Processing math: 100%

混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响

郑俊田, 郑俊, 程洛闻, 张德伟, 赵梦轲, 王梦琳, 张诗华, 丁磊. 混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响[J]. 环境工程学报, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119
引用本文: 郑俊田, 郑俊, 程洛闻, 张德伟, 赵梦轲, 王梦琳, 张诗华, 丁磊. 混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响[J]. 环境工程学报, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119
ZHENG Juntian, ZHENG Jun, CHENG Luowen, ZHANG Dewei, ZHAO Mengke, WANG Menglin, ZHANG Shihua, DING Lei. Influence of mixed liquid reflux ratio on a new multiple-inflow A/O/A/A/O sludge-biofilm coupling process for denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119
Citation: ZHENG Juntian, ZHENG Jun, CHENG Luowen, ZHANG Dewei, ZHAO Mengke, WANG Menglin, ZHANG Shihua, DING Lei. Influence of mixed liquid reflux ratio on a new multiple-inflow A/O/A/A/O sludge-biofilm coupling process for denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119

混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响

    作者简介: 郑俊田(1996—),男,硕士研究生。研究方向:水环境污染控制与治理。E-mail:zhenjuntian1121@163.com
    通讯作者: 张德伟(1988—),男,博士,高级工程师。研究方向:水环境污染控制及水体修复。E-mail:zhdewei86@163.com
  • 中图分类号: X703

Influence of mixed liquid reflux ratio on a new multiple-inflow A/O/A/A/O sludge-biofilm coupling process for denitrification and phosphorus removal

    Corresponding author: ZHANG Dewei, zhdewei86@163.com
  • 摘要: 针对中国南方城镇低碳氮比(低C/N)生活污水的脱氮除磷问题,开发并设计了新型多点进水A1/O2/A3/A4/O5泥膜耦合工艺及中试装置。在进水点1和进水点2的进水流量比为4: 6的条件下,通过改变混合液回流比,研究了其对系统中有机物、氮、磷的去除影响及氮素的转化规律。结果表明:当平均进水低C/N比为2.09,混合液回流比为300%时,出水中COD、NH+4-N、TN、TP的平均值分别为23.45、0.80、12.41、0.36 mg·L−1,平均去除率分别为86.88%、98.25%、77.68%、90.31%;相对于分段进水A/O/A/A/O泥膜耦合工艺,增加混合液回流比后系统对TN的去除率由68.28%增加到77.68%;对TP的去除率由75.22%增加到90.31%。本系统对于低碳氮比污水处理具有明显的脱氮除磷效果优势,解决了低碳氮比污水生物处理过程中磷出水较难低于0.5 mg·L−1的难题。
  • 邻苯二甲酸酯(phthalate esters, PAEs)又称酞酸酯,是一类重要的合成有机物,被广泛应用于塑料制造[1],常用作涂料、润滑剂、粘合剂、杀虫剂、包装和化妆品的添加剂[2]。有文献报道了国内23个城市的90个自来水厂141个水源水样中均检出了邻苯二甲酸单酯(MPAEs)[3],邻苯二甲酸二丁酯(DBP)是PAEs中的一种,在增塑剂中应用最为广泛,极易从塑料中释放到环境中[4-5],是一种环境激素类物质,具有致癌、致畸与致突变作用[6-8],因此,开展PAEs此类污染物在不同环境中的降解研究对于生态环境安全保障尤为重要。

    目前,对DBP污染的生物降解研究主要集中在高效降解菌的筛选、驯化及降解机理等方面[9-10],游离态菌株在实际应用中存在降解周期长、菌体易流失、环境耐受性差等问题,因此,国内外学者利用固定化微生物技术解决生物降解的缺陷,已应用在处理生活废水[11]、池塘模拟废水[12]、难降解有机废水[13-14]等水污染治理方面。为了得到具有高固定化强度和高微生物活性的固定化系统,可选择两种及以上的固定化材料结合起来的复合固定化法,例如:采用聚乙烯醇和海藻酸钠为包埋材料、活性炭为吸附材料、CaCl2的饱和硼酸溶液为交联剂,同时,负载较强生物活性的高效降解混合菌势必会提高生物解吸的效率,最终获得对底物优异的降解性能[15],具有较强的实际应用性。

    本研究以DBP为目标污染物,开展了DBP降解混合菌(以下简称DP3)的包埋-吸附-交联固定化条件优化及降解特性研究,以聚乙烯醇(PVA)和海藻酸钠(SA)为包埋材料、活性炭为吸附材料,CaCl2的饱和硼酸溶液为交联剂,采用正交试验确定最佳固定化制备条件,并以游离态混合菌为对照,研究了pH值、盐度、DBP浓度对固定化混合菌降解性能的影响,研究结果可为DBP降解菌在环境修复中的应用提供理论依据和技术支持。

    本研究供试混合菌DP3由本实验室保存的DBP高效降解菌鲍曼不动杆菌、唐氏不动杆菌、弗氏柠檬酸杆菌菌悬液复配而成。各菌株的菌悬液制备方法为:将菌液接种到LB培养基,于30 ℃,150 r·min−1摇床活化培养,将活化好的培养液5000 r·min−1离心5 min,收集的菌体用pH=7.2磷酸盐缓冲液清洗2遍,生理食盐水清洗3遍,重新离心,弃去上清液。取适量湿菌体用无菌水配制成菌悬液,调节OD600至1.0。混合菌DP3由各菌悬液按3∶3∶2比例配制生成。

    气相色谱-质谱联用仪(7890B-7000C,美国Agilent公司);超声清洗器(KQ5200DB,昆山市超声仪器有限公司); 旋转蒸发器(RE5299,海亚荣生化仪器厂);紫外分光光度计(UV-5100B,上海分析仪器有限公司)。

    本研究所用药品除特别注释均为分析纯,其中邻苯二甲酸二丁酯标样购自美国Accustandard公司,色谱纯正己烷购自上海赛默飞世尔科技有限公司。

    牛肉膏蛋白胨培养基(LB):牛肉膏5 g,蛋白胨10 g,NaCl 5 g,蒸馏水1 L,pH值为7.2—7.4。

    无机盐培养基(MSM):K2HPO45.1 g,KH2PO4 2.5 g,(NH42SO4 2.0 g,MgCl2 0.16 g,微量元素溶液1.0 mL;微量元素溶液:CaCl2 20 mg,Na2MoO4·2H2O 2.4 mg,FeSO4·7H2O 1.8 mg,MnCl2·4H2O 1.5 mg。

    模拟人工污水:葡萄糖0.1700 g;可溶性淀粉0.1600 g;CH3COONa 0.2330 g;NH4Cl 0.45 g;KNO3 0.1 g;(NH42SO4 0.0284 g;KH2PO4 0.0700 g;Na2CO3 0.0600 g;pH=7.2,去离子水1.0 L。121 ℃灭菌30 min后使用。

