Processing math: 100%

超长污泥龄对MPR工艺脱氮除磷效果的影响

边德军, 赵乐欣, 王宁, 聂泽兵, 王帆, 艾胜书, 朱遂一. 超长污泥龄对MPR工艺脱氮除磷效果的影响[J]. 环境工程学报, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
引用本文: 边德军, 赵乐欣, 王宁, 聂泽兵, 王帆, 艾胜书, 朱遂一. 超长污泥龄对MPR工艺脱氮除磷效果的影响[J]. 环境工程学报, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
BIAN Dejun, ZHAO Lexin, WANG Ning, NIE Zebing, WANG Fan, AI Shengshu, ZHU Suiyi. Effects of ultra-long sludge rentention time on denitrification and phosphorus removal by MPR process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
Citation: BIAN Dejun, ZHAO Lexin, WANG Ning, NIE Zebing, WANG Fan, AI Shengshu, ZHU Suiyi. Effects of ultra-long sludge rentention time on denitrification and phosphorus removal by MPR process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091

超长污泥龄对MPR工艺脱氮除磷效果的影响

    作者简介: 边德军(1967—),男,博士,教授。研究方向:城市污水处理。E-mail:ccgcxybiandj@163.com
    通讯作者: 边德军, E-mail: ccgcxybiandj@163.com
  • 基金项目:
    国家自然科学基金资助项目(51878067);吉林省科技发展计划项目(20180201020SF,20200201005JC)
  • 中图分类号: X703

Effects of ultra-long sludge rentention time on denitrification and phosphorus removal by MPR process

    Corresponding author: BIAN Dejun, ccgcxybiandj@163.com
  • 摘要: 针对高MLSS下系统的稳定运行及脱氮除磷效果,采用微压内循环生物相反应器(MPR)处理模拟城市污水,探究了超长污泥龄(SRT)在50、70、90 d时,MPR不断减少剩余污泥排放量下的脱氮除磷效果。结果表明,当SRT由50 d提升至90 d时,MPR工艺的脱氮能力得到增强,TN的平均去除率由75.97%提高到84.60%。在延长SRT后,MPR工艺对TP的去除速率有所降低,但TP的去除率仍可稳定保持在97%以上,超长SRT对TP的去除效果影响不显著。在SRT为90 d时,系统稳定期的平均MLSS为13 252 mg·L−1,SVI为70 mL·g−1。此时系统脱氮除磷效果最佳,COD、NH+4-N、TN、TP平均出水质量浓度分别为24.73、0.49、6.99、0.07 mg·L−1,出水优于GB 18918-2002一级A标准。以上结果表明,在超长SRT下,MPR系统不仅可长期稳定运行,还可保障较高的脱氮除磷效果。
  • 1, 1, 1-三氯乙烷(1, 1, 1-trichloroethane, 1, 1, 1-TCA)是一种常见的有机氯溶剂,工业上的广泛使用和不当处置使其成为全球地下水中普遍检出的污染物之一[1]。1, 1, 1-TCA易迁移扩散,化学性质稳定且不易降解,并具有“三致”效应,其一旦进入地下环境,将会严重危害生态安全和人类健康[2-3]。因此,如何高效治理1, 1, 1-TCA污染地下水已成为环境修复领域的研究热点。

    原位强化还原脱氯是一种有效修复氯代烃污染地下水的方法,其中修复材料是影响修复效果的关键因素[4]。目前较为常用的修复材料包括具有化学还原脱氯能力的零价铁,以及能够促进微生物还原脱氯的有机碳源[5]。但这些修复材料存在易团聚和氧化、作用时效短及利用效率低等问题,从而限制了其应用范围[6-7]。设计并制备高效的功能复合材料是解决上述问题的一个新途径[8]

    将零价铁负载于生物炭(biochar,BC)上可显著降低零价铁的团聚程度,提高其对氯代烃的化学脱氯效果。DONG等[9]制备了一系列纳米零价铁基生物炭材料,发现其对水中三氯乙烯的去除率比单一纳米零价铁高14%以上。同时,生物炭具有丰富的孔隙结构,能够有效吸附污染物[10]。然而,生物炭中生物可利用性碳含量较低,无法进一步促进微生物的还原脱氯作用[11]。聚乳酸(polylactic acid,PLA)能够缓慢释放可被微生物利用的可溶性有机碳,是一种良好的缓释碳源[12]。因此,可以推测,将聚乳酸与负载零价铁的生物炭复合可增強材料的处理长效性。但目前有关这方面的研究尚未见报道。本研究制备了一种纳米零价铁-聚乳酸-生物炭复合材料,研究其协同胞外呼吸菌去除水中1, 1, 1-TCA的效果,并探讨协同体系还原降解污染物的机理。

    试剂:芦苇秸秆生物炭,自制;1, 1, 1-三氯乙烷、聚乳酸、二氯甲烷、无水乙醇、哌嗪-1, 4-二乙磺酸(PIPES)、FeCl2·4H2O、NaBH4、HCl、NH4Cl、CaCl2、K2HPO4、KH2PO4等均为分析纯;研究所用胞外呼吸菌为希瓦氏菌(Shewanella oneidensis MR−1)的菌株,由中国海洋微生物菌种保藏管理中心提供。

    仪器:离心机(TG16-WS型,上海卢湘仪离心机仪器有限公司);鼓风干燥箱(DHG-9070A,上海一恒科学仪器有限公司);分析天平(ML-T型,瑞士Mettler-Toledo公司);恒温振荡摇床(SPH-211B,上海一恒科学仪器有限公司);压力蒸汽灭菌器(BKQ-B75II,山东博科科学仪器有限公司)等。

    1)生物炭(BC)的预处理。将BC过120目筛[13],用1.2 mol·L−1 HCl浸泡过夜以去除BC上杂质,去离子水冲洗至中性,烘干备用。

    2)聚乳酸-生物炭(PBC)粉末制备。将1.0 g PLA溶于二氯甲烷后,加入7.0 g预处理后的BC,搅拌8 h,将混合液离心5 min(8 500 r·min−1),沉淀物用无水乙醇清洗数次,得到PBC粉末。

    3)纳米零价铁-聚乳酸-生物炭(nZVI-PBC)复合材料制备。将4.0 g PBC粉末加入150 mL FeCl2·4H2O乙醇水溶液(24 g·L−1)中,搅拌30 min(200 r·min−1);在氮气保护下,将50 mL NaBH4溶液(55 g·L−1)逐滴加入上述溶液中,搅拌至反应完成,将沉淀依次用无氧去离子水及无水乙醇洗涤数次,冷冻干燥,得到Fe理论质量分数为20%的复合材料(nZVI-PBC-20)。按上述相同步骤,直接向FeCl2·4H2O溶液中滴加NaBH4溶液,制备得到纳米零价铁(nZVI)。

