膨润土对垃圾渗滤液絮凝预处理的强化效果

杨昕达, 郝林林, 常达, 曾明, 王昶. 膨润土对垃圾渗滤液絮凝预处理的强化效果[J]. 环境工程学报, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110
引用本文: 杨昕达, 郝林林, 常达, 曾明, 王昶. 膨润土对垃圾渗滤液絮凝预处理的强化效果[J]. 环境工程学报, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110
YANG Xinda, HAO Linlin, CHANG Da, ZENG Ming, WANG Chang. Application of inorganic mineral bentonite to improve flocculation pretreatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110
Citation: YANG Xinda, HAO Linlin, CHANG Da, ZENG Ming, WANG Chang. Application of inorganic mineral bentonite to improve flocculation pretreatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110

膨润土对垃圾渗滤液絮凝预处理的强化效果

    作者简介: 杨昕达(1989—),男,硕士研究生。研究方向:水处理剂和高级氧化技术。E-mail:953292926@qq.com
    通讯作者: 王昶(1958—),男,博士,教授。研究方向:废水处理与资源化等。E-mail:wangc88@163.com
  • 基金项目:
    宁夏自治区科技厅资助项目(2019BBE02024)
  • 中图分类号: X703.1

Application of inorganic mineral bentonite to improve flocculation pretreatment of landfill leachate

    Corresponding author: WANG Chang, wangc88@163.com
  • 摘要: 依据反胶体絮凝相似相容原理,使用无机矿物材料膨润土(PRT),针对垃圾焚烧厂的垃圾渗滤液,采用絮凝强化工艺进行预处理,考察了PRT、聚合氯化铝(PAC)以及阳离子聚丙烯酰胺(C-PAM)对垃圾渗滤液的絮凝效果,研究了PRT与PAC之间的协同效应。结果表明:传统PAC和C-PAM对垃圾渗滤液具有一定的絮凝效果,在250 mL稀释5倍的渗滤液中分别投加3% PAC和0.1%C-PAM各8 mL和5 mL时,COD、浊度、SS、氨氮和总磷去除率分别为23.1%、93.4%、91.1%、1.2%和96.7%。PRT自身的胶体和颗粒物质量力作用,能够打破垃圾渗滤液的离子平衡,进而与PAC形成协同效应;且在C-PAM的作用下,PRT对垃圾渗滤液显现出较高的絮凝效果和沉降速度,在250 mL稀释5倍的渗滤液中分别投加PRT、PAC和C-PAM各为2 g、8 mL和5 mL时,上清液中的COD、浊度、SS、氨氮和总磷的去除率分别达到72.3%、97.6%、93.8%、18.4%以及97.5%。PRT的投加有效地促进了絮凝效果,与传统的方法相比,COD由16 483 mg·L−1降低到5 941 mg·L−1,上清液的浊度达到10.4 NTU;絮体由上浮形式转变为快速沉降,更加有利于后续的分离和生化处理。PAC投加对氨氮去除率影响不大,C-PAM对氨氮的去除效果影响较大,这说明垃圾渗滤液中氨氮主要是有机胺。PRT、PAC以及C-PAM的一级强化絮凝组合更高效,解决了只用PAC和C-PAM絮凝后出现絮体松散、上浮等难以分离的技术问题,可为后续新的生化处理模式的建立提供参考。
  • 近年来,含铊矿石的采选和冶炼已导致多起流域铊污染事件[1]。含铊废水或含铊灰渣随雨水进入地表水体后,会引起流域铊质量浓度异常,并威胁饮用水安全。铊是具有剧毒特性的重金属,其毒性远大于铅、镉、镍、砷、汞等重金属,易导致急慢性中毒[2; 3]。铊的化合物易通过吸入、口服和皮肤接触的方式被生物体吸收。铊通过工业生产活动污染大气、水源和土壤,威胁生态环境安全,并在环境中转运、迁移,富集在植物可食部分,通过食物链进入人体,会危害公众身体健康[2-4]

    目前,关于含铊工业废水的处理及突发水污染事件中水厂应急处置除铊的研究较多。含铊工业废水的处理方法主要包括化学沉淀法[5-9]、吸附法[5-9]、离子交换法[5-7]、萃取法[6-7]。仅有少数单一技术可确保处理后水质达到5 µg·L−1的排放标准[6],但无法满足在应急处置中达到生活饮用水标准的应急目标要求。因材料易得性、经济性,以及pH影响、共存阳离子干扰等原因,也不一定适用于开放环境下铊的应急处置。为保障供水水质安全,自来水厂应急除铊一般采取预氧化强化混凝工艺[10-16],以确保出水稳定达标。

    开放环境下的流域铊污染应急处置仍鲜有报道。本研究采用硫化钠化学沉淀削污及流域调水稀释联合技术方案,对云南省富源县响水河水库及其上游鸡上河河道铊污染开展应急处置,探讨了技术方案在实际应用中可能的影响因素,并针对处置中存在的难点问题提出了解决策略,以期为应急处理小流域突发铊污染提供参考。

    2021年2月7日,云南省生态环境厅驻曲靖市生态环境监测站在饮用水源地例行监测时发现,曲靖市富源县地表水集中式饮用水水源地响水河水库大坝取水口铊质量浓度超过《地表水环境质量标准》(GB 3838-2002)标准限值约1.5倍。在2月8日至9日,对响水河水库及其上游鸡上河流域9个断面进行了复核和遡源监测,进一步确定了响水河水库、小河水库,以及两水库之间约15 km鸡上河铊质量浓度不同程度地超标。响水河水库大坝取水口、小河水库大坝、鸡上河大龙潭监测断面的铊质量浓度分别为0.26、8.17 、3.12 µg·L−1。相关监测及投药处置点位如图1所示,其设置时间和位点说明见表1

    图 1  主要应急处置投药点位和应急监测断面示意图
    Figure 1.  Schematic diagram of the main dosing points and monitoring section for emergency treatment
    表 1  主要应急处置投药点位和应急监测断面设置说明
    Table 1.  Description of the main dosing points and monitoring sections for emergency treatment
    投药点位/监测断面设置时间相对位置设置目的
    1#固定式投药点位2月15日小河水库坝下一级投药处置点位
    2#固定式投药点位2月15日2#监测断面下游100 m为确保处置达标而设置
    3#固定式投药点位2月18日6#监测断面下游100 m5#监测断面铊质量浓度升高后设置
    1#监测断面2月15日1#投药点位下游1000 m监控1#固定式投药点位处置效果
    2#监测断面2月15日2#投药点位上游100 m监控1#固定式投药点位处置后稳定性监控用于动态调整2#投药点位投药参数
    3#监测断面2月15日2#投药点位下游200 m监控2#固定式投药点位处置效果
    4#监测断面2月15日2#投药点位下游2000 m监控2#固定式投药点位处置后稳定性
    5#监测断面2月15日响水河水库入口处监控响水河水库入口处铊质量浓度
    6#监测断面2月18日3#投药点位上游100 m监控用于动态调整3#投药点位投药参数
    7#监测断面2月18日3#投药点位下游1 000 m监控3#固定式投药点位处置效果
     | Show Table
    DownLoad: CSV