    取待测的DBP无机培养基溶液50 mL于150 mL锥形瓶中,加入等体积正己烷,常温下超声提取30 min静置。利用分液漏斗取出上层有机相,加入4 g无水硫酸钠干燥并浓缩至0.5 mL,最后用正己烷定容至1 mL,转入棕色2 mL样品瓶,待测。

    GC-MS色谱条件:Agilent HP-5MS UI色谱柱(30 m×0.25 mm×0.25 μm);进样口温度为280 ℃;程序升温:初始柱温80 ℃,保持1 min,以20 ℃·min−1上升至280 ℃,保持4 min,载气:氦气,流速1 mL·min−1; 进样方式:不分流进样;进样量:1 μL。

    GC-MS质谱条件:电子轰击离子源模式(EI),离子源温度300 ℃,四极杆温度150 ℃,MSD传输线温度300 ℃,电子能量70 eV;扫描范围为50—550 m/z[16]

    取外形规则的固定化凝胶球用0.1 mol·L−1的PBS 缓冲溶液清洗3次,每次10—15 min,在4 ℃下,2.5%戊二醛固定12 h,0.1 mol·L−1的PBS缓冲溶液清洗3次,每次10—15 min,依次在50%、70%、80%、90%和100%质量浓度的乙醇溶液中脱水1次,每次30 min,然后用1∶1的乙醇和乙酸异戊酯置换乙醇1次,乙酸异戊酯置换乙醇2次,每次30 min,于CO2临界点干燥,切片,将样品固定在样品托上,喷金,待测。

    选择PVA和SA包埋材料,活性炭粉末(过1 mm筛)作为吸附剂,氯化钙和硼酸作为交联剂。首先,称取一定量的活性炭,将制备好的5 mL菌悬液与活性炭混合,摇床振荡吸附0.5 h。然后,将PVA和SA按一定比例混合后加入30 mL蒸馏水浸泡12 h,灭菌后冷却至30 ℃后,加入吸附有菌体的活性炭,接着,用无菌水定容至50 mL,搅拌均匀后用注射器从20 cm高处将其缓慢匀速滴加至一定质量分数的氯化钙-饱和硼酸溶液中(用Na2CO3调pH 6.7左右),磁力搅拌,凝胶颗粒交联24 h。最后,用无菌水和生理盐水分别冲洗2次,保存于4 ℃冰箱中,备用。

    为确定混合菌最佳固定化制备条件,选定海藻酸钠(SA)、聚乙烯醇(PVA)、活性炭(AC)和CaCl2质量分数为试验因素,各因素分别设置3个水平,按L9(34)正交表设计正交试验(表 1)。

    表 1  正交试验设计
    Table 1.  Orthogonal design of immobilization
    水平Level因素Factor
    A:PVA/%B:SA/%C:AC/%D:CaCl2 /%
    18111
    210222
    312333
     | Show Table
    DownLoad: CSV

    取灭菌的无机盐培养基50 mL,保持DBP的最终浓度分别为10、20、50、100、200、500、1000 mg·L−1。根据最佳固定化制备条件结果(A2B2C3D1),将制备好的固定化凝胶球和不接菌空白凝胶球按照相同的接种量接种到锥形瓶中,于150 r·min−1、30 ℃恒温培养。每个处理设3个重复,测试24 h的降解率。

    DBP降解率=DBP初始浓度DBP残留浓度DBP初始浓度×100%

    在灭菌的三角瓶中加入1000 mg·L−1的DBP的正己烷溶液0.5 mL,挥发尽正己烷,然后加入灭菌的无机盐培养基50 mL,保持DBP的最终浓度为10 mg·L−1,分别加入制备好的固定化微生物凝胶球和菌悬液,使接菌量保持一致。研究不同环境因素(pH、NaCl浓度和DBP浓度)对固定化微生物的降解性能:pH(4、5、6、7、8、9、10);NaCl浓度(5、10、20、50、100 g·L−1);DBP浓度(10、20、50、100、200 mg·L−1)。每个处理设3个重复。30 ℃、转速150 r·min−1下培养,测定3 d固定化和游离态混合菌的降解率。

    取灭菌的无机盐培养基50 mL,加入制备好的固定化微生物凝胶球,保持DBP的最终浓度为10 mg·L−1,于150 r·min−1、30 ℃ 恒温培养 3 d。每个处理设3个重复,重复20次,研究固定化DBP混合菌的长期降解稳定性。

    取灭菌的模拟人工污水50 mL,实验方法同长期稳定性试验,测定6 d固定化微生物凝胶球和游离态混合菌在模拟人工污水中的降解率。

    采用一阶动力学模型对降解数据进行拟合,模型方程如下:

    Ct=C0eKt
    t1/2=ln2K

    式中,Ctt(d)时体系中DBP的总浓度(mg·L−1);C0是初始时DBP总浓度(mg·L−1);K是微生物降解一阶动力学参数(d−1);t1/2是半衰期(d)。

    为考察聚乙烯醇(PVA)、海藻酸钠(SA)、活性炭(AC)、CaCl2浓度等4种因素对包埋小球降解DBP能力的综合影响,确定固定化载体最佳制备条件,以DBP去除率为目标值设计正交试验,结果如表2所示。对比各因素所对应的R值可知,各因素对固定化混合菌降解DBP能力的影响由大到小依次为C:AC含量>A:PVA含量>B:SA含量>D:CaCl2含量,根据各因素所对应的Ⅰj、Ⅱj、Ⅲj可知各因素之间最优组合为A2B2C3D1

    表 2  固定化条件优化正交试验结果
    Table 2.  Orthogonal experimental results
    序号Number因素FactorDBP去除率/%DBP Removal rate
    PVASAACCaCl2
    1111188.57
    2122293.88
    3133395.62
    4212395.73
    5223199.86
    6231291.58
    7313295.77
    8321390.15
    9332194.33
    j92.6993.3690.1094.25
    j95.7294.6394.6593.74
    j93.4293.8497.0893.83
    Rj3.031.276.980.51
     | Show Table
    DownLoad: CSV

    固定化空白和微生物凝胶球进行扫描电镜前处理制备,喷金后观察其表面和内部结构,结果如图1所示。由图1(a)可以发现,固定化空白凝胶球的表面不光滑,存在密集的孔穴;从图1(b)可知,在固定化空白凝胶球内部,PVA-SA-AC复合材料构筑由孔道相互连通的大量空腔,呈孔网结构。图1(c)(d)发现,混合菌DP3以网状菌落交织被复合材料包埋吸附在凝胶球的内部,由于菌体明显小于内部孔径,有利于微生物在内部的自由运动、增殖和快速摄取营养物质和溶解氧[17]。邻苯二甲酸二丁酯分子自由进入凝胶球内部与微生物产生作用被降解,外密内疏结构对维持固定化微生物良好的内部环境起到了重要的作用,是保证固定化混合菌较高DBP降解率的重要因素。