    采用扫描电子显微镜(SEM)观察复合材料的形貌结构;采用同步热分析仪(TGA)测定材料中聚乳酸含量;采用傅里叶变换红外光谱仪( FT-IR)测定材料表面官能团;采用多功能X射线衍射仪(XRD)分析材料中铁的晶型;采用电感耦合等离子体质谱仪(ICP-MS)测定材料中铁含量[14-15]

    取0.8 g nZVI-PBC加入到80 mL灭菌去离子水中,置于恒温摇床中振荡(30 ℃,120 r·min−1),利用总有机碳仪定期测定水溶液中TOC浓度。

    反应溶液配制:在1 L灭菌除氧去离子水中加入1.500 g NH4Cl、0.150 g CaCl2、0.225 g K2HPO4、0.225 g KH2PO4、5 mL微量元素储备液和5 mL维生素储备液[16],用50 mmol·L−1 PIPES缓冲液调节溶液pH至7.0左右,向上述厌氧培养基中加入一定体积的1, 1, 1-TCA,搅拌混匀,得到含一定浓度1, 1, 1-TCA的反应溶液。

    菌悬液配制:Shewanella oneidensis MR−1菌体在30 ℃的LB液体培养基中活化12 h,离心5 min(8 000 r·min−1),灭菌去离子水洗涤3次,最终配制OD600=1.0的菌悬液于4 ℃待用。

    1, 1, 1-TCA去除实验:本实验采用微培养体系,所有反应均在100 mL灭菌西林瓶中进行;在西林瓶中加入一定质量的复合材料,充氮后,加入78.4 mL一定浓度的1, 1, 1-TCA反应溶液和1.6 mL菌悬液(接种量为2%),西林瓶用丁基胶塞密封,置于恒温摇床中振荡(30 ℃,120 r·min−1)培养360 h,定期测定体系中1, 1, 1-TCA、吸附态Fe(II)和TOC浓度以及微生物数量。按照上述方法,分别考察复合材料组分配比、投加量和污染物浓度对材料处理效果的影响;同时,设置不同对照材料处理,以探讨复合材料协同微生物去除1, 1, 1-TCA的机理。每个处理均设置3个重复。

    分析方法:采用吹扫捕集气相色谱质谱联用法(GC-MS)测定1, 1, 1-TCA浓度;采用邻菲罗啉比色法测定吸附态Fe(II);利用总有机碳仪测定TOC浓度;采用荧光定量PCR法测定微生物的16S rDNA数量[17-19]

    ICP-MS测定结果显示,复合材料nZVI-PBC-20中Fe的实际质量分数为20.35%,其与实验设定的材料中Fe的理论质量分数(20%)基本相符。

    图1(a)图1(b)分别为nZVI、BC、PLA及nZVI-PBC-20的热重曲线(TGA)与微商热重曲线(DTG),可以看出,BC和PLA存在1次热失重变化,nZVI-PBC-20存在2次热失重变化。nZVI-PBC-20和BC均在50 ℃左右出现1次热失重,主要是由于生物炭中的水汽及一些不稳定的灰分挥发导致的。nZVI-PBC-20还和PLA在280 ℃左右出现1次热失重,主要是由于聚乳的热分解导致的。同时,根据图1的数据分析可知,nZVI-PBC-20中PLA的质量分数为13.84%。

    图 1  不同材料的TGA及DTG图
    Figure 1.  TGA and DTG of different materials

    图2显示了BC、PBC和nZVI-PBC-20在扫描电镜下的形貌结构。由图2(a)可知,BC表面形貌较为光滑,孔隙结构丰富。由图2(b)可知,PLA以不规则颗粒状(0.5~3 μm)混于BC表面,增加了BC的粗糙程度,但并未明显覆盖其孔隙结构。该形貌特征有利于提高复合材料对污染物和微生物的吸附能力。由图2(c)可知,由液相还原生成的nZVI以球形颗粒状(50~150 nm)负载于BC表面,且分布较为均匀,但由于nZVI具有较大的比表面积,其在材料表面仍出现一定程度的团聚现象。

    图 2  BC、PBC和nZVI-PBC-20的SEM图
    Figure 2.  SEM images of BC, PBC and nZVI-PBC-20

    通过FT-IR分析复合材料的表面官能团特征。图3为BC、PBC和nZVI-PBC-20的FT-IR图谱。由图3可知,BC在3 420 cm−1和2 920 cm−1附近的峰分别对应于O—H和C—H的伸缩振动,而在1 630 cm−1和1 400 cm−1附近的峰则分别对应于BC芳香结构上C=C和C=O的伸缩振动[20]。与BC相比,PBC在1 179 cm−1附近出现了1个新的伸缩振动峰,其可能由PLA分子上C=O产生[21],这说明聚乳酸已与生物炭完成共混。nZVI-PBC-20与PBC的FT-IR图基本相似,但在585 cm−1附近出现1个新的较弱Fe—O伸缩振动峰,说明负载于材料表面的零价铁已在一定程度上被氧化。

    图 3  BC、PBC和nZVI-PBC-20的FT-IR图谱
    Figure 3.  FT-IR spectra of BC, PBC and nZVI-PBC-20

    通过XRD分析复合材料中Fe的晶型。图4为nZVI、BC和nZVI-PBC-20的XRD图谱。nZVI样品在2θ=44.8°处出现了明显的α-Fe0的特征主衍射峰,说明液相还原制备得到的纳米零价铁为体心立方结构[22]。BC样品在2θ=23.1°处出现明显的炭无定型结构特征峰[23]。nZVI-PBC-20样品则同时出现了上述2个特征衍射峰,表明纳米零价铁成功负载于生物炭上,这与复合材料的SEM分析结果相符。此外,nZVI-PBC-20样品在2θ=16.8°处出现1个新的特征衍射峰,其可能与复合材料中的聚乳酸有关。

    图 4  nZVI、BC和nZVI-PBC-20的XRD图谱
    Figure 4.  XRD patterns of nZVI, BC and nZVI-PBC-20