    在事件发生后,当地政府积极组织开展应急处置工作。富源县居民供水持续稳定,未受影响;社会舆论平稳,无不良反应。在2月10日,通过排查锁定污染源为曲靖市沾益区某公司,该公司位于沾益区白水工业园区,距小河水库直线距离约110 m,是一家含烧结、炼铁生产工序的钢铁非联合企业。自2月14日起,经过22 d的投药削污,小河水库及其下游鸡上河河道铊污染已得到全面妥善处置,不再对响水河水库铊质量浓度造成新的影响。自3月4日20时起,响水河水库大坝取水口铊质量浓度持续稳定达标,低于集中式生活饮用水地表水源地特定项目标准限值0.1 µg·L−1。至3月5日,应急响应终止。

    根据资料整理和现场踏勘情况,针对此次流域铊污染事件的应急处置,提出系统性综合解决方案,主要采取供水保障、源头阻断、工程削减、调水稀释等应急处置措施。

    1)水厂供水保障。2月10日,曲靖市政府当即切换水源,启用备用水源地供给富源县第二自来水厂,以确保居民供水安全。对自来水厂和供水管道采取措施消除铊污染,以确保管网末端居民龙头出水达标。在应急处置期间,持续监测水厂原水和出水,对饮水水质加密监测,并全面掌握供水安全情况。紧急调配抽水设备保障供水能力,并在用水高峰时段对高耗水产业进行管控,保证当地居民生活用水充足。自事件发生以来,富源县城饮水供水未出现中断和超标情况,居民生活用水未受影响。

    2)污染源头阻断。将肇事企业厂区潜在污染物料全部转运至曲靖银发危险废物集中处置中心有限公司应急贮存。对厂区原料和危险废物贮存场地采取“三防措施”。完善厂区雨污分流系统和应急池,开展厂内初期雨水收集设施和厂外截洪沟建设工作,以确保厂内水不出厂、厂外水不入厂。对厂区约3 500 m3高污染循环水先期投加沉淀剂和絮凝剂处理后,纳入小河水库一并处理。先期封堵小河水库泄洪道,防止小河水库高浓度含铊水体未经处理而进入下游鸡上河河道。

    3)化学沉淀削污。本次应急处置采用氢氧化钠调节水体pH至弱碱性,硫化钠沉淀法降低污染河流铊质量浓度工艺。天然水体中的铊以Tl+和Tl3+ 2种氧化态存在,Tl+比Tl3+更稳定,是水环境中铊的主要形式。Tl+的化合物水溶性较强,对pH不敏感,主要以游离离子的形式存在。Tl3+只有在极氧化和酸性条件下才可能存在,主要以微溶且反应性相对较低的Tl(OH)3形式存在[17-18]。在酸性条件下,硫化钠易生成硫化氢气体。在应急处置的碱性条件下,少量Tl3+以Tl(OH)3沉淀出来,而Tl+主要与过量硫化钠反应生成Tl2S沉淀,并沉积吸附到水系沉积物中,从水中去除。

    采用上述硫化钠化学沉淀方法对受污染小河水库及其下游鸡上河河道进行全面处置。设置两级投药处置点(1#和2#固定式投药处置点位),对小河水库47×104 m3高浓度污水采取硫化钠和氢氧化钠联合化学除铊工艺进行处置。自2月15日至2月21日,历时7 d,小河水库高浓度存水则已处置完毕。2月17日,发现响水河水库入口处监测断面铊质量浓度呈现升高趋势。2月18日,其上游鸡上河大龙潭监测断面铊质量浓度也出现波动情况。因此,于2月18日在鸡上河南村小桥增设了3#固定式投药处置点位,确保进入响水河水库的铊质量浓度持续保持在0.1 µg·L−1以下。因鸡上河河道淤泥和滞水较多,对小河水库完成投药处置后,下游鸡上河河道铊质量浓度依然较高,2月23日至2月28日,采取分散式投药方式对淤泥和滞水中留存的铊污染物进行削减,以完全消除上游河道对下游河道铊质量浓度的影响,缩短处置时间。

    4)流域调水稀释。统筹协调水资源调度和保障工作,在确保响水河水库饮用水取水口铊质量浓度达标的前提下,妥善安排生活、生产、农业用水需求,做好用水安全保障工作。采取流域统筹调水措施,科学做好水资源调度的时序安排,合理调整泄水与补水的调度时序,对响水河水库超标水体进行处置。自2月14日起,采取边补水边下泄方式,从石坝水库调水约345×104 m3补给响水河水库。至2月24日,石坝水库停止补水,响水河水库以4 m3·s−1的流量继续下泄,累计下泄639×104 m3。自3月4日20时起,响水河水库大坝取水口铊质量浓度首次达到0.10 µg·L−1,并呈持续下降的趋势。

    采用车载电感耦合等离子体质谱分析系统(车载ICP-MS,SUPEC 7000,杭州谱育科技发展有限公司)对采集的水样进行环境应急监测。采用标准《水质 65种元素的测定 电感耦合等离子体质谱法》(HJ 700-2014)测定水样中的铊元素,铊的方法检出限为0.02 µg·L−1

    去除率与处置效果的关系见图2。在利用氢氧化钠调节pH为8~9、采用硫化钠的典型实际应用质量浓度约为10 mg·L−1时,处置的去除率稳定,投药处置效果亦稳定。投药处置效果沿程的稳定性如图2(b)所示。对比1#监测断面(1#投药点下游1 000 m)和2#监测断面(2#投药点上游100m)的监测结果发现,2个监测断面的铊质量浓度基本一致,说明一次投药处置采用的投药浓度是合适的,投药处置效果亦是稳定的。

    图 2  去除率与处置效果的变化
    Figure 2.  Change of removal efficiency on disposal performance
    注:取样日期为2021年2月16日。

    经1#固定式投药点位投药处置后,污染水体铊质量浓度由8.17 µg·L−1降至0.15~0.41 µg·L−1,平均去除率大于95%。然而,经一次投药处置后,铊质量浓度并未降至0.10 µg·L−1以下,未实现应急处置目标。在应急处置中,考虑到处置效果和经济成本,硫化钠化学沉淀除铊的典型应用质量浓度为10~20 mg·L−1,远高于理论计算浓度。在一定浓度条件下,铊的去除率并不随硫化钠投药量的增大而提高,单次投药去除率存在一个极限值。因此,要使铊质量浓度降至0.10 µg·L−1以下,需要设置至少两级固定式投药点位进行处置。

    图3为河道环境对处置时效的影响。在2月21日,小河水库高浓度存水处置完毕后,鸡上河1#和2#监测断面的铊质量浓度均出现波动情况并呈现升高趋势,1#和2#监测断面浓度铊质量浓度均升至约0.80 µg·L−1,见图3(a)。经现场实地勘查发现,鸡上河2#投药点上游河道长期淤积,河道中淤泥和滞水较多,且上游不断有少量来水汇入,从而导致小河水库高浓度存水处置完毕后,其下游河道铊质量浓度仍较高。

