-
很长时间以来,我国城市垃圾的处理主要是以卫生填埋为主[1]。相对于其他处理方式来说,卫生填埋处理成本低,操作简便[2]。但长年的实践经验表明,填埋不仅会占用大量土地,而且带来填埋场周围空气的污染;更重要的是,填埋过程中会产生大量的垃圾渗滤液需要处理[3]。而垃圾渗滤液具有很高的氨氮浓度,特别是老龄垃圾渗滤液具有高氨氮和低碳氮比的特征,采用传统的脱氮方法往往面临着能耗高和碳源不足等问题。如何经济有效地处理垃圾渗滤液仍是一个挑战。
生物脱氮是处理垃圾渗滤液较为经济有效的方法。在传统的生物处理过程中,高浓度的氨氮通过完全硝化与反硝化反应去除。然而,由于氨氮浓度很高且碳氮比低,导致硝化过程中需要大量曝气,能耗较高;同时,反硝化过程中需要投加大量的碳源,使得脱氮成本较高[4]。短程硝化反硝化通过将硝化过程控制在亚硝化阶段,直接利用亚硝态氮进行反硝化,缩短了反应过程,能够加快反应速度,可节约20%左右的曝气量和40%左右的有机碳源[5-11]。在高氨氮废水处理中,常利用游离氨(FA)对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的抑制差异性实现短程硝化[12]。然而,老龄垃圾渗滤液的碱度较高,水质偏碱性,进入生物脱氮系统后容易造成高浓度的FA,而FA具有较强的生物毒性,其对AOB和NOB均具有明显的抑制作用,从而导致系统亚硝化速率低。为此,在生物脱氮系统中合理降低FA浓度至关重要,而分点进水方式提供了一种比较可行的策略。采用分点进水方式合理分配进入系统各部分的基质浓度,可以在降低营养负荷和提高污泥浓度的同时降低FA浓度,以减少FA对AOB的抑制,提高亚硝化微生物的比生长优势[13],增强系统亚硝化性能。
基于此,本研究采用分点进水短程硝化反硝化工艺对老龄垃圾渗滤液进行了处理,通过合理分配营养负荷,以改变系统中FA浓度和微生物生长环境,并提高AOB种群生长优势,提高生物亚硝化性能以及脱氮效率,以期为实现垃圾渗滤液的高效低耗处理提供技术参考。
基于分点进水的垃圾渗滤液短程硝化反硝化脱氮性能
Nitrogen removal performance of short-cut nitrification and denitrification process based on step feeding strategy for landfill leachate treatment
-
摘要: 在垃圾渗滤液短程硝化反硝化生物脱氮过程中,过高浓度的游离氨(FA)会抑制氨氧化菌(AOB)的活性,降低系统亚硝化速率和脱氮效率。采取分点进水的方法,合理分配进入系统各单元的基质,降低反应器营养负荷和FA浓度,以期减少FA对AOB的抑制,提高脱氮效率。结果表明,通过控制DO浓度小于1.0 mg·L−1,成功实现了稳定的短程硝化反硝化;当水力停留时间(HRT)为6.25 d时,亚硝态氮累积率(NAR)可达到84.97%;当缩短HRT至5.5 d时,氨氮去除率降低到69.63%左右,总氮去除率(NRE)仅有18.06%。对系统内的FA分析发现,O1、O2池中FA浓度达到了36.32 mg·L−1以上,均超过了AOB抑制浓度限值,因而限制了亚硝化过程。采用分点进水方式运行后,HRT为5.5 d时,氨氮去除率仍有89.86%,NRE为27.62%,NRE相比分点进水前提高了52.93%;当HRT缩短到5.0 d时,氨氮去除率仍然高于81.25%。分点进水条件下O1、O2池中FA浓度分别降低到7.91 mg·L−1和5.81 mg·L−1,此时,FA既能有效抑制NOB,又不会对AOB产生严重抑制。以C/N=4向脱氮系统补充碳源后,系统NRE迅速提升到80%左右。微生物测序结果表明,分点进水后O1、O2、O3、O4池中AOB菌属相对丰度为2.27%、1.77%、2.75%、1.37%,相比于分点进水前分别提升了12.37%、68.57%、57.14%、59.30%。这表明分点进水有利于提高AOB的生长优势和短程硝化过程。以上结果表明,对于垃圾渗滤液的处理,分点进水运行方式可以有效提高短程硝化和脱氮效率,具有很好的工程应用价值。Abstract: During biological nitrogen removal process treating landfill leachate by using short-cut nitrification and denitrification technology, high concentration of free ammonia (FA) can inhibit the activity of ammonia oxidizing bacteria (AOB), reduce the nitrosation rate and nitrogen removal efficiency. In this study, step feeding strategy was used to reduce the inhibition of FA on AOB and thereby improve the nitrogen removal efficiency because of the rational distribution of the substrates and decrease of the substrate/microorganism ratio and FA content. The result showed that the stable short-cut nitrification and denitrification was successfully realized through controlling the DO concentration below 1.0 mg·L−1, and the nitrite accumulation rate (NAR) reached 84.97% at the hydraulic retention time (HRT) of 6.25 d. When HRT was shortened to 5.5 d, the
${\rm{NH}}_4^ + $ -N removal rate decreased to about 69.63%, and nitrogen removal efficiency (NRE) was 18.06%. It found that FA concentrations in the O1 and O2 tanks were higher than 36.32 mg·L−1, which exceeded the AOB inhibitory concentration limit, and the short-cut nitrification process was inhibited. After step feeding mode was used,${\rm{NH}}_4^ + $ -N removal rate was 89.86% at HRT of 5.5 d, and NRE was 27.62% which was 52.93% higher than that before step feeding. When HRT was shortened to 5.0 