    不同组分配比复合材料对Shewanella oneidensis MR-1微培养体系中1, 1, 1-TCA的去除效果见图5。复合材料中PBC与nZVI质量比分别为19∶1、9∶1、4∶1和7∶3,依次表示为nZVI-PBC-5、nZVI-PBC-10、nZVI-PBC-20和nZVI-PBC-30。微培养体系中材料投加量为1.0%,1, 1, 1-TCA初始浓度为100 mg·L−1,并设置不添加材料和菌作为空白对照。

    图 5  复合材料组分配比对1, 1, 1-TCA去除效果的影响
    Figure 5.  Effect of components proportion in the composite on 1, 1, 1-TCA removal

    图5可知,在添加nZVI-PBC-5、nZVI-PBC-10、nZVI-PBC-20和nZVI-PBC-30的体系中,1, 1, 1-TCA的最终去除率分别达到58.79%、68.52%、83.55%和75.27%,均高于空白对照,说明复合材料能够有效提高体系中1, 1, 1-TCA的去除效率。72 h内,各复合材料处理中1, 1, 1-TCA浓度均呈明显降低趋势,且材料中nZVI含量越多,其下降越快,这主要是因为纳米零价铁具有较强的化学还原能力,能够在短时间内脱氯降解1, 1, 1-TCA,且零价铁含量越多,还原速率越快[24];72 h后,各复合材料处理中1, 1, 1-TCA的降解速率均有不同程度变缓,这可能是因为纳米零价铁已在反应前期基本耗尽,污染物的降解主要由微生物的还原脱氯作用完成[25]。此外,72 h后,nZVI-PBC-20处理中1, 1, 1-TCA的残留率明显低于其余3个复合材料处理,这是由于此材料中丰富的零价铁在反应前期显著降低了污染物浓度,减轻了其对Shewanella oneidensis MR−1的毒害作用,同时材料中足够的生物炭(生长基质)和聚乳酸(碳源)进一步提高了菌的还原脱氯活性。由上述结果可知,nZVI-PBC-20的组分配比最优,即复合材料中BC、PLA和nZVI的质量比为7∶1∶2。

    不同投加量复合材料协同Shewanella oneidensis MR-1对微培养体系中1, 1, 1-TCA的去除效果见图6。微培养体系中材料投加量分别为0.25%、0.5%、1.0%、2.0%,1, 1, 1-TCA初始浓度为100 mg·L−1,复合材料选择nZVI-PBC-20。由图6可知,随着材料投加量的增加,1, 1, 1-TCA的去除率不断提高,但当复合材料的投加量大于1.0%后,去除率的提高程度趋缓。如前所述,这是由于投加量较少时,材料中零价铁的化学还原脱氯作用以及生物炭和聚乳酸对Shewanella oneidensis MR-1活性的促进作用均较弱。综合考虑去除效果和成本因素,确定复合材料的最佳投加量为1.0%。

    图 6  复合材料投加量对1, 1, 1-TCA去除效果的影响
    Figure 6.  Effect of the composite dosage on 1, 1, 1-TCA removal

    复合材料协同Shewanella oneidensis MR-1对微培养体系中不同浓度1, 1, 1-TCA的去除效果见图7。微培养体系中材料投加量为1.0%,复合材料选择nZVI-PBC-20。

    图 7  1, 1, 1-TCA浓度对复合材料处理效果的影响
    Figure 7.  Effect of 1, 1, 1-TCA concentration on its removal by the composite

    图7可知,当体系中1, 1, 1-TCA浓度分别为25、50、100和200 mg·L−1时,培养360 h后污染物去除率分别达到了94.61%、89.16%、85.62%和83.27%。这说明该复合材料协同Shewanella oneidensis MR-1对低、中、高浓度1, 1, 1-TCA均有良好的去除效果,可进一步应用于不同污染程度的有机氯溶剂污染场地修复。

    进一步分析不同材料处理体系中1, 1, 1-TCA浓度、胞外呼吸菌16S rDNA数量、TOC浓度和吸附态Fe(II)浓度的变化情况,具体结果见图8~图11。微培养体系中nZVI-PBC-20投加量为1.0%,其余对照材料投加量与nZVI-PBC-20中相应组分在体系中的含量一致,1, 1, 1-TCA初始浓度为100 mg·L−1。体系吸附态Fe(II)浓度为体系总Fe(II)浓度减去溶液中Fe(II)浓度[26]

    图 8  不同材料协同Shewanella oneidensis MR-1去除1, 1, 1-TCA效果
    Figure 8.  Effect of different materials coupled with Shewanella oneidensis MR-1 on 1, 1, 1-TCA removal
    图 9  不同处理中Shewanella oneidensis MR-1数量变化
    Figure 9.  Changes of Shewanella oneidensis MR-1 abundance in different treatments
    图 10  添加nZVI-PBC-20的纯水和含菌微培养体系中TOC浓度变化
    Figure 10.  Changes of TOC concentration in pure water and bacteria-containing microcosm added with nZVI-PBC-20
    图 11  nZVI-PBC-20 + MR-1和nZVI + MR-1处理体系中吸附态Fe(II)浓度变化
    Figure 11.  Changes of absorbed Fe(II) concentration in nZVI-PBC-20 + MR-1 and nZVI + MR-1 treatment systems

    图8所示,360 h后,在nZVI-PBC-20 + MR-1处理体系中1, 1, 1-TCA的去除率达到82.98%,而BC和nZVI处理体系中1, 1, 1-TCA的去除效率分别为12.29%和41.11%,说明生物炭吸附和零价铁化学还原并不是复合材料协同胞外呼吸菌去除1, 1, 1-TCA的主要途径,材料刺激胞外呼吸菌产生异化铁还原脱氯可能起着重要作用[27]。由图9可知,不同材料处理体系中Shewanella oneidensis MR-1的数量均随时间延长而逐渐增加,且360 h后nZVI-PBC-20 + MR-1处理的数量增加最为明显,这是由于生物炭丰富的孔隙结构能为微生物提供良好的生长环境,同时零价铁在短时间内降低了1, 1, 1-TCA浓度,减少了污染物对微生物的毒害抑制作用[28-29]。如图10所示,添加nZVI-PBC-20的纯水中TOC浓度随时间延长缓慢增加,而含菌体系中TOC浓度则先增加后降低,这说明复合材料在水中具有良好的碳源缓释效果(由PLA的碳缓释特性产生),且所释放碳源能被胞外呼吸菌充分利用。综上可知,复合材料缓释碳源并刺激微生物生长是提高污染物去除效率的重要因素。