    图 1  固定化凝胶球的SEM照片
    Figure 1.  The SEM images of the immobilized gel spheres

    为了解固定化混合菌DP3去除DBP的机理,对比了固定化DP3和空白凝胶球对DBP的去除效果,结果如图2所示,DBP的浓度为10 mg·L−1时,固定化DP3和空白凝胶球对DBP的去除率均能达到99%以上;DBP的浓度在20—200 mg·L−1时,空白凝胶球对DBP的去除率呈现缓慢下降趋势,DBP的浓度为500 mg·L−1时,吸附平衡达到相对饱和,同时,DBP浓度的升高,为负载在小球中混合菌DP3提供可利用碳源,进而提高了微生物的活性[18],所以,DBP浓度在500—1000 mg·L−1时,固定化DP3对DBP去除效率显著优于空白凝胶球,随着DBP浓度的降低,平衡向吸附作用方向移动,残余的DBP被吸附至小球内被微生物降解,由此可见,经过包埋-吸附联合固定化后的混合菌DP3能够保持较高生物活性。

    图 2  固定化混合菌DP3和空白凝胶球对DBP降解性能的比较
    Figure 2.  Comparison of DBP degradation performance ofimmobilized mixed bacteria DP3 and blank gel sphere

    以游离态混合菌DP3为对照,开展了pH值对固定化DP3降解DBP的影响研究,如图3所示,pH值在6—9时,固定化和游离态混合菌DP3对DBP的降解能力相对较为稳定,pH值为7时,3 d内对DBP降解率均可达到最大值,而处于较强的酸碱条件时,游离态混合菌DP3的降解能力显著下降,在pH4—6之间时最为明显。而固定化混合菌DP3的pH值变化对DBP降解能力的影响极小,在pH9—10之间有极微小的变化,明显高于游离态混合菌DP3的降解能力。这是由于固定化凝胶球具有外层紧密,向内逐渐松散的结构特征,能够对包埋的混合菌起到一定的保护作用,而且固定化载体上负载的—NH2、—COOH等基团能够对酸碱环境进行缓冲[19]。对于游离态混合菌DP3来说,较强的酸碱条件改变了细胞膜的通透性,并且导致DBP降解酶失活[20-21],从而影响游离态混合菌对DBP的降解能力。所以,固定化混合菌DP3对pH的耐受范围明显高于游离态混合菌DP3,可以保持稳定的生物活性,显示出固定化技术的优势。

    图 3  pH对固定化和游离态混合菌DP3降解DBP的影响
    Figure 3.  Effect of pH on immobilized DP3’s and free DP3’s degradation rate

    NaCl浓度对固定化和游离态混合菌DP3降解DBP的影响如图4所示,NaCl浓度为0 g·L−1时,固定化和游离态混合菌DP3对DBP在3 d时的降解率均可达到最大值,分别为99.13%和94.77%。NaCl浓度在5—10 g·L−1之间时,游离态混合菌对DBP降解效果较为稳定,NaCl浓度在20—100 g·L−1之间时,随着NaCl浓度增大,游离态混合菌对DBP的降解效果逐渐下降,而固定化后的混合菌对DBP的降解效果较为稳定,且显著高于游离态混合菌的降解效果。这是由于随着盐度提高,细胞内与外界的渗透压逐渐失去平衡,使得细胞内的水分慢慢向外界流失,致细胞脱水,菌株生长受到抑制,进而影响菌株对DBP的降解,而固定化后,固定化材料对混合菌起到良好的保护作用并为其提供一个适宜的生长环境,随着NaCl浓度增大,固定化复合菌对DBP的降解效果也有所降低,这可能是由于小球外表面附着的混合菌受到NaCl浓度影响,而失去活性,从而影响其对DBP的降解效果。

    图 4  NaCl浓度对固定化和游离态混合菌DP3降解DBP的影响
    Figure 4.  Effect of NaCl concentration on immobilized DP3’s and free DP3’s degradation rate

    DBP浓度对固定化和游离态混合菌DP3降解DBP的影响如图5所示,当DBP浓度处于10—20 mg·L−1时,固定化和游离态混合菌DP3对DBP有着显著的降解作用,而且DBP浓度为10 mg·L−1,时,1 d内固定化混合菌DP3对DBP降解效果可达到98.84%,与游离态混合菌相比,其降解率显著提高35.11%,当DBP浓度大于20 mg·L−1时,随着DBP浓度的增加,游离态混合菌DP3对DBP的降解能力明显下降;而固定化混合菌DP3对DBP的降解能力随着DBP浓度的增加较为稳定,且显著高于游离态混合菌DP3。在DBP浓度为200 mg·L−1时,固定化混合菌DP3对DBP在3 d时的降解效果仍可达到91.15%。这是由于DBP具有细胞毒性[22],高浓度的DBP会抑制菌株的生长,进而影响游离态混合菌对DBP的降解效率,而固定化材料具有外紧内松的结构特征,DBP向内部扩散时浓度递减,对混合菌起到良好的缓冲作用[23]。可知,固定化的混合菌微生物密度较高,包埋、吸附材料对于DBP的吸附作用也可使微生物与污染物更好的接触,从而使得固定化混合菌对高浓度DBP降解能力明显高于游离态混合菌。

    图 5  底物浓度对固定化和游离态混合菌DP3降解DBP的影响
    Figure 5.  Effect of DBP concentration on immobilized DP3’s and free DP3’s degradation rate

    固定化和游离态混合菌DP3降解不同浓度的DBP(10、20、50、100、200 mg·L−1),从拟合方程(表3)可知,固定化和游离态混合菌DP3对底物降解符合一阶动力学方程,随着底物浓度的逐渐增大,固定化DP3对其降解性能降低,说明固定化DP3对底物DBP的浓度具有一定的耐受范围。相对游离态,降解同等浓度的底物,固定化DP3的半衰期缩短,降解速度明显增加,对底物DBP的耐受性增强,据推测是因为包埋载体的底物传质阻力降低了高浓度有毒底物的冲击,同时负载的微生物密度较高,少量菌体失活不会对整个体系微生物的降解活性产生影响[24]

    表 3  固定化DP3的DBP降解动力学方程
    Table 3.  Equation of DBP degradation kinetics by immobilized DP3
    名称Name初始浓度/(mg·L−1)Initial concentration动力学方程Degradation kinetics动力学参数/h−1Kinetic parametert1/2/hR2
    10lnC=−0.1859t+2.30260.18593.72840.8022
    20lnC=−0.1869t+2.99570.18693.70890.8008
    固定化DP350lnC=−0.1540t+3.91200.15404.50140.8487
    100lnC=−0.0977t+4.60520.09777.09510.9283
    200lnC=−0.0922t+5.29830.09227.51750.9353
    10lnC=−0.0426t+2.30260.042616.26710.8869
    20lnC=−0.0352t+2.99570.035219.71530.9181
    游离态DP350lnC=−0.0105t+3.91200.010565.98890.9916
    100lnC=−0.0060t+4.60520.0060114.89830.9972
    200lnC=−0.0037t+5.29830.0037184.42570.9989
     | Show Table
    DownLoad: CSV