d, the${\rm{NH}}_4^ + $ -N removal rate was still higher than 81.25%. FA concentrations in O1 and O2 tanks decreased to 7.91 mg·L−1 and 5.81 mg·L−1, respectively in the step feeding process. Under this condition, FA could effectively inhibit NOB while didn’t severely inhibit AOB. After supplementing the carbon source according to C/N=4, the NRE of the system reached about 80%. The microbial sequencing results showed that the relative abundances of AOB in O1, O2, O3 and O4 tanks were 2.27%, 1.77%, 2.75% and 1.37%, respectively, which increased by 12.37%, 68.57%, 57.14% and 59.30% compared with the process without step feeding mode. This further indicated that the step feeding process was beneficial for the growth of AOB and short-cut nitrification process. The above results showed that for the treatment of landfill leachate, the step feeding strategy can effectively improve the short-cut nitrification and nitrogen removal efficiency, and it’s valuable for practical application. -
表 1 垃圾渗滤液水质特征
Table 1. Characteristics of landfill leachate
数值类型 COD/(mg·L−1) -N/(mg·L−1)${\rm{NH}}_4^ + $ -N/(mg·L−1)${\rm{NO}}_3^ - $ -N/(mg·L−1)${\rm{NO}}_2^ - $ TN/(mg·L−1) pH 平均值 3 588.54 1 615.41 36.42 0.11 1 991.21 8.13 最大值 5 600.84 1 722.24 48.27 0.28 2 198.51 8.61 最小值 2 096.62 1 057.56 14.19 未检出 1 763.11 7.51 表 2 接种污泥和驯化后污泥中微生物种类的丰富性和多样性
Table 2. Abundance and diversity of microbial species in seed sludge and domesticated sludge
样本 Shannon Simpson ACE Chao 覆盖率/% 驯化后污泥 5.45 0.01 1 468.29 1 468.73 99 种泥 4.76 0.03 1 215.82 1 215.80 99 -
[1] 张军, 沈碧瑶, 侯瑞, 等. 高热值城市生活垃圾归类分流处置的能值分析[J]. 环境工程学报, 2016, 10(10): 5943-5950. doi: 10.12030/j.cjee.201504045 [2] 何若, 沈东升. 生物反应器-填埋场处理渗滤液的试验[J]. 环境科学, 2001, 22(6): 99-102. doi: 10.3321/j.issn:0250-3301.2001.06.022 [3] MOHAIERI S, HAMIDI A A, ISA M H, et al. Landfill leachate treatment through electro-Fenton oxidation[J]. Pollution, 2019, 5(1): 199-209. [4] OLOIBIRI V, CHYS M, WANDEL S D, et al. Removal of organic matter and ammonium from landfill leachate through different scenarios: Operational cost evaluation in a full-scale case study of a Flemish landfill[J]. Journal of Environmental Management, 2017, 203(2): 774-781. [5] GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140: 85-98. doi: 10.1016/j.chemosphere.2015.02.004 [6] 张周, 赵明星, 阮文权, 等. 短程硝化反硝化工艺处理低C/N餐厨废水[J]. 环境工程学报, 2015, 9(9): 4165-4170. doi: 10.12030/j.cjee.20150912 [7] 蒋杭城, 马艺鸣, 张源凯, 等. 城市生活污水短程硝化系统的恢复与启动[J]. 环境工程学报, 2017, 11(9): 4952-4957. doi: 10.12030/j.cjee.201612224 [8] 曹雨佳. ASBR型厌氧氨氧化反应器的启动及运行研究[D]. 北京: 北京化工大学, 2008. [9] KEMPEN R V, MULDER J W, UIJTERLINDE C A, et al. Overview: Full scale experience of the sharon process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 44(1): 145-152. doi: 10.2166/wst.2001.0035 [10] VERSTRAETE W, PHILIPS S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental Pollution, 1998, 102(1): 717-726. doi: 10.1016/S0269-7491(98)80104-8 [11] TURK O, MAVINEI D S. Selective inhibition: A novel concept for removing nitrogen from highly nitrogenous wastes[J]. Environmental Technology Letters, 1987(8): 419-426. [12] WEI D, NGO H H, GUO W S, et al. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation(anammox): Achievement, performance and microbial community[J]. Bioresource Technology, 2018, 269: 25-31. doi: 10.1016/j.biortech.2018.08.088 [13] YUI C S W, YA S I, TSUNEO S, et al. Ammonia oxidizing bacteria with different sensitives to (NH4)2SO4 in activated sledges[J]. Water Research, 1994, 28(7): 1523-1532. doi: 10.1016/0043-1354(94)90218-6 [14] 徐恒娟. 连续流前置A/O工艺短程硝化反硝化的实现及稳定性研究[D]. 杭州: 浙江工商大学, 2014. [15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [16] SVEHLA P, BARTACEK J, PACEK L, et al. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: Influence of feeding strategy[J]. Chemical Papers, 2014, 68(7): 871-878. [17] 卞伟, 李军, 赵白航, 等. 硝化污泥中AOB/NOB对硝化特性的影响[J]. 中国环境科学, 2016, 36(8): 2395-2401. doi: 10.3969/j.issn.1000-6923.2016.08.020 [18] MIAO L, WANG S, CAO T, et al. Optimization of three-stage anammox system removing nitrogen from landfill leachate[J]. Bioresource Technology, 2015, 185: 450-455. doi: 10.1016/j.biortech.2015.03.032 [19] LU Y F, MA L J, MA L, et al. Improvement of start-up and nitrogen removal of the anammox process in reactors inoculated with conventional activated sludge using biofilm carrier materials[J]. Environmental Technology, 2017, 39 (1): 59-67. [20] 薛欢婷, 袁林江, 刘小博, 等. 连续流系统中好氧段及沉淀段对污泥及其缺氧段脱氮能力的影响[J]. 环境科学, 2019, 40(8): 3675-3682. [21] CHUNG J, SHIIM H, PARK S J, et al. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process[J]. Bioprocess and Biosystems Engineering, 2006, 28(4): 275-282. doi: 10.1007/s00449-005-0035-y [22] JOHNSON B R, GOODWIN S, DAIGGER G T, et al. A comparison between the theory and reality of full-scale step-feed nutrient removal systems[J]. Water Science and Technology, 2005, 52(10/11): 587-596. [23] ZIGLIO G, ANDREOTTOLA G, FOLADORI P, et al. Experimental validation of a single-OUR method for wastewater RBCOD characterisation[J]. Water Science and Technology, 2001, 43(11): 119-126. doi: 10.2166/wst.2001.0674 [24] 李若谷. 分点进水A/O工艺及其模型与分点优化的研究[D]. 徐州: 中国矿业大学, 2012. [25] YAO R, YANG H, YU M, et al. Enrichment of nitrifying bacteria and microbial diversity analysis by high-throughput sequencing[J]. RSC Advances, 2016, 6: 113959-113966. doi: 10.1039/C6RA24213H [26] ZHANG T, SHAO M, YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. ISME Journal, 2012, 6(6): 1137-1147. doi: 10.1038/ismej.2011.188 [27] WOEBKEN D, FUECHS B M, KUYPERS M M M, et al. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the namibian upwelling system[J]. Applied and Environmental Microbiology, 2007, 73(14): 4648-4657. doi: 10.1128/AEM.02774-06 [28] 侯爱月, 李军, 卞伟, 等. 不同短程硝化系统中微生物群落结构的对比分析[J]. 中国环境科学, 2016, 36(2): 428-436. doi: 10.3969/j.issn.1000-6923.2016.02.019 [29] 常玉梅, 杨琦, 郝春博, 等. 城市污水厂活性污泥强化自养反硝化菌研究[J]. 环境科学, 2011, 32(4): 1210-1216. [30] 韩亚琳, 王福浩, 王群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2020, 39(1): 51-57. [31] 赵志瑞, 马斌, 张树军, 等. 高氨氮废水与城市生活污水短程硝化系统菌群比较[J]. 环境科学, 2013, 34(4): 1448-1456. [32] YE L, LI D, ZHANG J, et al. Start-up and performance of partial nitritation process using short-term starvation[J]. Bioresource Technology, 2019, 276: 190-198. doi: 10.1016/j.biortech.2018.12.115