    Shewanella oneidensis MR-1可利用吸附态Fe(II)产生异化铁还原过程,而异化铁还原对有机氯类污染物的降解具有重要作用[30]。由图11可知,nZVI-PBC-20 + MR-1和nZVI + MR-1处理体系中吸附态Fe(II)浓度均随时间的延长而增加;同时,2种材料处理体系中1, 1, 1-TCA的去除率均较高(图8),因此,可以认为零价铁对污染物还原过程中产生的吸附态Fe(II)刺激了Shewanella oneidensis MR-1的异化铁还原活性,从而提高了1, 1, 1-TCA的去除效果。XU等[26]研究表明,铁矿物上的吸附态Fe(II)同样能提高胞外呼吸菌对五氯酚的脱氯降解效果。

    上述结果表明,复合材料协同胞外呼吸菌去除1, 1, 1-TCA是材料中各组分综合作用的结果。在纳米零价铁前期化学还原脱氯的基础上,材料主要通过生物炭和聚乳酸促进胞外呼吸菌的生长,并通过反应生成的吸附态Fe(II)提高其异化铁还原活性,从而实现1, 1, 1-TCA的高效去除(图12)。

    图 12  复合材料协同微生物去除1, 1, 1-TCA的机理示意图
    Figure 12.  Mechanism scheme of the composite coupled with microorganism in removing 1, 1, 1-TCA

    1)采用溶液插层和液相还原法制备了纳米零价铁-聚乳酸-生物炭复合材料。材料中纳米零价铁和聚乳酸颗粒负载于生物炭表面且分布较为均匀;同时,复合材料的表面结构粗糙,有利于其对污染物和微生物的吸附。

    2)复合材料能够协同胞外呼吸菌有效去除水中1, 1, 1-TCA,且具有良好的缓释长效性。材料中生物炭、聚乳酸和纳米零价铁的最佳质量比为7∶1∶2,材料最佳投加量为1.0%,且对不同浓度1, 1, 1-TCA均有明显去除效果。

    3)复合材料协同胞外呼吸菌去除1, 1, 1-TCA的主要机理为:材料通过生物炭和聚乳酸促进胞外呼吸菌生长,并通过吸附态Fe(II)提高其异化铁还原活性。

  • 图 1  MPR工艺原理及实验装置图

    Figure 1.  MPR process principle and experimental device diagram

    图 2  MPR中MLSS、SVI及污泥负荷的变化情况

    Figure 2.  Changes of MLSS, SVI and sludge load in MPR

    图 3  MPR不同氧分区DO历时

    Figure 3.  DO duration in different oxygen zones of MPR

    图 4  MPR中COD的去除效果

    Figure 4.  COD removal effect by MPR

    图 5  MPR中NH+4-N的去除效果

    Figure 5.  NH+4-N removal effect by MPR

    图 6  MPR中TN的去除效果

    Figure 6.  TN removal effect by MPR

    图 7  MPR中TP的去除效果

    Figure 7.  TP removal effect by MPR

    图 8  典型周期内COD及DO历时变化

    Figure 8.  COD and DO changes with time in a typical period

    图 9  典型周期内各形态氮的转化历时

    Figure 9.  Transformation of each nitrogen form in a typical period

    图 10  典型周期内TP及DO的历时变化

    Figure 10.  TP and DO changes with time during a typical period

    表 1  实验进水水质

    Table 1.  Water quality of experimental influent

    数值类型COD/(mg·L−1)TN/(mg·L−1)NH+4-N/(mg·L−1)TP/(mg·L−1)pH
    浓度范围353~53738~5423~342.4~4.37.8~8.2
    平均值42644.929.23.318
    数值类型COD/(mg·L−1)TN/(mg·L−1)NH+4-N/(mg·L−1)TP/(mg·L−1)pH
    浓度范围353~53738~5423~342.4~4.37.8~8.2
    平均值42644.929.23.318
    下载: 导出CSV

    表 2  各阶段污泥增长及排放情况

    Table 2.  Sludge growth and discharge at each stage

    SRT/d运行时间/d初始MLSS/(mg·L−1)稳定期平均MLSS/(mg·L−1)增长速率/%相应减少剩余污泥排放量/L
    50503 8805 12832.1660~127
    70504 8409 21590.3972~138
    90609 18013 25244.3693~173
      注:减少剩余污泥量相对于一般污水处理厂控制的SRT在12~20 d(Ns在0.07~0.4 kg·(kg·d)−1)。
    SRT/d运行时间/d初始MLSS/(mg·L−1)稳定期平均MLSS/(mg·L−1)增长速率/%相应减少剩余污泥排放量/L
    50503 8805 12832.1660~127
    70504 8409 21590.3972~138
    90609 18013 25244.3693~173
      注:减少剩余污泥量相对于一般污水处理厂控制的SRT在12~20 d(Ns在0.07~0.4 kg·(kg·d)−1)。
    下载: 导出CSV