    为考察固定化混合菌DP3重复使用的稳定性,在固定化DP3最佳制备和环境条件下,对10 mg·L−1 DBP进行降解实验,固定化混合菌DP3凝胶球重复循环使用20次,结果如图6所示,凝胶球始终保持良好的降解活性,且稳定,1 d内,重复20次固定化混合菌DP3对DBP的降解效果仍能达到99.95%,说明固定化混合菌在前期使用中受到DBP的驯化,催化其生物活性,重复过程中优化了降解性能,反映出固定化混合菌DP3降解DBP具有优异的长期稳定性,这就为实际应用中奠定了理论基础,达到节约成本的目的[25]

    图 6  固定化混合菌DP3的重复稳定性
    Figure 6.  Repeated stability of immobilized mixed bacteria DP3

    为验证固定化混合菌在实际生产中的降解能力,将固定化混合菌DP3加入10 mg·L−1 DBP的模拟人工污水中,以游离态混合菌DP3作为对照,由图7结果显示,在1 d时,游离态DP3对DBP的降解率为53.33%,固定化DP3为98.03%,降解效率显著提升,2 d后,固定化DP3达到99.98%,模拟人工污水中的DBP几乎可以完全降解,结果表明,固定化混合菌DP3表现出良好的降解能力,具有显著的应用价值。

    图 7  固定化混合菌DP3和游离态混合菌DP3降解模拟人工污水中DBP的比较
    Figure 7.  Comparison of immobilized mixed bacteria DP3 and free mixed bacteria DP3 in degradation of DBP in artificial sewage

    (1)采用正交试验确定固定化混合菌DP3的最佳制备条件为:聚乙烯醇(PVA)质量分数10%,海藻酸钠(SA)质量分数2%,活性炭(AC)质量分数3%,CaCl2质量分数1%。与游离态混合菌的降解效果相比,该条件下所制备的固定化混合菌DP3,1 d时对DBP的降解效果可达到98.84%,降解率提升35.11%。

    (2)考察了不同环境条件(pH值、NaCl浓度、底物浓度)对固定化与游离态混合菌DP3降解DBP的影响,在pH4—10、NaCl浓度在5—100 g·L−1、底物浓度在10-200 mg·L−1时,对DBP的降解率均在90%以上,固定化混合菌DP3的降解率显著优于游离态混合菌。此外,固定化混合菌DP3在模拟人工污水中1 d时对DBP的降解率可达98.03%,

    (3)固定化混合菌DP3对底物降解符合一阶动力学方程,相比游离态而言,降解同等浓度的底物,固定化DP3的半衰期缩短,降解速度明显增加,对底物DBP的耐受性增强。同时,固定化混合菌DP3重复对DBP进行降解20次,降解效果仍可达到99.95%,且无破碎现象。SEM扫描结果表明固定化混合菌DP3以网状菌落交织被复合材料包埋吸附在凝胶球的内部。进一步证实并解释了固定化混合菌具有较高DBP降解效率的原因。

  • 图 1  多点进水新型A1/O2/A3/A4/O5泥膜耦合工艺流程

    Figure 1.  Process flow diagram of a new multiple-inflow A1/O2/A3/A4/O5 sludge-biofilm coupling process

    图 2  不同混合液回流比对COD的去除效果影响

    Figure 2.  Effect of different mixture reflux ratio on COD removal

    图 3  各工况下COD沿程的变化规律

    Figure 3.  Variation rule of COD under each operating condition

    图 4  不同混合液回流比对NH+4-N去除效果的影响

    Figure 4.  Effect of different mixture reflux ratio on NH+4-N removal

    图 5  各工况下NH+4-N、NO3-N沿程的变化规律

    Figure 5.  NH+4-N, NO3-N concentration at different stages under different operational conditions

    图 6  不同混合液回流比对TN去除效果的影响

    Figure 6.  Effect of different mixed liquid reflux ratio on TN removal

    图 7  各工况下TN沿程的变化规律

    Figure 7.  Variation rule of TN under each operating condition

    图 8  不同混合液回流比对TP去除效果的影响

    Figure 8.  Effect of different mixed liquid reflux ratio on TP removal

    图 9  各工况下TP沿程变化规律

    Figure 9.  Variation rule of TP under each operating condition

    表 1  进水水质

    Table 1.  Water quality of influent

    数值pHCOD/(mg·L−1)BOD5/(mg·L−1)NH+4-N/(mgL1)TN/(mg·L−1)TP/(mg·L−1)C/N
    范围7.0~7.9148.6~199.5100.1~126.936.5~49.941.8~54.41.8~3.91.7~3.7
    均值7.4160.6102.145.148.92.92.1
    数值pHCOD/(mg·L−1)BOD5/(mg·L−1)NH+4-N/(mgL1)TN/(mg·L−1)TP/(mg·L−1)C/N
    范围7.0~7.9148.6~199.5100.1~126.936.5~49.941.8~54.41.8~3.91.7~3.7
    均值7.4160.6102.145.148.92.92.1
    下载: 导出CSV

    表 2  实验条件及运行工况

    Table 2.  Experimental and operational conditions of the process

    工况时间/d进水量/(m3·d−1)温度/ ℃混合液回流比/%平均进水负荷/(kg·(m3·d)−1)
    CODNH+4-NTNTP
    11~100.9118~2400.552 10.151 80.184 30.011 7
    211~200.9118~241000.557 90.162 70.186 80.012 7
    321~300.9118~242000.541 40.162 10.187 40.013 3
    431~400.9118~243000.608 90.165 90.190 20.012 8
    541~500.9118~244000.607 80.165 60.190 80.012 7
    工况时间/d进水量/(m3·d−1)温度/ ℃混合液回流比/%平均进水负荷/(kg·(m3·d)−1)
    CODNH+4-NTNTP
    11~100.9118~2400.552 10.151 80.184 30.011 7
    211~200.9118~241000.557 90.162 70.186 80.012 7
    321~300.9118~242000.541 40.162 10.187 40.013 3
    431~400.9118~243000.608 90.165 90.190 20.012 8
    541~500.9118~244000.607 80.165 60.190 80.012 7
    下载: 导出CSV