    图 3  河道环境对处置时效的影响
    Figure 3.  Effect of river environment on disposal time
    注:取样日期为2021年2月28日。

    针对上述影响,自2月23日10:00起,采取多点分散式投药方式对鸡上河河道淤泥和滞水中的含铊污染物进行处置,并同时开展河道疏通工作,以缩短处置时间并彻底消除上游河道对下游河道铊质量浓度的影响。在分散式投药处置期间,鸡上河河道1#和2#监测断面的铊质量浓度变化见图3(b)。铊质量浓度呈现波动状态,1#和2#监测断面的铊质量浓度总体逐渐升高后保持稳定。图3(c)表明,截至2月28日,鸡上河河道上游铊质量浓度降至0.10 µg·L−1以下,不再对下游河道的铊质量浓度产生影响,故停止分散式投药。

    投药点位对处置效果的影响见图4。经2#固定式投药点位处置后,3#监测断面(2#固定式投药点位下游200 m)的铊质量浓度稳定小于0.10 µg·L−1。在整个应急处置期间,无论是在对小河水库高浓度存水处置期间(图4(a)),还是在对鸡上河河道淤泥和滞水采取多点分散式投药方式处置期间(图4(b)),3#监测断面的铊质量浓度始终小于0.10 µg·L−1。因此,在突发水污染事件应急处置中,为保证投药处置效果及其稳定性,设置多级固定式投药处置点位是十分必要的。一方面,由于存在极限去除率,经一次投药处置后,不能保证铊质量浓度降至0.10 µg·L−1以下;另一方面,由于河道的复杂性,需进行分散式多点投药,导致下游河道铊质量浓度产生波动。本次投药处置前期设置了1#和2# 2个固定式投药处置点位,以确保铊质量浓度处置达标和消除波动。

    图 4  投药点位对处置效果的影响
    Figure 4.  Effect of dosing point on disposal performance
    注:取样日期为2021年2月16日。

    图5为卡斯特地貌对处置效果的影响。自2月17日起,5#监测断面(响水河水库入口处)铊质量浓度呈现升高趋势。2月18日,4#监测断面(鸡上河大龙潭监测断面)的铊质量浓度也出现波动情况。经2#固定式投药点位处置后,其下游200 m的3#监测断面铊质量浓度已降至0.10 µg·L−1以下。然而,响水河水库入口处铊质量浓度自17日起即高于0.10 µg·L−1。这可能是由于碳酸氢根的影响。2#固定式投药点位下游为卡斯特地貌,故鸡上河地表水与周边地下水的交换频繁,存在地下河及地下涌水补给地表河水的情况。鸡上河主要的地下水补给来源于大龙潭地下涌水。地下水中较高的碳酸氢根离子可能对硫化钠化学沉淀除铊效果产生影响。

    图 5  卡斯特地貌对处置效果的影响
    Figure 5.  Effect of karst landform on disposal performance

    目前,对于铊在水体和沉积物间的界面化学和迁移转化研究较有限[18-19]。本次事件中,经大量硫化钠沉淀处置后,沉积物中的铊主要以硫化物结合态的形式存在。硫化物结合态的铊在一定物理化学条件下会通过解析释放出可交换性铊,并重新回到水体中并发生迁移[19]。pH可能是影响铊迁移的主要控制因素。在卡斯特地貌条件下,受HCO3电离产生的H+影响,一方面地下水中的HCO3可促进铊的硫化物沉淀出现解析,另一方面会促使水体中微量Tl(OH)3溶解,从而出现铊质量浓度的上升。反应式见式(1)和式(2)。

    Tl2S=2Tl++S2 (1)
    Tl(OH)3=Tl3++3OH (2)

    为解决此问题,在排查排除其他含铊污染源汇入的情况下,于2月18日紧急在鸡上河南村小桥设置了3#固定式投药点位,并于2月19日零点开始投药处置,以确保进入响水河水库的铊质量浓度小于0.10 µg·L−1。同时,在南村小桥上游100 m和下游1 000 m增设了6#和7#监测断面,以跟踪监测处置效果。图5(c)表明,在2月19日,经2#固定式投药点位处置后,其下游3#监测断面铊质量浓度持续小于0.1 µg·L−1。由于卡斯特地貌影响,4#监测断面依然呈现波动状态,6#监测断面铊质量浓度较高,但是经过3#固定式投药点位对解离出来的铊进行处置后,其下游7#和5#监测断面的铊质量浓度均小于0.1 µg·L−1。这表明卡斯特地貌的影响经采取设置3#固定式投药点位的方法得以消除。

    水库形状对处置时效的影响见图6。由于响水河水库较狭长且呈不规则形状,其入口、大坝以及全库平均铊质量浓度在空间分布上不均匀。自2月20日起,经3次固定式投药点位处置后,鸡上河进入响水河水库的铊质量浓度持续小于0.10 µg·L−1。至此,响水河水库入口处铊质量浓度实现达标,鸡上河对响水河水库的铊质量浓度不再产生影响。而响水河水库大坝取水口的铊质量浓度连续2 d仍为0.14 µg·L−1。在2月22日,对响水河水库全库9个代表性监测点位开展监测,铊的平均质量浓度为0.10 µg·L−1,已达到集中式生活饮用水地表水源地特定项目的标准限值。然而,由于响水河水库呈狭长型,且其形状极不规则、水动力条件不良,使得水体推移混合及置换速度较慢,故大坝取水口铊质量浓度仍为0.15 µg·L−1

    图 6  水库形状对处置时效的影响
    Figure 6.  Effect of reservoir shape on disposal time

    因响水河水库大坝取水口铊质量浓度降低速度较慢,为进一步加快铊元素从响水河水库的库中向大坝迁移,自2月24日起,采取暂停石坝水库下泄补水,并在响水河水库经低涵全速下泄坝头水体的措施,使得在节约水资源的前提下,加速降低铊质量浓度。这一调整措施实现了加快铊质量浓度降低的目标。此后,库内和大坝铊质量浓度持续下降。截至3月4日20:00,大坝取水口的铊质量浓度为0.10 µg·L−1,首次达标并持续下降。

    1)在一定浓度条件下,硫化钠化学沉淀除铊存在极限去除率,需设置至少两级投药处置点位,以确保处置达标。

    2)流域污染应急处置要充分考虑河道环境的复杂性,适时采取多点分散式投药方式处置,以消除波动和加快处置进度。

    3)在突发水污染事件应急处置前期应充分考虑喀斯特地貌或者其他因素的影响,提前规划多级固定式投药点位,以消除不可预见因素或情况对于处置达标的影响。

    4)对于不规则形状或者水动力条件较差的水库,要合理动态调整补水和泄水时序,以节约水资源并缩短处置时间。

  • 图 1  垃圾渗滤液絮凝前后效果图(左侧为原水,右侧为絮凝后)