    表 3  各阶段MPR系统磷的释放与吸收率

    Table 3.  Phosphorus release and absorption rate of MPR system at each stage

    SRT/d进水TP/(mg·L−1)释放量与进水TP浓度比值吸磷速率/(mg·(g·h)−1)
    503.743.416.37
    703.584.235.01
    903.144.202.62
    SRT/d进水TP/(mg·L−1)释放量与进水TP浓度比值吸磷速率/(mg·(g·h)−1)
    503.743.416.37
    703.584.235.01
    903.144.202.62
    下载: 导出CSV
  • [1] ZHAO Q L, KUGEL G. Thermopholic/mesophilic digestion of sewage sludge and organic waste[J]. Journal of Environment Science and Health, 1996, A31(9): 2211-2231.
    [2] 韩玮, 袁林江, 柴璐. 长污泥龄污水生物除磷系统的除磷效果[J]. 安全与环境学报, 2012, 12(5): 17-22. doi: 10.3969/j.issn.1009-6094.2012.05.004
    [3] GE H Q, BATSTONE D J, KELLER J. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion[J]. Water Research, 2013, 47(17): 6546-6557. doi: 10.1016/j.watres.2013.08.017
    [4] 戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考[J]. 给水排水, 2017, 53(12): 1-5. doi: 10.3969/j.issn.1002-8471.2017.12.001
    [5] LIU Y, TAY J H. Strategy for minimization of excess sludge production from the activated sludge process[J]. Biotechnology Advances, 2001, 19(2): 97-107. doi: 10.1016/S0734-9750(00)00066-5
    [6] 许劲, 孙俊贻. 生物除磷脱氮系统工程设计中的污泥龄[J]. 重庆建筑大学学报, 2005, 27(5): 83-86.
    [7] 许小平, 陶晓武, 杜敬, 等. 污泥龄对A2/O工艺脱氮除磷的影响分析[J]. 中国给水排水, 2013, 29(21): 69-71.
    [8] BRDJANOVIC D, YAN LOOSDRECHT M C M, VERTEEG P, et al. Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder[J]. Water Research, 2000, 34(3): 846-858. doi: 10.1016/S0043-1354(99)00219-5
    [9] 左宁, 吉芳英, 万小军, 等. 污泥龄对LSP&PNR污泥减量新工艺运行效能的影响[J]. 环境工程学报, 2008, 2(1): 105-109.
    [10] LIU J J, YUAN Y, ZHANG Q, et al. Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source[J]. Bioresource Technology, 2017, 244(1): 1158-1165.
    [11] 边德军. 微压内循环多生物相反应器研制及性能[D]. 长春: 东北师范大学, 2015.
    [12] 任庆凯. 微压内循环生物反应器的流场特性研究[D]. 长春: 东北师范大学, 2017.
    [13] BIAN D J, ZHOU D D, HUO M X, et al. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl[J]. Applied Microbiology & Biotechnology, 2015, 99(20): 8741-8749.
    [14] 边德军, 沈国, 艾胜书, 等. 曝气量对微压内循环多生物相反应器同步脱氮除磷的影响[J]. 东北师范大学学报, 2019, 51(4): 152-159.
    [15] REN Q K, YU Y, ZHU S Y, et al. Characterization of a novel micro-pressure swirl reactor for removal of chemical oxygen demand and total nitrogen from domestic wastewater at low temperature[J]. Biodegradation, 2017, 28(2/3): 145-157.
    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17] 詹咏, 张焕焕, 冯青青, 等. 不同泥龄对活性污泥絮凝特性的影响[J]. 环境工程学报, 2017, 11(11): 5836-5842. doi: 10.12030/j.cjee.201608073
    [18] MOUSSA M S, HOOIJMANS C M, LUBBERDING H J, et al. Modelling nitrification, heterotrophic growth predation in activated sludge[J]. Water Research, 2005, 39(20): 5080-5098. doi: 10.1016/j.watres.2005.09.038
    [19] 陈滨, 许立群, 周鹏飞, 等. 低负荷状态下CAST工艺脱氮特性的研究[J]. 四川环境, 2010, 29(1): 12-16. doi: 10.3969/j.issn.1001-3644.2010.01.003
    [20] 徐宇峰. 低氧活性污泥法除污及污泥减量研究[D]. 重庆: 重庆大学, 2014.
    [21] LIU S L, DAIGGER G T, LIU B T, et al. Enhanced performance of simultaneous carbon, nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system by alternating the cycle times[J]. Bioresource Technology, 2020, 301: 1-8.
    [22] 毕学军, 张波, 丁日堂, 等. 长期低负荷运行对污水生物除磷的影响[J]. 中国给水排水, 2002, 18(7): 83-85. doi: 10.3321/j.issn:1000-4602.2002.07.028
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.4 %DOWNLOAD: 2.4 %HTML全文: 85.3 %HTML全文: 85.3 %摘要: 12.3 %摘要: 12.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.4 %其他: 94.4 %Beijing: 0.3 %Beijing: 0.3 %Mountain View: 0.1 %Mountain View: 0.1 %Xi'an: 0.1 %Xi'an: 0.1 %XX: 4.3 %XX: 4.3 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.3 %北京: 0.3 %张家口: 0.1 %张家口: 0.1 %济南: 0.1 %济南: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.1 %深圳: 0.1 %渭南: 0.1 %渭南: 0.1 %长春: 0.1 %长春: 0.1 %其他BeijingMountain ViewXi'anXX内网IP北京张家口济南淮南深圳渭南长春Highcharts.com
图( 10) 表( 3)
计量
  • 文章访问数:  4501
  • HTML全文浏览数:  4501
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-19
  • 录用日期:  2021-01-26
  • 刊出日期:  2021-05-10
边德军, 赵乐欣, 王宁, 聂泽兵, 王帆, 艾胜书, 朱遂一. 超长污泥龄对MPR工艺脱氮除磷效果的影响[J]. 环境工程学报, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
引用本文: 边德军, 赵乐欣, 王宁, 聂泽兵, 王帆, 艾胜书, 朱遂一. 超长污泥龄对MPR工艺脱氮除磷效果的影响[J]. 环境工程学报, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
BIAN Dejun, ZHAO Lexin, WANG Ning, NIE Zebing, WANG Fan, AI Shengshu, ZHU Suiyi. Effects of ultra-long sludge rentention time on denitrification and phosphorus removal by MPR process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
Citation: BIAN Dejun, ZHAO Lexin, WANG Ning, NIE Zebing, WANG Fan, AI Shengshu, ZHU Suiyi. Effects of ultra-long sludge rentention time on denitrification and phosphorus removal by MPR process[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091

超长污泥龄对MPR工艺脱氮除磷效果的影响

    通讯作者: 边德军, E-mail: ccgcxybiandj@163.com
    作者简介: 边德军(1967—),男,博士,教授。研究方向:城市污水处理。E-mail:ccgcxybiandj@163.com
  • 1. 长春工程学院,吉林省城市污水处理重点实验室,长春 130012
  • 2. 东北师范大学,吉林省城市污水处理与水质保障科技创新中心,长春 130117
基金项目:
国家自然科学基金资助项目(51878067);吉林省科技发展计划项目(20180201020SF,20200201005JC)

摘要: 针对高MLSS下系统的稳定运行及脱氮除磷效果,采用微压内循环生物相反应器(MPR)处理模拟城市污水,探究了超长污泥龄(SRT)在50、70、90 d时,MPR不断减少剩余污泥排放量下的脱氮除磷效果。结果表明,当SRT由50 d提升至90 d时,MPR工艺的脱氮能力得到增强,TN的平均去除率由75.97%提高到84.60%。在延长SRT后,MPR工艺对TP的去除速率有所降低,但TP的去除率仍可稳定保持在97%以上,超长SRT对TP的去除效果影响不显著。在SRT为90 d时,系统稳定期的平均MLSS为13 252 mg·L−1,SVI为70 mL·g−1。此时系统脱氮除磷效果最佳,COD、NH+4-N、TN、TP平均出水质量浓度分别为24.73、0.49、6.99、0.07 mg·L−1,出水优于GB 18918-2002一级A标准。以上结果表明,在超长SRT下,MPR系统不仅可长期稳定运行,还可保障较高的脱氮除磷效果。