    表 3  有无填料对氮素的去除情况对比

    Table 3.  Comparison of nitrogen removal with or without fillers

    条件进水最高浓度/(mg·L−1)进水最低浓度/(mg·L−1)出水最高浓度/(mg·L−1)出水最低浓度/(mg·L−1)出水平均浓度/(mg·L−1)出水平均去除率/%
    有填料(氨氮)49.836.591.150.150.8398.32
    无填料(氨氮)48.8537.216.234.234.8991.22
    有填料(总氮)59.3245.2914.2311.1212.2677.28
    无填料(总氮)57.2344.1218.3313.2514.7873.22
    条件进水最高浓度/(mg·L−1)进水最低浓度/(mg·L−1)出水最高浓度/(mg·L−1)出水最低浓度/(mg·L−1)出水平均浓度/(mg·L−1)出水平均去除率/%
    有填料(氨氮)49.836.591.150.150.8398.32
    无填料(氨氮)48.8537.216.234.234.8991.22
    有填料(总氮)59.3245.2914.2311.1212.2677.28
    无填料(总氮)57.2344.1218.3313.2514.7873.22
    下载: 导出CSV
  • [1] ZHANG W, JIN X, LIU D, et al. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river-Fuyang River in northern China[J]. Journal of Environmental Science, 2017, 55(5): 41-48.
    [2] ABYAR H, YOUNESI H, BAHRAMIFAR N, et al. Biological CNP removal from meat-processing wastewater in an innovative high rate up-flow A2O bioreactor[J]. Chemosphere, 2018, 213(12): 197-204.
    [3] JI B, ZHANG X, ZHANG S, et al. Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing[J]. Journal of Bioscience and Bioengineering, 2019, 128(6): 744-750. doi: 10.1016/j.jbiosc.2019.06.007
    [4] NATALIA R M, BADIA F M, GUISASOLA A, et al. Glutamate as sole carbon source for enhanced biological phosphorus removal[J]. Science of the Total Environment, 2018, 657(1): 1398-1408.
    [5] 李亚峰, 杨嗣靖, 于燿滏. 基于倒置A2/O工艺脱氮除磷存在问题的优化措施[J]. 工业水处理, 2019, 39(8): 15-18.
    [6] 马吴俊, 孙冬青, 纪荣平. 3段进水A/O工艺处理生活污水实验研究[J]. 水处理技术, 2013, 39(8): 71-74. doi: 10.3969/j.issn.1000-3770.2013.08.017
    [7] BOYLE C A, MCKENZIE C J, MORGAN S. Internal recycle to improve denitrification in a step feed anoxic/aerobic activated sludge system[J]. Water Science & Technology, 2009, 60(7): 1661-1668.
    [8] 刘胜军, 杨学, 石凤, 等. 多段多级AO除磷脱氮工艺分析与研究[J]. 给水排水, 2012, S1(1): 191-194.
    [9] 姚学文, 罗斌, 邱家国, 等. 混合液回流比和外碳源对反硝化脱氮效能的影响[J]. 中国给水排水, 2019, 35(9): 58-62.
    [10] 刘牡, 杨培, 史彦伟, 等. 回流比对AAO中试脱氮除磷效果的影响研究[C]//中国城市科学研究会, 中国城镇供水排水协会, 海南省住房和城乡建设厅, 等. 第十二届中国城镇水务发展国际研讨会与新技术设备博览会论文集, 2017: 6.
    [11] 马骏, 查晓, 吕锡武. 硝化液回流比对缺氧-生物转盘工艺脱氮效果的影响[J]. 净水技术, 2018, 187(1): 59-63.
    [12] 项敏, 陈东辉, 黄满红. 回流比对分段进水A2/O工艺脱氮除磷影响的小试研究[J]. 广州化工, 2011, 39(12): 127-130. doi: 10.3969/j.issn.1001-9677.2011.12.046
    [13] 闫冬, 何争光, 韩艳萍, 等. 内回流比对分段进水循环A/O工艺系统性能的影响研究[J]. 工业水处理, 2015, 35(6): 27-30. doi: 10.11894/1005-829x.2015.35(6).007
    [14] 李长刚, 阎光绪, 郭绍辉. 内循环回流比和碳源投加量对两段进水A/O工艺去除重油加工污水氮污染物的影响[J]. 石油科学通报, 2018, 3(4): 113-120.
    [15] APHA. Standard Methods for the Examination of Water and Wastewater[M]. Washington: American Public Health Association, 1998.
    [16] 吴亚慧, 陆少鸣, 胡勇, 等. 一体化生物滤池处理农村污水硝化液回流比影响[J]. 水处理技术, 2019, 45(4): 93-95.
    [17] 舒敏玉, 陈俊鸿, 刘涛, 等. 硝化液回流比对MBBR一体化设备脱氮除磷的影响研究[J]. 广东化工, 2018, 45(17): 63-65. doi: 10.3969/j.issn.1007-1865.2018.17.029
    [18] 陈伟敏. 硝化液回流比对印染废水总氮去除率影响的研究[J]. 中国资源综合利用, 2020, 38(6): 25-27.
    [19] 郭耀, 李志华, 李黔花, 等. 消除内回流液中溶解氧对反硝化过程影响的对策[J]. 中国给水排水, 2020, 36(1): 1-6.
    [20] 郑俊, 贺倩倩, 张德伟, 等. 硝化液循环比对DBF-BAF工艺处理焦化废水效能的影响[J]. 环境工程学报, 2017, 11(1): 317-321. doi: 10.12030/j.cjee.201508210
    [21] 于燿滏, 范维利, 郭鑫. 硝化液回流比对改良型倒置A2/O系统脱氮除磷性能研究[J]. 建筑与预算, 2020(2): 47-50.
  • 加载中
图( 9) 表( 3)
计量
  • 文章访问数:  5724
  • HTML全文浏览数:  5724
  • PDF下载数:  85
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-22
  • 录用日期:  2021-03-04
  • 刊出日期:  2021-05-10
郑俊田, 郑俊, 程洛闻, 张德伟, 赵梦轲, 王梦琳, 张诗华, 丁磊. 混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响[J]. 环境工程学报, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119
引用本文: 郑俊田, 郑俊, 程洛闻, 张德伟, 赵梦轲, 王梦琳, 张诗华, 丁磊. 混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响[J]. 环境工程学报, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119
ZHENG Juntian, ZHENG Jun, CHENG Luowen, ZHANG Dewei, ZHAO Mengke, WANG Menglin, ZHANG Shihua, DING Lei. Influence of mixed liquid reflux ratio on a new multiple-inflow A/O/A/A/O sludge-biofilm coupling process for denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119
Citation: ZHENG Juntian, ZHENG Jun, CHENG Luowen, ZHANG Dewei, ZHAO Mengke, WANG Menglin, ZHANG Shihua, DING Lei. Influence of mixed liquid reflux ratio on a new multiple-inflow A/O/A/A/O sludge-biofilm coupling process for denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1744-1752. doi: 10.12030/j.cjee.202011119

混合液回流比对多点进水新型A/O/A/A/O泥膜耦合工艺脱氮除磷的影响

    通讯作者: 张德伟(1988—),男,博士,高级工程师。研究方向:水环境污染控制及水体修复。E-mail:zhdewei86@163.com
    作者简介: 郑俊田(1996—),男,硕士研究生。研究方向:水环境污染控制与治理。E-mail:zhenjuntian1121@163.com
  • 1. 安徽工业大学能源与环境学院,马鞍山 243002
  • 2. 安徽华骐环保科技股份有限公司,马鞍山 243061
  • 3. 安徽省曝气生物滤池(BAF)工程技术研究中心,马鞍山 243061

