributions [J]. Journal of Lake Sciences, 2018, 30(5): 1206-1217(in Chinese). doi: 10.18307/2018.0504
[10] 黄艳虹, 高凡, 郭伟, 等. 基于梯度扩散薄膜技术(DGT)的氨基生物炭覆盖沉积物-水界面铜、铅释放研究 [J]. 湖泊科学, 2020, 32(1): 58-69. doi: 10.18307/2020.0106 HUANG Y H, GAO F, GUO W, et al. Release of copper and lead from the sediment-water interface under in-situ coverage of amino biochar via Diffusive Gradients in Thin-films (DGT) [J]. Journal of Lake Sciences, 2020, 32(1): 58-69(in Chinese). doi: 10.18307/2020.0106
[11] WANG S J, GUO W, GAO F, et al. Characterization and Pb(Ⅱ) removal potential of corn straw- and municipal sludge-derived biochars [J]. Royal Society Open Science, 2017, 4(9): 170402. doi: 10.1098/rsos.170402 [12] YANG G X, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater [J]. Water Research, 2014, 48(1): 396-405. [13] 马天行, 杨琛, 江鲜英, 等. 纳米零价铁改性氨基生物炭的制备及对Cd(Ⅱ)的吸附和解吸特性 [J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178 MA T X, YANG C, JIANG X Y, et al. Adsorption and desorption of Cd(Ⅱ) on amino biochar modified by nano zero valent iron [J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5433-5439(in Chinese). doi: 10.12030/j.cjee.201603178
[14] 王淑娟, 郭伟, 史江红, 等. 氨基修饰稻壳生物炭对水溶液中铀的吸附动力学特性 [J]. 环境科学研究, 2019, 32(2): 347-355. WANG S J, GUO W, SHI J H, et al. Adsorption kinetics of uranium(Ⅵ) from aqueous solution by amino modified rice husk biochar [J]. Research of Environmental Sciences, 2019, 32(2): 347-355(in Chinese).
[15] 朱青青, 王中良. 中国主要水系沉积物中重金属分布特征及来源分析 [J]. 地球与环境, 2012, 40(3): 305-313. ZHU Q Q, WANG Z L. Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China [J]. Earth and Environment, 2012, 40(3): 305-313(in Chinese).
[16] 陈翠华, 倪师军, 何彬彬, 等. 江西德兴矿集区水系沉积物重金属污染分析 [J]. 长江流域资源与环境, 2008, 17(5): 766-770. doi: 10.3969/j.issn.1004-8227.2008.05.019 CHENG C H, NI S J, HE B B, et al. Heavy metal contamination in sediments of Dexing mines, Jiangxi, China [J]. Resources and Environment in the Yangtze Basin, 2008, 17(5): 766-770(in Chinese). doi: 10.3969/j.issn.1004-8227.2008.05.019
[17] GOSAR M, MILER M. Anthropogenic metal loads and their sources in stream sediments of the Meza River catchment area (NE Slovenia) [J]. Applied Geochemistry, 2011, 26(11): 1855-1866. doi: 10.1016/j.apgeochem.2011.06.009 [18] 李世玉, 刘彬, 杨常亮, 等. 上覆水pH值和总磷浓度对含铁盐的高砷沉积物中砷迁移转化的影响 [J]. 湖泊科学, 2015, 27(6): 1101-1106. doi: 10.18307/2015.0615 LI S Y, LIU B, YANG C L, et al. Effect of pH and total phosphorus concentration of overlying water on arsenic mobilization in the sediments containing high arsenic and iron salts [J]. Journal of Lake Sciences, 2015, 27(6): 1101-1106(in Chinese). doi: 10.18307/2015.0615
[19] MOHAN D, SINGH P, SARSWAT A, et al. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars [J]. Journal of Colloid and Interface Science, 2014, 448(12): 238-250. [20] 袁方. 不同pH值下重金属的形态及MEUF法对其去除机理的研究[D]. 长沙: 湖南大学, 2016. YUAN F. Investigation of the mechanisms of the heavy metal speciation and removal as a function of pH via micellar enhanced ultrafiltration [Dissertation]. Changsha: Hunan University, 2016 (in Chinese).