English Abstract

  • 目前,活性污泥法仍是应用最为广泛的污水处理技术。在我国城镇化和环境保护协同发展的趋势下,污水处理成为绿色发展理念下重要的一环,而剩余污泥的处理处置成为污水处理的一大难题。剩余污泥处理和处置所需的费用高达整个污水处理厂投资和运行费用的25%~65%[1]。在现有的污水处理厂中,为保证生化系统的脱氮除磷效果,污泥龄(sludge rentention time,SRT)一般控制在12~20 d[2-3]。然而,较短的SRT会产生大量的剩余污泥,预计在2020—2025年,我国污泥年产量将突破6×107 t[4],这将给污水处理厂带来巨大的经济负担。近些年,污泥减量化已成为研究的热点,且其也是解决污泥问题的理想途径之一[5]。SRT作为处理工艺的重要参数,直接影响生化系统的脱氮除磷能力[6]。传统的研究观点[7-8]认为,较长的SRT不利于磷的去除。然而,左宁等[9]发现,SRT为50 d时,排富磷污水除磷的LSP和PNR系统可以同时获得良好的污泥减量[10]与除磷效果。韩玮等[2]研究了厌氧/好氧交替运行的SBR系统,SRT为48 d时仍能保证出水TP质量浓度长期稳定达标。这为延长SRT,减少剩余污泥的排放,并保证系统较高的脱氮除磷效果提供了可行性。但是,目前有关在超长SRT的条件下,如何使系统长期稳定运行以及如何保障系统脱氮除磷效果等研究还较少见报道。

    本研究采用微压内循环生物反应器[11-12](micro-pressure inner-loop bioreactor,MPR)开展了研究。MPR是一种新型多菌群生物反应器,与传统的SBR工艺相比,特殊的流态与传质特性使其溶解氧(dissolved oxygen,DO)由内向外逐渐升高,在单一池体内可实现同时具有中心厌氧、中部缺氧、外部好氧的生化反应环境。这丰富了系统微生物的种类,使多功能菌群分区,在协同作用下,为系统同步去除有机物和脱氮除磷提供了良好环境[13-15],也为系统在高MLSS下的长期稳定运行提供有利条件。本研究以人工配置的模拟城市污水为研究对象,在不断减少剩余污泥排放的目标下,探究了MPR系统在超长SRT下长期运行的脱氮除磷效果及稳定性,以期为MPR工艺的实际工程应用及污泥减量化等研究提供参考。

  • 微压内循环生物相反应器(MPR)工艺原理及实验装置如图1所示。反应器材质为有机玻璃板。上部提升部分尺寸为130 mm×90 mm×400 mm的长方体,呈敞开式,起抬高水位和气体排出作用。下部主反应区尺寸为直径900 mm、高90 mm的圆柱体,提升部分使主反应区处于微小压力状态。反应器有效容积为40 L。底部单侧设置穿孔曝气管。单侧曝气延长了气泡的行程,使气泡与污水的接触时间变长,从而提高了氧的传质效率,增加了氧的利用率。在曝气驱动下,混合液在反应器内形成了稳定的循环流。由于污水与气泡主要在曝气侧和反应器顶部接触,因此,在曝气充氧、流速梯度和氧传质作用下,一定程度上可减少氧和其他基质的传质阻力,并使MPR系统形成较为稳定的DO分区。从外环区域到中心区域,DO浓度逐渐降低,形成外环好氧、中部缺氧、中心厌氧的3种氧环境。反应器通过空气压缩机进行曝气,利用转子流量计控制曝气量为1.6 L·min−1。pH计和DO仪的探头置于反应器内,实现反应过程中pH、DO及温度的实时监测。反应器进水温度为(19±1) ℃,通过调节室温控制进水温度。反应器等间距设有取样口(其中3为排水孔,4为测样孔,5为排泥孔)。

    反应器采用间歇运行方式,在1 d内运行2个周期,每周期为12 h,由10 min进水、480 min曝气、180 min沉淀、10 min排水、40 min闲置组成。排水比为0.4,日处理水量32 L。在曝气停止前30 min,分别排泥800、570和445 mL,将SRT控制在50、70和90 d。实验接种的活性污泥来自长春市某污水处理厂。在实验运行前,活性污泥经过了约30 d的污泥驯化。反应器初始MLSS浓度控制为(4 000±200) mg·L−1

  • 本实验用水为人工模拟城市污水,通过投加淀粉、乙酸钠(CH3COONa)、氯化铵(NH4Cl)、磷酸二氢钾(KH2PO4)、牛肉膏、蛋白胨、高岭土配置而成。实验进水中微量元素由牛肉膏、蛋白胨提供,进水水质见表1

  • COD采用重铬酸钾法,TN采用碱性过硫酸钾消解紫外分光光度法,NH+4-N采用纳氏试剂分光光度法,TP采用钼酸铵分光光度法,MLSS采用重量法,SV采用100 mL量筒30 min沉降法。操作方法均按照国家的水与废水检测标准[16]进行。pH使用雷磁PHSJ-4A酸度计,DO使用德国WTW的Oxi3310便携式溶解氧仪检测。

  • 图2为不同SRT下MPR中MLSS及SVI的变化情况。表2为不同SRT下污泥增长及排放情况。由图2(a)图2(b)可知,随着SRT的增加,MLSS随之增加,系统的污泥负荷(Ns)降低。在3个阶段中,平均Ns分别为0.07、0.04、0.03 kg·(kg·d)−1,系统一直处于低负荷运行状态。由表2可知,在系统稳定期,3个阶段平均MLSS分别为5 128、9 215、13 252 mg·L−1,平均污泥增长速率分别为32.16%、90.39%、44.36%。SRT在70 d内,充足的营养物质供应,使微生物处于增殖期,MLSS增长较快。SRT在90 d内,平均Ns为0.03 kg·(kg·d)−1,内源呼吸和原位消化减弱了微生物的代谢作用,导致MLSS增长速率降低。对比一般污水厂控制的SRT(12~20 d),MPR在3个阶段下分别运行了50、50、60 d,分别可减少60~127、72~138、93~173 L的剩余污泥排放。此外,由图2(a)可知,MPR系统中的SVI整体呈现出先下降后趋于稳定的趋势,在运行初期SVI值达到170 mL·g−1,在136 d后稳定在70 mL·g−1左右。这是因为,随着SRT的延长,MLSS有所增加,活性污泥不断成熟,形成紧而密实的较大污泥絮体,从而改善了系统的沉降性能。且反应器中较高的MLSS使微生物处于内源代谢期,活性污泥的活性难以处于较高的水平,这也有利于污泥沉降。詹咏等[17]发现,在一定范围内,SRT越长,污泥絮凝越好。沉降性能的提升可保证MPR系统的长期稳定运行。