摘要: 针对中国南方城镇低碳氮比(低C/N)生活污水的脱氮除磷问题,开发并设计了新型多点进水A1/O2/A3/A4/O5泥膜耦合工艺及中试装置。在进水点1和进水点2的进水流量比为4: 6的条件下,通过改变混合液回流比,研究了其对系统中有机物、氮、磷的去除影响及氮素的转化规律。结果表明:当平均进水低C/N比为2.09,混合液回流比为300%时,出水中COD、NH+4-N、TN、TP的平均值分别为23.45、0.80、12.41、0.36 mg·L−1,平均去除率分别为86.88%、98.25%、77.68%、90.31%;相对于分段进水A/O/A/A/O泥膜耦合工艺,增加混合液回流比后系统对TN的去除率由68.28%增加到77.68%;对TP的去除率由75.22%增加到90.31%。本系统对于低碳氮比污水处理具有明显的脱氮除磷效果优势,解决了低碳氮比污水生物处理过程中磷出水较难低于0.5 mg·L−1的难题。

English Abstract

  • 随着水体富营养化对生态环境及人类生产和生活带来的危害越来越大,对于氮磷排放的标准也变的日趋严格[1]。传统A2O工艺具有运行方便、结构简单、工艺简洁等优势,是城镇污水厂脱氮除磷应用最广泛的一种生物处理工艺[2-3]。但传统A2O工艺属于单一活性污泥系统,存在碳源不足、硝化细菌及聚磷菌在污泥龄上存在矛盾及硝酸盐抑制等问题,在处理中国南方低C/N比城镇生活污水中极大限制了其对氮磷的高效去除[4-6]。有研究者通过增加A/O反应器段数来提高系统的脱氮效果,但这又会造成工艺更加复杂,基建成本更高的问题[7-8]。而仅通过硝化液回流的方式来改善系统反硝化段脱氮效果也是有限的[9-11]。近年来,随着氮磷排放标准的日趋严格,研究者们发现,多点进水配合混合液回流的生物脱氮工艺具有碳源利用率高、脱氮效果好、运行简单等优势,逐渐受到人们的关注。项敏等[12]通过研究回流比对分段进水A2O工艺脱氮除磷效果的影响,发现:随着混合液回流比的增加,系统对TN及TP的去除效率不断增加,但存在出水水质无法达标的缺陷。闫东等[13]通过研究回流比对分段进水循环A/O工艺脱氮除碳效果的影响,发现:适当的回流比可以提高TN的去除效率,但无法对TP进行有效的去除。李长刚等[14]通过研究混合液回流比对两段进水A/O工艺去除重油加工污水污染物去除的影响,发现:混合液回流比的增加可以提高系统对碳源的利用率及TN的去除率,但出水TN仍无法达标。因此,为了实现低C/N的城镇生活污水经生物处理后能够稳定达标排放,优化升级传统A2O工艺迫在眉睫。

    针对中国南方城镇污水普遍具有低C/N比的特点,本研究研发了一种多点进水A1/O2/A3/A4/O5泥膜耦合工艺,通过增加混合液回流比,强化碳源利用率,以促进反硝化脱氮的进一步提高;同时,通过增加混合液回流比有利于缺氧段(A4)中反硝化聚磷菌(DPAOs)的富集,以强化脱氮除磷效果;通过向好氧段(O2/O5)投加悬浮填料强化硝化效果,以解决硝化菌与聚磷菌在SRT上的矛盾;此外,通过投加悬浮填料以促进同步硝化反硝化(SND)的发生,在有效利用碳源的基础上进一步强化脱氮效果。本文考察了不同混合液回流比对多点进水A1/O2/A3/A4/O5泥膜耦合工艺有机物去除及脱氮除磷性能的影响,以期为实现低碳氮比生活污水经生物处理后能够达标排放、强化污水脱氮除磷提供参考。

  • 多点进水A1/O2/A3/A4/O5泥膜耦合工艺流程如图1所示。反应器尺寸为1.94 m×0.45 m×0.5 m,有效容积为265 L,碳钢防腐材质;反应器依次由厌氧段(A1)、好氧泥膜耦合段(O2)、厌氧段(A3)、缺氧段(A4)、好氧泥膜耦合段(O5)以及沉淀池(C)组成,体积分别为21、75、38、56、75 L;待处理污水通过多点进水方式分别进入厌氧段(A1)、厌氧段(A3),通过内循环泵进行泥水混合营造厌氧环境,沉淀池(C)内部分污泥通过污泥回流泵回流至厌氧段(A1),剩余污泥通过排泥泵进行外排,好氧泥膜耦合段(O5)内的硝化液回流至缺氧段(A4),好氧泥膜耦合段(O2)、好氧泥膜耦合段(O5)内分别投加填充比为30%的MBBR悬浮填料。

  • 实验用水采用中国安徽省马鞍山市经济开发区的实际生活污水。经检测发现,该污水具有氮磷浓度含量较高、BOD5和COD较低等特点,属于比较典型的城镇低C/N比生活污水,实际进水水质如表1所示。

    采用flexiHQ30d便携式溶解氧仪测定DO、温度,采用pH计测定pH;采用纳氏试剂比色法测定NH+4-N,采用N-(1-奈基)-乙二胺分光光度法测定亚硝态氮,采用麝香草酚分光光度法测定硝态氮,用重铬酸钾法测定COD;采用钼锑抗分光光度法测定TP,采用碱性过硫酸钾消解紫外分光光度法测定TN,采用重量法测定SS[15]

  • 多点进水A1/O2/A3/A4/O5泥膜耦合中试装置在18~24 ℃(恒温加热棒控制)条件下运行,接种污泥取自马鞍山市南部污水处理厂的泥饼,种泥的MLVSS/MLSS为0.54,污泥浓度为36.57 g·L−1(以MLSS计),污泥接种量为2 850 mg·L−1(以MLSS计)。当系统正常运行时,系统内MLSS为2 032 mg·L−1,回流污泥浓度为6 096 mg·L−1(以MLSS计)。通过前期对反应器HRT的探索,发现当HRT为7 h、流量为0.91 m3·d−1时系统对污染物去除效果最佳。保持总进水量在0.91 m3·d−1运行条件下,通过调整不同的混合液回流比,开始对系统进行研究,每日取样2次,分别从各反应池出水口附近进行取样,测定进水、厌氧段(A1)末端、好氧段(O2)末端、厌氧段(A3)末端、缺氧段(A4)末端、好氧段(O5)末端、出水共计7个点位的不同污染物浓度。运行参数如下:总进水量0.91 m3·d−1,好氧泥膜耦合段(O2/O5)悬浮填料的填充比为30%,溶解氧(DO)保持在1.5~3.0 mg·L−1,厌氧/厌氧/缺氧段(A1/A3/A4)DO控制在0.10~0.15 mg·L−1,多点进水量和回流流量通过阀门调节、流量计与人工测流量校核方式进行联动控制;通过前期试验获得进水点1和进水点2的最佳进水流量比为4∶6,污泥回流比为50%、总HRT为7 h,其中A1、O2、A3、A4、O5的HRT分别为0.33、1.33、0.66、1.00、1.33 h,并通过式(1)计算SRT为7.5 d。如表2所示,不同混合液回流比运行工况分为5个。