    Figure 1.  Effect picture of landfill leachate before and after flocculation (raw water on the left and flocculated water on the right)

    图 2  絮凝效果图(从左到右PAC投加量依次为絮凝前、3、4、5、6、7、8 mL)

    Figure 2.  Flocculation effect picture (from left to right: PAC dosage is 0, 3, 4, 5, 6, 7, 8 mL, respectively)

    图 3  絮凝效果图(从左到右C-PAM投加量依次为絮凝前、2、3、4、5、6、7 mL)

    Figure 3.  Flocculation effect picture (from left to right: C-PAM dosage is 0, 2, 3, 4, 5, 6, 7 mL, respectively)

    图 4  絮凝效果图(从左到右PRT投加量依次为絮凝前、0、1、2、3、4和5 g)

    Figure 4.  Flocculation effect picture (from left to right: PRT dosage is before flocculation, 0, 1, 2, 3, 4 and 5 g, respectively)

    表 1  垃圾渗滤液絮凝前后的水质指标

    Table 1.  Water quality index of landfill leachate before and after flocculation

    水样COD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)氨氮/(mg·L−1)电导率/(mS·cm−1)TDSSalpH
    絮凝前21 44043281069.94342.612.3312.337.06.1
    絮凝后17 02535.6792.41339.512.3112.306.96.0
    注:投加8 mL 3% PAC、4 mL 0.1% C-PAM。
    水样COD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)氨氮/(mg·L−1)电导率/(mS·cm−1)TDSSalpH
    絮凝前21 44043281069.94342.612.3312.337.06.1
    絮凝后17 02535.6792.41339.512.3112.306.96.0
    注:投加8 mL 3% PAC、4 mL 0.1% C-PAM。
    下载: 导出CSV

    表 2  PAC投加量对垃圾渗滤液中水质指标的影响

    Table 2.  Influence of PAC dosage on the water quality index of landfill leachate

    PAC/mLCOD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)电导率/(mS·cm−1)TDSSal氨氮/(mg·L−1)pH
    絮凝前21 44043281069.9412.3312.337.0342.66.1
    316 48334.2773.5912.2612.267.0325.56.0
    414 81624.9713.0912.2412.247.0324.76.0
    512 10819.6662.4511.9411.946.8323.96.0
    68 09114.3612.2311.8611.866.7322.86.0
    77 81613.5592.0111.5511.556.8320.96.0
    87 56612.6521.9711.5411.546.7320.56.0
      注:PRT投加量为2 g、0.1% C-PAM投加量为4 mL。
    PAC/mLCOD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)电导率/(mS·cm−1)TDSSal氨氮/(mg·L−1)pH
    絮凝前21 44043281069.9412.3312.337.0342.66.1
    316 48334.2773.5912.2612.267.0325.56.0
    414 81624.9713.0912.2412.247.0324.76.0
    512 10819.6662.4511.9411.946.8323.96.0
    68 09114.3612.2311.8611.866.7322.86.0
    77 81613.5592.0111.5511.556.8320.96.0
    87 56612.6521.9711.5411.546.7320.56.0
      注:PRT投加量为2 g、0.1% C-PAM投加量为4 mL。
    下载: 导出CSV

    表 3  C-PAM投加量对垃圾渗滤液水质指标的影响

    Table 3.  Influence of C-PAM dosage on the water quality index of landfill leachate

    C-PAM/mLCOD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)电导率/(mS·cm−1)TDSSal氨氮/(mg·L−1)pH
    211 10815.4582.4512.2512.257.3324.86.0
    39 09114.4562.3912.2212.227.3323.46.0
    47 56612.3521.9611.5411.546.7320.56.0
    55 94110.6501.7610.8010.806.1279.66.0
    66 60810.5441.7110.6510.656.0278.36.0
    77 71610.2321.6810.4610.465.8277.86.0
      注:PRT投加量为2 g,PAC投加量为8 mL。
    C-PAM/mLCOD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)电导率/(mS·cm−1)TDSSal氨氮/(mg·L−1)pH
    211 10815.4582.4512.2512.257.3324.86.0
    39 09114.4562.3912.2212.227.3323.46.0
    47 56612.3521.9611.5411.546.7320.56.0
    55 94110.6501.7610.8010.806.1279.66.0
    66 60810.5441.7110.6510.656.0278.36.0
    77 71610.2321.6810.4610.465.8277.86.0
      注:PRT投加量为2 g,PAC投加量为8 mL。
    下载: 导出CSV

    表 4  PRT投加量对垃圾渗滤液水质指标的影响

    Table 4.  Influence of RTF dosage on the water quality index of landfill leachate