  • 图3为MPR不同氧分区的DO的历时变化。反应器在单侧曝气作用下,污泥混合均匀,逐渐稳定,形成明显的氧分区(厌氧、缺氧、好氧)环境。由图3可知,厌氧区的DO浓度一直保持在0.03 mg·L−1左右,这有利于厌氧细菌的生长繁殖。缺氧区的DO浓度在330 min前一直保持在0.02 mg·L−1左右,在330 min后出现拐点,此后逐渐上升,稳定在1.5 mg·L−1左右。缺氧区主要是缺氧型细菌在发挥作用。好氧区的DO浓度在300 min前一直保持在0.5 mg·L−1以下,300 min出现拐点,此后迅速上升,稳定在4.3 mg·L−1左右。这说明好氧区的DO较充足,能够满足好氧微生物的代谢活动。出口的DO浓度在300 min前一直保持在0.8 mg·L−1左右,300 min出现拐点,在450 min后稳定在4.9 mg·L−1。以上结果表明,MPR系统内存在明显的氧分区,DO由厌氧区到好氧区呈现递增的趋势,这不仅提高了氧的利用率,为保障系统较高的脱氮除磷效果提供了良好的环境,且丰富了系统微生物的种类,为系统长SRT、高MLSS下的稳定运行提供了有利条件。

  • 图4为不同SRT条件下MPR中COD的去除情况。3个运行阶段反应器的COD平均出水值分别为26.17、25.25、24.73 mg·L−1,相应的平均去除率分别为93.83%、93.99%、94.24%。随着SRT的增加,MLSS亦增加,Ns则有所降低[18],MPR系统对COD的去除能力有所提升。当SRT为90 d时,微生物对有机物有了充分的利用,反应器出水达到最佳去除效果。这是因为,较高的MLSS使系统一直处于低负荷运行状态,一定程度上增强了系统微生物对耗氧有机物的分解代谢能力,为后续的脱氮除磷过程提供了物质保障。同时MPR独特的流态使活性污泥处于不同DO区域,耗氧有机物的降解主要发生在好氧区域,而对于难降解的有机物,可以在厌氧区或缺氧区域完成酸化水解,这保证了系统COD的去除率不受影响。此外,在整个实验运行期间,反应器进水COD值波动较大,但出水较为稳定,COD的平均去除率稳定维持在93%以上且有一定提升,这表明超长SRT有利于MPR工艺对COD的去除。

  • 图5为不同SRT下MPR对NH+4-N去除效果变化情况。3个运行阶段反应器的NH+4-N平均出水浓度分别为0.64、0.63、0.49 mg·L−1,相应平均去除率分别为97.92%、97.77%、98.21%。由图5可知,随着SRT的增加,NH+4-N的去除效果有所提升,平均出水浓度由SRT在50 d下的0.64 mg·L−1降低至SRT在90 d下的0.49 mg·L−1。这是因为,延长SRT保证了硝化菌的数量,NH+4-N在AOB(氨氧化菌)作用下被氧化成NO2-N,继而在NOB(亚硝酸盐氧化菌)的作用下转化成NO3-N,完成硝化反应。此外,MPR单侧曝气延长了气泡的行程,使气泡与污水的接触时间变长,为气泡与污水接触的区域提供了较充足的DO。在曝气充氧、流速梯度及氧传质的作用下,系统的DO转移效率增强,保障了系统硝化反应的条件,使超长SRT下NH+4-N的去除效果未受到影响。

  • 图6为不同SRT下MPR对TN去除效果的影响。TN平均出水浓度分别为11.23、7.09、6.99 mg·L−1,相应平均去除率分别为75.97%、83.38%、84.60%。由图6可知,当SRT为50 d时,TN的去除效果较差。由于反硝化反应所需的反硝化菌数量较少,系统滞留了大量NOx-N未被转化,反硝化成为MPR脱氮的限制条件,因而此时系统脱氮效果较差;当SRT为70 d时,MPR对TN的去除能力得到提升,TN的出水浓度逐渐降低;当SRT为90 d时,系统平均MLSS达到13 252 mg·L−1,TN的平均出水浓度为6.99 mg·L−1,系统达到了最佳脱氮效果。这是因为,随着MLSS增加,微生物数量增加,有机底物和DO得到了充分的利用,系统DO浓度整体降低,使中心厌氧区域进一步扩大,这为反硝化菌的增殖提供了有利环境,从而增强了反硝化作用。此外,反硝化反应中可利用的碳源较为广泛,而MPR工艺独特的厌氧、缺氧、好氧生化反应环境[11],使多功能菌群分区,在协同作用下,可降解部分难降解的有机物,为生物脱氮提供所需的碳源[19]。以上结果表明,超长SRT有利于MPR系统的脱氮。

  • 图7为不同SRT下MPR中TP去除情况。根据生物除磷的原理,生物除磷主要通过微生物的同化作用和PAOs的过量吸磷,再经过剩余污泥排放完成除磷。传统观点认为,SRT越长,反应器污泥系统富集的磷越多,去除效果会越差[20]。各阶段TP的平均出水浓度分别为0.07、0.08、0.07 mg·L−1,平均去除率分别为97.54%、97.53%、97.83%。在SRT由50 d提升至90 d的过程中,系统一直处于低负荷运行状态,但TP的去除效果未受到影响,MPR工艺对磷仍可保持高效的去除率。结合图2可知,MLSS升高,PAOs数量亦随之增加,使系统PAOs体内的β-PHA(聚羟基烷酸)总量增加,得到了更多的吸磷驱动力[2],聚磷能力增强。此外,随着MLSS的升高,单位有机质浓度有所升高,排放单位体积的剩余污泥的TP浓度亦随之增加,系统的除磷能力增强。同时,MPR工艺单一池体形成的独特生化反应环境也有利于磷的去除。以上结果表明,在超长SRT下,MPR工艺可保证TP稳定高效的去除。