    式中:S为污泥停留时间(SRT),d;X为反应器中活性污泥的质量浓度,mg·L−1VT为反应器总体积,L;QS为每天排出剩余污泥体积,L;XR为剩余污泥的质量浓度,mg·L−1

  • 图2可知,当进水COD值在148.57~195.33 mg·L−1内波动时,系统中工况1~5对应的出水COD值分别为21.95、20.82、21.69、23.45、22.95 mg·L−1,COD去除率分别为86.41%、87.20%、86.29%、86.88%、87.10%。由此可见,混合液回流比对COD的去除率基本无影响,各运行工况下出水COD均优于国家(GB 18918-2002)一级A排放标准。综上所述,系统在不同混合液回流比测试条件下表现出稳定高效的COD去除能力。

    图3可知不同混合液回流比下COD的变化情况。绝大多数耗氧有机物(以COD计)在厌氧段(A1)、厌氧段(A3)和缺氧段(A4)被消耗。通过计算得出,在各工况下,COD在厌氧段/厌氧段/缺氧段(A1/A3/A4)的累计去除率占COD总去除率的比例分别为78.04%、73.96%、78.50%、76.07%、74.98%,在好氧段(O2/O5)的累计去除率占COD总去除率的比例分别为21.96%、26.04%、21.50%、23.93%、25.02%。此外,由图3可以看出,随着混合液回流比的增加,各工况下缺氧段(A4)的COD消耗分别为17.09、22.41、23.16、24.47、25.37 mg·L−1,缺氧段(A4)对COD消耗也不断增加。这是因为:一方面,随着回流比的增加,进入缺氧段(A4)的硝态氮含量也不断增加,所以反硝化菌在反硝化脱氮过程中对碳源的消耗也不断增加;另一方面,回流的混合液对缺氧段(A4)中COD具有稀释作用,所以随着混合比的增加缺氧段(A4)出水中COD也不断降低。

  • 图4反映了不同混合液回流比对NH+4-N去除规律的影响。由图4可知,虽然系统进水中NH+4-N浓度波动较大,各工况下NH+4-N平均进水浓度分别为44.27、47.76、47.38、48.40、48.30 mg·L−1,但出水NH+4-N浓度却比较稳定,NH+4-N平均出水浓度分别为0.83、0.69、0.77、0.80、1.73 mg·L−1,出水NH+4-N浓度远远小于5 mg·L−1的去除限值,平均去除率分别为98.17%、98.63%、97.33%、98.25%和96.41%。这表明不同混合液回流比对系统氨氮的去除影响较小,系统具有很强的硝化能力,在5个运行工况下均表现出很好的NH+4-N去除效果。表3反映了最佳运行工况下有无填料对系统脱氮的影响。由表3可以看出,填料的投加强化了氮素的去除。在本研究中,通过向好氧段投加高效悬浮填料,使大量的硝化细菌能够附着在填料上,提高了硝化效率,有效避免了传统A2O中过高的回流比对好氧段硝化的抑制作用。此外,当混合液回流比增加到400%时,系统对NH+4-N去除效果略有降低的原因可能是:过高的混合液回流比导致好氧段(O5)水力停留时间降低,造成系统硝化不完全。这与闫冬等[13]、吴亚慧等[16]的研究结果基本一致。

    图5可知,大量氨氮在好氧段O2和好氧段O5被硝化去除,导致系统出水氨氮浓度很低。这表明好氧泥膜耦合系统具有很强的硝化能力。对于亚硝态氮在反应器各段的沿程变化规律,由于系统运行过程中亚硝态氮含量过低,因此,在数据统计过程中省略了对亚硝态氮的研究。对于硝态氮在反应器各段的沿程变化规律,由图5可知,硝态氮在厌氧段(A3)和缺氧段(A4)得到有效脱除。在工况1条件下,由于没有混合液的回流,导致好氧段(O5)硝化产生的大量硝态氮无法通过反硝化去除,造成出水中含有大量NO3-N。在工况2、3、4运行条件下,随着混合液回流比不断升高,好氧段(O5)好氧硝化产生的硝态氮通过混合液回流至缺氧段(A4),随后硝态氮通过反硝化细菌及反硝化聚磷菌进行反硝化脱氮。TP在缺氧段(A4)显著降低,这也表明缺氧段(A4)中存在反硝化聚磷菌可进行反硝化脱氮,从而导致总出水中硝态氮含量较低。随后,在工况5运行条件下,随着混合液回流比进一步升高,回流液中携带的大量溶氧破坏缺氧段(A4)的缺氧环境,从而抑制反硝化的进行;同时,过高的回流比会导致缺氧段(A4)和好氧段(O5)的HRT降低,使得系统硝化反硝化不完全,导致出水中硝态氮含量升高。

    图6反映了不同混合液回流比对TN去除规律的影响。由图6可知,工况1~5中TN平均进水浓度分别为53.75、54.48、54.65、55.48、55.65 mg·L−1,进水C/N比为1.7~3.7。通过计算得出,各工况下在厌氧段/厌氧段(A1/A3/A4)的C/N消耗比分别为3.43、3.27、3.60、2.43、4.14, TN平均出水浓度分别为17.06、15.08、12.95、12.41、16.09 mg·L−1,平均去除率分别为68.28%、72.34%、76.33%、77.68%、71.43%。系统混合液回流比对TN的去除率具有显著的影响,在工况1~5运行条件下,随着混合液回流比的增加,TN的去除率呈现先升高后降低的趋势。这与舒敏玉等[17]的研究结果相一致。