    PRT/gCOD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)电导率/(mS·cm−1)TDSSal氨氮/(mg·L−1)pH
    016 48328.4722.3413.2813.286.9338.46.0
    113 56823.9612.2111.2711.276.5294.36.0
    25 94110.6501.7610.8010.806.1279.66.0
    35 93910.4511.6910.7610.765.9278.96.0
    45 93610.3511.6110.6810.685.9277.36.0
    55 93110.1491.5910.5910.595.8276.56.0
      注:PAC投加量为8 mL、C-PAM投加量为5 mL。
    PRT/gCOD/(mg·L−1)浊度/NTUSS/(mg·L−1)总磷/(mg·L−1)电导率/(mS·cm−1)TDSSal氨氮/(mg·L−1)pH
    016 48328.4722.3413.2813.286.9338.46.0
    113 56823.9612.2111.2711.276.5294.36.0
    25 94110.6501.7610.8010.806.1279.66.0
    35 93910.4511.6910.7610.765.9278.96.0
    45 93610.3511.6110.6810.685.9277.36.0
    55 93110.1491.5910.5910.595.8276.56.0
      注:PAC投加量为8 mL、C-PAM投加量为5 mL。
    下载: 导出CSV
  • [1] 方成林, 陈林鑫, 魏连杰, 等. 我国垃圾焚烧发电行业投资前景分析[J]. 中国资源综合利用, 2020, 38(9): 58-60. doi: 10.3969/j.issn.1008-9500.2020.09.017
    [2] 陈澈. 城市垃圾填埋场渗滤液处理工程的控制[J]. 四川水泥, 2020(10): 113-114. doi: 10.3969/j.issn.1007-6344.2020.10.056
    [3] 李平, 高星, 吴锦华, 等. 垃圾焚烧厂渗滤液处置工艺中溶解性有机物变化特性[J]. 中国环境科学, 2014, 34(9): 2279-2284.
    [4] 陈静霞. 垃圾渗滤液处理技术研究进展探究[J]. 环境与发展, 2020, 32(8): 98-100.
    [5] 唐红玲, 刘坤, 阮文权. 浅谈垃圾渗滤液处理及资源化技术[J]. 广东化工, 2020, 47(8): 128-129. doi: 10.3969/j.issn.1007-1865.2020.08.060
    [6] 宋怡明, 徐少伟, 宋昊, 等. 高级氧化法污水处理技术综述[J]. 山东化工, 2019, 48(24): 211-213. doi: 10.3969/j.issn.1008-021X.2019.24.102
    [7] 马平元. 膜技术在垃圾渗滤液处理中的应用[J]. 甘肃科技纵横, 2020, 49(8): 27-29. doi: 10.3969/j.issn.1672-6375.2020.08.008
    [8] 王志科, 张兴, 赵峥, 等. 垃圾渗滤液处理方法研究进展[J]. 绿色科技, 2020(2): 113-116. doi: 10.3969/j.issn.1674-9944.2020.02.038
    [9] 张铁军, 臧晓峰. 垃圾渗滤液处理技术研究进展[J]. 天津化工, 2018, 32(6): 1-4.
    [10] ZHANG H Y, CHEN D H, ZHENG Y, et al. Advanced processing of biologically-treated leachate by PAC[J]. Key Engineering Materials, 2011, 476(474): 1057-1062.
    [11] 申丽芬, 孙宝盛, 张燕. PAC和PAM复合混凝剂对垃圾渗滤液预处理的研究[J]. 工业水处理, 2014, 34(2): 59-61. doi: 10.3969/j.issn.1005-829X.2014.02.016
    [12] 李亚峰, 杨严, 王建. PAC和PAM复合混凝剂处理垃圾渗滤液的试验研究[J]. 工业安全与环保, 2011, 37(10): 9-11. doi: 10.3969/j.issn.1001-425X.2011.10.004
    [13] 李志伟, 孙力平, 吴立. PAC和PAM复合混凝剂处理垃圾渗滤液的研究[J]. 中国给水排水, 2009, 25(23): 85-87. doi: 10.3321/j.issn:1000-4602.2009.23.025
    [14] 李志伟, 孙力平, 吴立, 等. PAC和PAM复合絮凝剂处理垃圾渗滤液[C]//2008年全国给水排水技术交流会暨全国水网理事会换届大会. 成都, 2008.
    [15] 鲁安怀. 矿物法: 环境污染治理的第四类方法[J]. 地学前缘, 2005(1): 196-205. doi: 10.3321/j.issn:1005-2321.2005.01.027
    [16] 许琳科, 刘继红, 夏俊方. 聚合氯化铝和聚丙烯酰胺混凝处理垃圾渗滤液的研究[J]. 安徽农业科学, 2011, 39(27): 16747-16749. doi: 10.3969/j.issn.0517-6611.2011.27.096
    [17] 李风亭. 混凝剂与絮凝剂[M]. 北京: 化学工业出版社, 2005.
    [18] 徐大融, 张忠智, 江浩, 等. PAC-PAM联用研究进展综述[J]. 中国石油和化工标准与质量, 2019, 39(6): 156-157. doi: 10.3969/j.issn.1673-4076.2019.06.077
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 7.6 %DOWNLOAD: 7.6 %HTML全文: 81.9 %HTML全文: 81.9 %摘要: 10.4 %摘要: 10.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 89.1 %其他: 89.1 %Baoding: 0.1 %Baoding: 0.1 %Beijing: 2.5 %Beijing: 2.5 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chongqing: 0.2 %Chongqing: 0.2 %Dortmund: 0.3 %Dortmund: 0.3 %Guangzhou: 0.2 %Guangzhou: 0.2 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.1 %Hangzhou: 0.1 %Harbin: 0.2 %Harbin: 0.2 %Hefei: 0.1 %Hefei: 0.1 %Hyderabad: 0.2 %Hyderabad: 0.2 %Langfang: 0.2 %Langfang: 0.2 %Montreal: 0.2 %Montreal: 0.2 %Nanjing: 0.2 %Nanjing: 0.2 %Shanghai: 0.1 %Shanghai: 0.1 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.5 %Shenzhen: 0.5 %Shuangjian: 0.1 %Shuangjian: 0.1 %Tsuen Wan: 0.2 %Tsuen Wan: 0.2 %Weinan: 0.1 %Weinan: 0.1 %XX: 4.3 %XX: 4.3 %Yuncheng: 0.1 %Yuncheng: 0.1 %北京: 0.3 %北京: 0.3 %大庆: 0.1 %大庆: 0.1 %天津: 0.1 %天津: 0.1 %杭州: 0.1 %杭州: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %西安: 0.1 %西安: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他BaodingBeijingChang'anChangshaChongqingDortmundGuangzhouGulanHangzhouHarbinHefeiHyderabadLangfangMontrealNanjingShanghaiShenyangShenzhenShuangjianTsuen WanWeinanXXYuncheng北京大庆天津杭州武汉济南深圳西安阳泉Highcharts.com
图( 4) 表( 4)
计量
  • 文章访问数:  5041
  • HTML全文浏览数:  5041
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-22
  • 录用日期:  2021-01-29
  • 刊出日期:  2021-05-10
杨昕达, 郝林林, 常达, 曾明, 王昶. 膨润土对垃圾渗滤液絮凝预处理的强化效果[J]. 环境工程学报, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110
引用本文: 杨昕达, 郝林林, 常达, 曾明, 王昶. 膨润土对垃圾渗滤液絮凝预处理的强化效果[J]. 环境工程学报, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110
YANG Xinda, HAO Linlin, CHANG Da, ZENG Ming, WANG Chang. Application of inorganic mineral bentonite to improve flocculation pretreatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110
Citation: YANG Xinda, HAO Linlin, CHANG Da, ZENG Ming, WANG Chang. Application of inorganic mineral bentonite to improve flocculation pretreatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1549-1557. doi: 10.12030/j.cjee.202010110

膨润土对垃圾渗滤液絮凝预处理的强化效果

    通讯作者: 王昶(1958—),男,博士,教授。研究方向:废水处理与资源化等。E-mail:wangc88@163.com
    作者简介: 杨昕达(1989—),男,硕士研究生。研究方向:水处理剂和高级氧化技术。E-mail:953292926@qq.com
  • 天津科技大学海洋与环境学院,天津 300457
基金项目:
宁夏自治区科技厅资助项目(2019BBE02024)

摘要: 依据反胶体絮凝相似相容原理,使用无机矿物材料膨润土(PRT),针对垃圾焚烧厂的垃圾渗滤液,采用絮凝强化工艺进行预处理,考察了PRT、聚合氯化铝(PAC)以及阳离子聚丙烯酰胺(C-PAM)对垃圾渗滤液的絮凝效果,研究了PRT与PAC之间的协同效应。结果表明:传统PAC和C-PAM对垃圾渗滤液具有一定的絮凝效果,在250 mL稀释5倍的渗滤液中分别投加3% PAC和0.1%C-PAM各8 mL和5 mL时,COD、浊度、SS、氨氮和总磷去除率分别为23.1%、93.4%、91.1%、1.2%和96.7%。PRT自身的胶体和颗粒物质量力作用,能够打破垃圾渗滤液的离子平衡,进而与PAC形成协同效应;且在C-PAM的作用下,PRT对垃圾渗滤液显现出较高的絮凝效果和沉降速度,在250 mL稀释5倍的渗滤液中分别投加PRT、PAC和C-PAM各为2 g、8 mL和5 mL时,上清液中的COD、浊度、SS、氨氮和总磷的去除率分别达到72.3%、97.6%、93.8%、18.4%以及97.5%。PRT的投加有效地促进了絮凝效果,与传统的方法相比,COD由16 483 mg·L−1降低到5 941 mg·L−1,上清液的浊度达到10.4 NTU;絮体由上浮形式转变为快速沉降,更加有利于后续的分离和生化处理。PAC投加对氨氮去除率影响不大,C-PAM对氨氮的去除效果影响较大,这说明垃圾渗滤液中氨氮主要是有机胺。PRT、PAC以及C-PAM的一级强化絮凝组合更高效,解决了只用PAC和C-PAM絮凝后出现絮体松散、上浮等难以分离的技术问题,可为后续新的生化处理模式的建立提供参考。