  • 不同SRT条件下MPR典型周期内COD历时和DO历时变化见图8。由图8可知,曝气60 min后,COD值便达到50 mg·L−1以下,随后持续缓慢降低,表明MPR工艺对COD有较强的去除能力。3个历时阶段,出水COD浓度整体呈现降低趋势,SRT为90 d的出水COD值低于70 d,70 d低于50 d。其原因有2方面:一方面是污泥吸附与稀释作用,在未曝气时,3个阶段系统COD分别从422.9、429.5、439.4 mg·L−1降至246.8、179.1、87.29 mg·L−1,这表明MLSS随着SRT的延长而升高,微生物量有所增加,导致污泥吸附作用变强;另一方面,曝气初期,微生物处于饥饿状态,MLSS越高,微生物量越大,对耗氧有机污染物(以COD计)的降解能力越强。从DO历时来看,在0~330 min内,对于3个运行阶段,其DO浓度分别由0.51、0.56、0.48 mg·L−1升至1.42、0.98、0.71 mg·L−1,均在330 min时发生DO的突跃,完成了对耗氧有机污染物(以COD计)的降解。以上结果表明,在超长SRT下,随着SRT的增加,系统DO利用率亦增加,对耗氧有机污染物(以COD计)的降解能力得到增强。

  • 不同SRT下MPR典型周期内各形态氮的转化历时见图9。MPR运行的3个阶段,在前300 min均有TN的去除:当SRT为50 d时,在前180 min内,NO3-N变化不大,质量浓度维持在0.9 mg·L−1;当SRT为70 d和90 d时,在前300 min内,NO3-N变化不大,所对应的质量浓度分别维持在0.02 mg·L−1和0.16 mg·L−1。在300 min后TN均变化不大。当SRT为50 d时,在180 min后,NO3-N开始累积;当SRT为70、90 d时,在300 min后,NO3-N开始累积,均于450 min达到峰值。在3个阶段,NO2-N含量在150 min前均为0 mg·L−1,分别在150、180、210 min后开始累积,于240、330、390 min达到峰值。而反应过程中NH+4-N一直在降低。在历时过程中,出水TN和NH+4-N浓度在SRT为50 d时最高,在SRT为70 d时最低。由图9可知:在超长SRT下,SRT由50 d提升至70 d,系统脱氮能力增强;SRT由70 d提升至90 d,脱氮能力受到了一定限制。以上结果表明,一定程度上延长SRT,有利于增强系统的脱氮能力。由图9(c)图9(d)可知,当SRT为70 d时,在前180 min内,NO3-N和NO2-N的浓度几乎为0 mg·L−1,此时脱氮是由SND(同步硝化反硝化)完成。而3个运行阶段分别在150、180、210 min前NO3-N和NO2-N未形成持续累积,这表明此时段内一直伴随着SND作用。3个运行阶段在450 min时NH+4-N均出现氨谷,NO2-N含量为0 mg·L−1NO3-N含量分别为10.91、6.58、5.25 mg·L−1。这说明此时硝化反应彻底,系统内滞留部分NO3-N未被转化成氮气,反硝化作用限制了脱氮能力。而NO3-N含量随着SRT的延长而降低,这表明延长SRT有利于提高MPR的反硝化能力。

  • 不同SRT下MPR典型周期内TP历时变化见图10,磷的释放与吸收率见表3。结合图8图9可知,在0~60 min内,MPR系统处于低溶解氧状态(<0.5~0.6 mg·L−1),系统发生释磷作用。在60~330 min内,MPR系统处于好氧状态(>0.5 mg·L−1),系统同时发生了有机物的降解、硝化反硝化、好氧吸磷。MPR工艺具有良好的同步去除有机物和脱氮除磷效果[21]。本实验中,当SRT为50 d时,曝气60 min时系统污泥中释磷含量为12.8 mg·L−1,当SRT为70 d和90 d时,曝气30 min时系统污泥中释磷含量分别为15.2 mg·L−1和13.2 mg·L−1。3个阶段磷的释放量与进水TP浓度的比值分别为3.41、4.23、4.20,当SRT为70 d和90 d时,磷的释放量较多,此时系统的PAOs具备较强的储磷能力。当SRT为50 d时,在60~180 min内,DO浓度由0.62 mg·L−1升至0.86 mg·L−1,相应的TP浓度由12.8 mg·L−1降低至0.065 mg·L−1,于180 min基本完成吸磷;当SRT为70 d时,在30~210 min内,DO浓度由0.58 mg·L−1升至0.83 mg·L−1,相应的TP浓度由15.2 mg·L−1降低至0.16 mg·L−1,于300 min完成吸磷(TP浓度为0.09 mg·L−1);当SRT为90 d时,在30~330 min内,DO浓度由0.46 mg·L−1升至0.71 mg·L−1,相应的TP浓度由13.2 mg·L−1降低至0.09 mg·L−1,于330 min基本完成吸磷。在3个运行阶段中,MPR系统的吸磷速率分别为6.37、5.01和2.62 mg·(g·h)−1。以上结果表明,在超长SRT下,随着SRT的增加,反应过程中DO浓度下降,好氧吸磷完成的时间延后,吸磷速率降低。MPR系统长期处于低负荷运行状态,影响了PAOs细胞内聚β-PHB(聚羟基丁酸)的含量,使磷的吸收速率下降[22]。而较高的MLSS维持了PAOs的数量,保证了磷的去除效果不受影响。

  • 1)在本研究的3个阶段中,出水污染物浓度均优于GB 18918-2002中一级A标准。当SRT为90 d时,MPR系统稳定期的平均MLSS为13 252 mg·L−1,SVI为70 mL·g−1,活性污泥沉降性能良好;此时脱氮除磷效果最佳,COD、NH+4-N、TN、TP平均出水值分别为24.73、0.49、6.99、0.07 mg·L−1,平均去除率分别为94.24%、98.21%、84.60%、97.83%。

    2)当SRT由50 d提升至90 d时,MLSS升高,Ns降低,耗氧有机污染物(以COD计)的降解能力增强,同时MPR独特的工艺构造使DO转移效率增强,NH+4-N去除率有所提升,而系统DO浓度整体降低,TN去除率得到了明显的提升,TN的平均去除率由75.97%提高到84.60%。

    3) MPR系统中磷的释放量与进水TP浓度的比值随着SRT的延长而升高,系统的PAOs具备较强的储磷能力,同时随着MLSS的升高,排放单位体积的剩余污泥的TP浓度增加,系统的除磷能力增强,对TP的去除效果影响不显著,平均去除率可稳定保持在97%以上。

参考文献 (22)

返回顶部

目录

/

返回文章
返回