    图6可以看出,当混合液回流比为0~300%时,随着回流比的增加,TN去除率不断升高,由68.28%增加到77.68%,但增加的幅度越来越小;当回流比继续增大至400%时,TN的出水浓度变高,去除率出现了明显的下降。其原因可能是,当混合液回流比为0~300%时,随着回流比的增加进入缺氧段(A4)的硝态氮也不断增加,反硝化菌对碳源的有效利用率也不断增加,这一点由图3碳源的沿程变化和图7总氮的沿程变化也可以看出,所以TN的去除率不断升高。这与陈伟敏[18]的研究结果相似。但当回流比为300%时,系统在厌氧段/厌氧段(A1/A3/A4)的C/N消耗比最低,TN的去除率却是最高。这是因为在工况4下存在反硝聚磷菌(DPAOs),其在缺少碳源的情况下,利用高浓度硝态氮为电子受体实现脱氮的目的,图5中工况4运行条件下缺氧段(A4)出水硝态氮显著降低及工况4条件下缺氧段(A4)出水TP显著下降也可以证实了这一点;此外,好氧池(O5)中污泥会随着混合液回流进入缺氧池(A4)。因此,回流比的增加可以增加缺氧段(A4)的污泥含量,提高缺氧段(A4)中内碳源含量,从而有利于反硝化菌利用内碳源进行反硝化脱氮。但当混合液回流比增加到400%时,TN的去除率出现明显的下降。这是因为,过高的回流比会因回流液中携带的大量溶氧而破坏缺氧段(A4)的缺氧环境,同时,溶氧的存在会消耗进入缺氧池(A4)中的碳源[19-20],从而抑制反硝化的进行;此外,过高的回流比会导致缺氧段(A4)和好氧段(O5)的HRT降低,系统硝化反硝化不完全,故降低了系统对TN去除效果。

    图7反映了不同混合液回流比下TN的沿程变化情况。由图7可知,在各工况下,TN在厌氧段/缺氧段/好氧段(A3/A4/O2/O5)都有显著降低,表明系统存在反硝化和同步硝化反硝化。通过计算得出,各工况下TN在缺氧段(A4)的去除率占TN总去除率的比例分别为25.14%、27.90%、30.64%、38.28%、19.34%。这是因为,随着混合液回流比的增加,更多的硝态氮进入缺氧池(A4)通过反硝化作用脱除,这一变化趋势与图3中COD变化趋势相一致;此外,由图7可知,TN在好氧段(O5)出现明显损失现象,各工况下TN在好氧段(O5) 的去除率占TN总去除率的比例分别为15.09%、20.10%、29.14%、23.50%、13.66%,表明系统在好氧段(O5)发生同步硝化反硝化(SND),这一点从图5中氨氮及硝态氮含量在好氧池(O5)的部分损失可以证实。好氧段悬浮填料的投加为SND的发生创造反应场所,进一步强化了系统的脱氮能力,而过高的混合液回流比会造成好氧段(O5)HRT不断降低,不利于SND的发生。综上所述,当系统混合液回流比为300%时,系统通过对碳源的有效利用及DPAOs的作用可强化TN的去除效果,使TN的去除效果最佳。

  • 图8反映了不同混合液回流比对TP去除规律的影响,由图8可知,在工况1~5条件下,TP平均进水浓度分别为3.41、3.71、3.89、3.70、3.61 mg·L−1,平均出水浓度分别为0.86、0.71、0.49、0.36、0.53 mg·L−1,平均去除率分别为75.22%、81.39%、87.27%、90.31%、85.63%,TP的去除率呈现先升高后降低的趋势,系统混合液分配比对TP的去除率具有显著的影响。

    图8中可以看出,当回流比为0~300%时,随着回流比不断升高,TP的去除率不断升高;但当回流比继续增加到400%时,TP的去除率出现下降。通过计算得出,各工况下C/P消耗比值分别为54.33、47.41、40.17、45.58、48.72。由图3可以看出,各工况下碳源的消耗情况基本相似,所以C/P消耗比值不断降低则意味着TP消耗随着回流比增加不断升高。在工况1运行条件下,C/P消耗比值很大说明TP的消耗很少,大部分消耗的碳源并没有用于除磷而是在缺氧段(A4)用于反硝化脱氮,这一点由图5图7中缺氧段(A4)存在硝态氮和TN的同步大量损失可以看出。在工况2条件下,混合液回流比较低,进入缺氧段(A4)的硝态氮含量较低,导致反硝化除磷过程中电子受体不足,所以出水TP降低缓慢。在工况3、工况4条件下,随着混合液回流比不断增加,进入缺氧段(A4)的硝态氮不断升高,促进反硝化除磷的发生;同时,污泥会随着混合液从好氧池(O5)回流至缺氧池(A4),有利于DPAOs的形成和富集,促进系统TP的去除。当混合液回流比增加至400%时,系统TP的去除率出现下降的原因可能是:过高的回流比破坏了缺氧段(A4)的缺氧环境,抑制聚磷菌的释磷过程,从而导致聚磷菌无法在好氧段充分吸磷。这与于燿滏等[21]的研究结果基本一致。

    图9反映了不同混合液回流比下TP的沿程变化情况。由图9可以看出,TP在厌氧段(A1/A3)均有显著的升高,在好氧段/缺氧段(O2/O5/A4)均有显著的损失。通过计算得出,在工况1~5过程中,缺氧段(A4)的TP去除量占TP总去除量的比例分别为57.14%、64.09%、65.48%、69.54%、67.61%。这表明在回流比为0~300%时,随着混合液回流比的增加,缺氧段(A4)通过反硝化除磷对磷的去除量也在不断增加;但当回流比继续增加到400%时,缺氧段(A4)对磷的去除效果开始下降。当回流比增加到400%时回流液中溶氧破坏了缺氧段(A4)的缺氧环境,抑制了DPAOs的正常代谢;此外,过高的回流比会导致缺氧段/好氧段(A4/O5)的HRT降低,造成反硝化除磷及好氧吸磷过程不完全。综上所述,在混合液回流比为300%时,系统对TP的去除效果最佳,过高或过低的回流比均会影响系统的除磷效果。

  • 1)采用A/O/A/A/O泥膜耦合脱氮除磷工艺,以平均进水C/N比为2.09的废水为研究对象,在进水分配比为4∶6、SRT为7.5 d、污泥回流比为50%、混合液回流比为300%的条件下,出水中COD、NH+4-N、TN、TP的平均值分别为23.45、0.80、12.41、0.36 mg·L−1,均可稳定达到一级A标准。

    2)在混合液回流比由0增加到400%的过程中,混合液回流比对COD和NH+4-N的去除效果的影响不大,系统对COD和NH+4-N均有很高的去除率,表明系统具有较好的有机物去除能力和很强的硝化能力。

    3)混合液回流比对TN和TP的去除效果具有显著的影响。当回流比在0~300%时,在反硝化菌和聚磷菌的共同作用下,TN和TP的去除效果随回流比的增加而升高;在增加混合液回流后,TN的去除率由68.28%升高到77.68%,TP的去除率由75.22%升高到90.31%;但当回流比继续增加到400%时,TN和TP的去除率开始下降,这说明混合液回流比并非越高越好。

    4)该工艺在处理低C/N生活污水的过程中对污染物具有很好的处理效果。该工艺通过DPAOs的作用,强化了系统脱氮除磷的能力,解决了出水磷含量难以低于0.5 mg·L−1的难题;通过好氧段悬浮填料的投加克服了硝化菌及聚磷菌在SRT上的矛盾,促进SND的发生,强化系统对于碳源的利用。该结果对传统污水处理厂的提标改造具有一定的参考意义。

参考文献 (21)

返回顶部

目录

/

返回文章
返回