English Abstract

  • 随着城市生活垃圾日益增多,若得不到妥善处理和处置,会产生一系列困扰居民日常生活的垃圾排放问题。除了传统的垃圾填埋方式外,垃圾焚烧厂这种资源化、无害化的焚烧模式也相继建立[1]。由于垃圾的成分十分复杂,含有水分,经化学变化将会产生一定量的垃圾渗滤液[2]。垃圾渗滤液也称为渗沥液,属于高色度、高浓度的有机化合物和无机化合物的混合液体,能散发出令人窒息的恶臭气味,含有多种有毒有害物质,如难降解的萘、菲等芳香族化合物,其中COD高达几万mg·L−1[3]。垃圾渗滤液如不能及时处理,一旦流入自然环境会造成水体、土壤以及大气等的严重污染,为此,其有效处理至关重要[4]。目前,垃圾渗滤液的处理技术主要包括物化处理[5]、高级氧化处理[6]、膜分离技术[7]和生物处理[8]等。不同的处理技术具有不同的特征,在具体的处理过程中需要结合具体的情况进行设计。一般情况下主要采用几种混合技术,比较常用的工艺方法是膜生物反应器(MBR)+双膜法(NF/RO),该组合工艺不仅结构紧凑,而且处理设施的占地面积比较小,能够有效的对垃圾渗滤液进行处理,而且在处理的过程中自动化程度比较高,便于集中管理[9]。也有采用多效蒸发的方式来处理垃圾渗滤液,但由于垃圾渗滤液浓度高,无机和有机物污染物复杂,该工艺往往会发生堵塞管路问题,影响连续操作。正是由于垃圾渗滤液成分复杂、色度高、浓度高,所采用的物理、物理化学以及生化方法,尤其是絮凝法、高级氧化法以及膜分离法的导入,使得处理费用居高不下。为了实现低成本的生化处理过程,降低浓度,提高生化性能成为解决这一问题的关键。混凝沉淀法一直是垃圾渗滤液预处理的重点,通过添加无机高分子聚合物絮凝剂PAC(PFS)以及助凝剂PAM,使垃圾渗滤液中的污染物随絮凝过程产生的絮体而沉降,从而获得浓度低,便于后续生化处理的上清液[10-14]。这类研究虽已有很多报道,但多是着重于提高上清液中污染物的去除率。而在实际应用中,更应关注絮体沉降速度、上清液体积与絮体体积的经时变化,即使上清液去除率很高,但因上清液体积少,絮体松散,沉降速度慢等难以实现产业化,因此,开发沉降速度快、絮体体积少以及易于脱水的絮凝过程的集成技术十分重要。

    本研究针对天津市泰达环保城市垃圾焚烧厂的垃圾渗滤液,依据反胶体絮凝相似相容原理,借助于电中和、脱稳、絮凝、吸附团聚,快速去除垃圾渗滤液中的难以生化降解的颗粒物、胶团、大分子,从而获得浓度低、小分子污染物的上清液,调节后续的生化性能[15]。使用天然矿物材料容易形成胶体的特性,改变常规的絮凝过程,结合无机高分子聚合物聚合氯化铝(PAC)的强化水解的特性以及传统的阳离子聚丙烯酰胺(C-PAM)助凝剂的深度团聚的功能,研究了无机矿物材料在絮凝过程中与无机高分子聚合物PAC的协同效应,并确定了最佳操作条件,以期为城市垃圾渗滤液的优化处理提供参考。

  • 实验所用渗滤液来自天津市泰达环保城市垃圾焚烧厂,颜色为深绿色,原液经稀释5倍后,COD、BOD、SS、总磷、氨氮、分别为21 440、13 000、810、69.94、342.6 mg·L−1,浊度为432 NTU,电导率为12.33 mS·cm−1,TDS、Sal、pH分别为12.33、7.0、6.1。

    膨润土的化学成分为(Al2,Mg3)Si4O10OH2·nH2O,是以蒙脱石为主要矿物成分的非金属化合物。蒙脱石的结构是由2个硅氧四面体夹1层铝氧八面体组成的2∶1型晶体结构。由于蒙脱石晶胞形成的层状结构存在某些阳离子(Cu、Mg、Na、K等),且这些阳离子与蒙脱石晶胞的作用很不牢固,易被其他阳离子交换,故具有较好的离子交换性能。实验所用无机矿物材料膨润土(PRT)来自石家庄航全矿产品有限公司,其化学成分为50.95% SiO2、16.54% Al2O3、0.26% FeO、2.26% CaO、4.65% MgO、0.47% K2O、23.29% H2O。3.0%的聚合氯化铝(PAC)溶液和0.1%的阳离子聚丙烯酰胺(C-PAM)溶液均由实验室配制而成。实验中使用的98%聚合氯化铝、>99%L-抗坏血酸(AR)、99%硫酸汞(AR)、99%过硫酸钾(AR)均购自于MACKLIN公司,硫酸(AR)购自于天津风船化学试剂科技有限公司,重铬酸钾(AR)购自于天津市大茂化学试剂厂,阳离子聚丙烯酰胺(AR)、硫酸银(AR)购自于天津市光复精细化工研究所。

  • 实验使用的主要仪器有六连同步混凝搅拌器JJ-4(金坛市城西瑞昌实验仪器厂)、pH3210精密酸度仪(德国WTW公司)、Turb550便携式浊度仪(德国WTW公司)、便携式电导率测试仪Cond 3210(德国WTW公司)、氨氮、硝态氮水质在线分析仪(德国WTW,DIQ/S 182)、立式压力蒸汽灭菌锅(上海博讯实验有限公司)、紫外可见分光光度计(北京普析通用仪器有限责任公司)及CR2200 COD消解仪(德国WTW公司)等。

  • 依据前期预实验的结果,当浓度很高的渗滤液原液被稀释5倍后,这有利于絮凝沉降,故本研究将50 mL垃圾渗滤液原液倒入250 mL烧杯中,稀释5倍后开展絮凝实验。先加入PRT快速搅拌(350 r·min−1) 2 min,然后加入3% PAC并调整转速至250 r·min−1搅拌60 s,再加入0.1% C-PAM搅拌20 s,调整转速到50 r·min−1搅拌40 s,最后静置5 min后取上清液,测量化学需氧量COD、生化需氧量BOD、浊度、悬浮物SS、总磷、电导率、总溶解固体TDS、盐度Sal、氨氮、pH等数据。