[21] 王小庆, 郑乐平, 孙为民. 淀山湖沉积物孔隙水中重金属元素分布特征 [J]. 中国环境科学, 2004, 24(4): 17-21. WANG X Q, ZHENG L P, SUN W M. The distribution characteristics of heavy metal elements in the pore water of sediment, Dianshan lake [J]. China Environmental Science, 2004, 24(4): 17-21(in Chinese).
[22] 韩鲁佳, 李彦霏, 刘贤, 等. 生物炭吸附水体中重金属机理与工艺研究进展 [J]. 农业机械学报, 2017, 48(11): 1-11. doi: 10.6041/j.issn.1000-1298.2017.11.001 HAN L J, LI Y F, LIU X, et al. Remediation effect of biochar on sediment contaminated by heavy metals [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 1-11(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.11.001
[23] 李仁英, 周志高, 杨浩. 上覆水pH对滇池沉积物重金属释放的影响[C]. 全国农业环境科学学术研讨会, 2011: 430-436. LI R Y, ZHOU Z G, YANG H. The effect of pH in overlying water on the release of heavy metals in sediment of Dianchi lake[J]. National Agricultural Environmental Science Symposium, 2011: 430-436 (in Chinese).
[24] 李敏, 成杭新, 李括. 中国淡水湖泊沉积物地球化学背景与环境质量基准建立的思考 [J]. 地学前缘, 2018, 25(4): 276-284. LI M, CHENG H X, LI K. Geochemical background of freshwater lake sediments: a constraint on the establishment of sediment quality guidelines in China [J]. Earth Science Frontiers, 2018, 25(4): 276-284(in Chinese).
[25] 李扬, 李锋民, 张修稳, 等. 生物炭覆盖对底泥污染物释放的影响 [J]. 环境科学, 2013, 34(8): 3071-3078. LI Y, LI F M, ZHANG X W, et al. Effects of biochar covering on the release of pollutants from sediment [J]. Environmental Science, 2013, 34(8): 3071-3078(in Chinese).
[26] 王芹, 何岸飞. 植物吸收重金属动力学研究进展 [J]. 绿色科技, 2018, 10(5): 50-54. WANG Q, HE A F. Advances in dynamics of phytoremediation on heavy-metal contaminated soils [J]. Journal of Green Science and Technology, 2018, 10(5): 50-54(in Chinese).
[27] ZHANG S, TIAN K, JIANG S F, et al. Preventing the release of Cu2+ and 4-CP from contaminated sediments by employing a biochar capping treatment [J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7730-7738. [28] ABUDUWAILIL J, ZHANG Z Y, JIANG F Q. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China [J]. Environmental Science and Pollution Research, 2015, 22(18): 14018-14031. doi: 10.1007/s11356-015-4625-1 [29] 杨学福, 关建玲, 段晋明, 等. 渭河西安段水体重金属污染现状及其健康风险评价 [J]. 水土保持通报, 2014, 34(2): 152-156. YANG X F, GUAN J L, DUAN J M, et al. Heavy metal pollution and related health risk of Weihe river in Xi'an section [J]. Bulletin of Soil and Water Conservation, 2014, 34(2): 152-156(in Chinese).
[30] 潘莎, 陈再琴, 汪钊宇, 等. 燃煤电厂周边河流中氟、砷和重金属污染健康风险评价 [J]. 环境监测管理与技术, 2019, 31(4): 33-37. doi: 10.3969/j.issn.1006-2009.2019.04.008 PAN S, CHEN Z Q, WANG Z Y, et al. Health risk assessment of fluorine, arsenic and heavy metals in river around coal-fired power plant [J]. The Administration and Technique of Environmental Monitoring, 2019, 31(4): 33-37(in Chinese). doi: 10.3969/j.issn.1006-2009.2019.04.008
[31] 刘冬. 基于活性炭与生物炭的水体原位修复技术中试探讨 [J]. 安徽农业科学, 2019, 47(12): 87-90. doi: 10.3969/j.issn.0517-6611.2019.12.024 LIU D. Study on the technique of in-situ restoration of water based on activated carbon and biochar [J]. Journal of Anhui Agricultural Sciences, 2019, 47(12): 87-90(in Chinese). doi: 10.3969/j.issn.0517-6611.2019.12.024