  • 一般来说,PAC是一种传统的絮凝剂,主要是通过自身的强化水解,形成不同大小的高分子聚合物,以吸附、卷扫等形式形成絮体[16]。为了研究无机矿物材料对PAC絮凝的协同效应,首先对PAC对垃圾渗滤液的絮凝效果进行研究,从初步的实验发现PAC和C-PAM投加量不同,絮凝效果也是不同的。表1为稀释后原液和絮凝后上清液对应的水质指标,图1是絮凝前后的效果对比图。

    根据表1中的数据推算,絮凝之后的COD、浊度、SS以及总磷去除率分别达到20.6%、91.8%、90.3%和96.6%,这说明加入PAC和C-PAM对浊度、悬浮颗粒物以及总磷均具有较好的去除效果。在实验过程中发现,加入PAC后,在垃圾渗滤液中出现了小的絮体,然后再加入一定的C-PAM助凝剂后,很快就会出现大量的絮体团聚;随着搅拌的不断进行,这些絮体逐步上浮,并且在上浮的絮体下方的溶液里仍然漂浮有细小的絮体,难以沉降,但底部仍然有一些沉积物。根据絮凝后溶液的浊度(35.6 NTU)可知,溶液并不是很清澈,COD仍为17 025 mg·L−1。此外,还观察到絮凝过程对总磷具有很好的去除效果,该去除主要依赖于PAC中的铝离子对含磷化合物的作用,生成难溶的磷酸铝盐类,进而包裹在絮体之中;而絮凝剂对氨氮却几乎没有去除作用,这也许是水解后的正离子的氢氧化铝聚合物与正离子形态的有机胺和无机氨等相互排斥的缘故所致;絮凝过程中电导率、TDS以及Sal絮凝前后几乎没有变化。但由图1絮凝的前后对比可以看出,影响絮凝过程的关键因素除了上清液的水质之外,还有一些很重要的操作因素,即絮凝固体的沉降速度、沉降固体体积(即上清液的体积)。由于PAC的强化水解,形成了大量松散絮体,但对垃圾渗滤液中较大的胶团以及大分子污染物而言,这些松散絮体因其质量力不够,吸附作用不够显著,即使在助凝剂C-PAM的作用下,也难以形成密实的絮体结团。换言之PAC的强化水解特性决定了对液固分离极为不利,而且松散的絮体也难以脱水,这也是絮凝沉降法不能很好地应用于垃圾渗滤液处理中的一个关键原因。因此,需要解决絮体松散问题,增加絮体的质量力,使形成的絮凝具有吸附、卷扫等功能,从而实现高效絮凝和快速沉降。

  • 无机矿物材料混入水中将会产生大量的胶体,而且其颗粒物也因为粒径小和表面能大,而具有较强的吸附能力。借助于这一规律,使用常规的无机矿物材料膨润土(PRT),可破坏垃圾渗滤液的原有平衡,然后发挥PAC的絮凝作用和C-PAM的助凝作用,以达到更好的絮凝效果。

    为了查明PRT对不同投加量PAC的协同效应,在PRT投加量为2 g、0.1% C-PAM投加量为4 mL的条件下,观察3% PAC投加量分别为3、4、5、6、7和8 mL时的絮凝效果,其结果如表2图2所示。由表2可知,当PAC投加量为8 mL时,絮凝效果最佳,上清液的COD、SS、氨氮、总磷分别为7 566、52、320.5、1.97 mg·L−1,浊度为12.6 NTU,COD、浊度、SS、氨氮、总磷去除率分别为64.71%、97.08%、93.58%、6.90%、97.18%。在PRT和C-PAM不变的条件下,絮凝后上清液的COD在PAC投加量为3 mL的情况下,COD就由原始的21 440 mg·L−1下降到16 483 mg·L−1,与表1中所列没有添加PRT时PAC投加量为8 mL的处理效果几乎相同,COD去除率也达到了23.1%。这说明PRT的添加有利于对COD的去除。随着PAC的投加量继续增加,当投加量为8 mL时,COD降低到7 566 mg·L−1,去除率达到64.7%,与没有添加PRT时在相同PAC投加量下的絮凝效果相比,COD又降低了54.1%,而且絮凝下来的污染物一般是难以生化处理的部分,这将为后续的生化处理减少了很大的负荷,可提高处理的经济效应。浊度虽然不是水质指标,但通过前后上清液的对比,可以定性反映出絮凝的处理效果。随着PAC的增加,浊度也呈现出刚开始的急剧下降,然后逐步变缓的变化趋势。但在PAC为4 mL(有PRT)时,浊度的去除率即达94.2%,高于表1中PAC投加量为8 mL(没有PRT)的去除率(93.4%),而当PAC的投加量为8 mL时,浊度去除率则达到97.1%。颗粒悬浮物的变化规律与浊度相同,此时的SS为52 mg·L−1,去除率为93.6%。这充分说明,SS大量的减少,实际是减少了上清液中的难以生化降解的污染物,即通过一级强化絮凝预处理,将大量难以生化降解的污染物转移到了沉降的絮体中,从而大大地降低了上清液中的COD和浊度。总磷的去除依赖于PAC的添加量,即便如此,是否有PRT的加入对最终的絮凝效果也是有影响的,即PRT的投加有助于污染物的去除。由PAC投加量与污染物的去除率之间的关系可见,投加量7 mL和8 mL对COD、浊度、SS、总磷等的去除率变化很小,另外再考虑到实际使用的成本,所以把8 mL作为最佳投加量。由图2可观察到,在PRT和C-PAM的投加量固定的前提下,随着PAC投加量的增加,上清液变得更加澄清;与图1(未投加PRT和C-PAM)相比,最大的差别是在添加PRT后,絮凝开始沉降。在实际絮凝过程中观察到,在事先添加PRT的前提下,在投加PAC后,经过搅拌就会发现大量的絮体产生,要比没有事先添加PRT下的絮体更大,絮体与水之间形成很大的对比,在此基础上再投加一定量的助凝剂C-PAM时,这些絮体便迅速团聚,并向下快速沉降,絮体压缩而密实,烧杯中90%以上是上清液。这一现象对于后续分离,及提高单位时间内处理效率均是有益的。此外,絮凝沉降亦更加符合实际工业化操作。这说明PRT在絮凝过程中与PAC之间存在协同效应,这不仅是对COD、浊度、SS具有较好的去除效果,而且形成的絮体具有更好的密实性,自身的质量力也起到了吸附以及沉降的作用。

    在事先投加PRT的情况下,电导率、TDS以及Sal在絮凝过程中均随着PAC投加量的增加有所下降。PRT的投加会产生大量的胶体,从而改变渗滤液的内部离子平衡,对一些离子产生吸附作用,这些离子在PAC和C-PAM的共同作用下被去除。氨氮和pH主要还是受PAC投加量的影响,在投加PAC后,会强化水解生成Al(H2O)3+6、Al(OH)2+、Al(OH)3、[Al6(OH)14]2+、[Al7(OH)17]4+、[Al8(OH)20]4+、[Al13(OH)34]5+等成分,使溶液的pH值略有变化,这与实验中观察到的上清液pH随PAC增加而略有降低的现象相吻合[17]

  • 对于浓度高、组分复杂的垃圾渗滤液,通过有效的一级强化絮凝预处理工艺,可去除复杂的、难以生化降解的污染物,从而可简化后续生化过程并降低处理费用。助凝剂C-PAM在絮凝过程具有举足轻重的作用,能够将促使较小的絮体发生二次聚团,从而有利于沉降和分离。同时,C-PAM属于高分子有机聚合物,从聚合物的分子结构可知,该聚合物对于极性和非极性的有机污染物均具有亲和性,从而易于吸附这些污染物分子,有助于污染物的去除。为优化C-PAM最佳投加量,设定PRT投加量为2 g,PAC投加量为8 mL,考察不同C-PAM投加量对絮凝效果的影响,其结果如表3图3所示。

    表3可知,当C-PAM投加量为5 mL时,絮凝效果最佳,上清液的COD、SS、氨氮、总磷分别为5 941、50、279.6、1.76 mg·L−1,浊度为10.6 NTU,COD、浊度、SS、氨氮、总磷去除率分别为72.29%、97.55%、93.83%、18.39%、97.48%。助凝剂C-PAM的投加量对上清液的水质指标影响较大,但并不是投加的越多越好,随着C-PAM的投加量的增加,COD呈现先降低后增加的趋势。当C-PAM投加量为5 mL时,COD由4 mL投加量的7 566 mg·L−1降低到5 941 mg·L−1,去除率达到72.3%,在4 mL的基础上又进一步增加了21.5%。但投加量再继续增加后,COD反而升高,这是由于过量的C-PAM自身就含有较高的COD,所以C-PAM存在一个最佳的投加量。正是由于C-PAM属于助凝剂,主要依托于C-PAM的大分子链的优良延展性,故可配合PAC中的Al3+与PAM中的-O结合形成更稳定的网络结构,进而在该网络结构能够将渗滤液中固体颗粒等杂质稳定包络其中,对絮凝过程的浊度、SS以及总磷去除都有很好的促进作用;而且,絮凝作用越好,则对水中的离子的吸附性就越强,从而导致电导率、TDS以及Sal均有所下降。对于氨氮而言,则C-PAM投加量越多,其去除率也就越大,这也许反映了垃圾渗滤液中氨氮的一部分存在形式是有机胺,易与C-PAM亲和吸附[18]

    图3可以看出,随着C-PAM投加量的增加,沉降絮体的结团由小变大,上清液逐步澄清,便于后续分离,但是浊度不是水质指标,处理效果还需由COD来决定,总磷在垃圾渗滤液排放标准是3 mg·L−1,本研究的结果基本均可以满足此标准。由整体处理效果来看,在各条件下均可以看穿到烧杯对面的刻度,操作条件的微小波动并不影响实际絮凝效果的影响。

  • 图1图2可知,PRT的投加不仅有利于对污染物的去除,而且还可以提高絮凝效果,可实现絮凝快速沉降。在絮凝过程中,PRT可提供微粒子胶体以及颗粒物拥有的质量力,从而破坏垃圾渗滤液的离子平衡,吸附脱稳后的离子、大分子等污染物,其与PAC协同作用,可形成密实的絮体,实现絮凝沉降。PRT投加量也是一个关键的因素,在PAC投加量为8 mL、C-PAM投加量为5 mL的优化条件下,考察不同投加量的PRT对絮凝效果的影响,其实验结果如表4图4所示。

    表4可知,随着PRT投加量的增加,COD降低程度完全不同。即使投加1 g PRT,COD也会由没有投加PRT的絮凝过程中的16 483 mg·L−1降低到13 568 mg·L−1,虽此时降低不明显,但絮凝产物的表现形式却发生了巨大变化,由原来的上浮转化为沉降。由图4可以看出,此时的沉降絮体仍然不够密实,上清液也不是较为透明,浊度仅由28.4 NTU降低到23.9 NTU,其他的水质指标均变化较小,这基本上是来自于PAC的絮凝作用。但是,当PRT投加量为2 g时,COD、浊度、SS和总磷的去除率均有较为显著的提高,由PRT为1 g时的36.7%、94.5%、92.5%和96.8%分别上升到72.3%、97.6%、93.8%和97.5%,其中影响最为显著的是COD的去除率;此外,沉降絮体变得密实,反光性更强,这也是垃圾渗滤液一级强化絮凝处理的真正目的,尽可能去除渗滤液中的难以生化降解的胶体、大分子污染物,形成的絮体沉降快速。随着PRT投加量的进一步增加,除了絮体结团更大,沉降速度更快外,其他水质指标都没有明显的变化,尤其是氨氮浓度变化更小,这也说明垃圾渗滤液中的氨氮以有机胺为主。PRT属于无机矿物材料,与有机胺并不亲和,即使增加投加量,也难以去除氨氮。所以,在絮凝处理过程中,PRT在经济上存在一个2 g的最佳投加量,此时上清液的COD、SS、氨氮、总磷分别为5 941、50、279.6、1.76 mg·L−1,浊度为10.6 NTU,COD、浊度、SS、氨氮、总磷去除率分别为72.29%、97.55%、93.83%、18.39%、97.48%,即使PRT稍微过量也不会影响整个处理效果。

    PAC和C-PAM与PRT的协同作用,对垃圾渗滤液具有很好的絮凝效果,从而达到去除难降解污染物的目的,但由于对氨氮的去除率较低,这对于后续的生化处理仍然有影响。对于这些主要的有机胺,还需继续研究,以开发降低氨氮的技术,为实际应用提供新的具有创新意义的集成技术。

  • 1) PRT形成的胶体以及自身的颗粒物质量力的作用,可打破垃圾渗滤液的离子平衡,并与PAC形成协同效应,在C-PAM的共同作用下,展示出较高的絮凝效果和沉降速度。当PRT、PAC和C-PAM的投加量分别为2 g、8 mL和5 mL时,上清液中的COD、浊度、SS、NH3-N和TP的去除率分别达到72.3%、97.6%、93.8%、18.4%以及97.5%。

    2) PRT的投加有效地促进了絮凝效果,当PAC和C-PAM投加量分别为8 mL和5 mL条件下,PRT投加量2 g与没有投加相比,COD由16 483 mg·L−1降低到5 941 mg·L−1,上清液的浊度由28.4 NTU降到10.4 NTU;絮体由上浮形式转变为快速沉降,更加有利于后续的分离和生化处理。

    3)投加PRT对氨氮去除率无明显影响,对氨氮有去除作用的主要是C-PAM。这也说明垃圾渗滤液中的氨氮主要是有机胺。

参考文献 (18)

返回顶部

目录

/

返回文章
返回