Processing math: 100%

改良填料生物滞留系统除污效果的季节变化

潘伟亮, 罗玲利, 王书敏, 李强, 温灵, 周彦. 改良填料生物滞留系统除污效果的季节变化[J]. 环境工程学报, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060
引用本文: 潘伟亮, 罗玲利, 王书敏, 李强, 温灵, 周彦. 改良填料生物滞留系统除污效果的季节变化[J]. 环境工程学报, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060
PAN Weiliang, LUO Lingli, WANG Shumin, LI Qiang, WEN Ling, ZHOU Yan. Seasonal changes in the decontamination effect of the biological retention system with improved filler[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060
Citation: PAN Weiliang, LUO Lingli, WANG Shumin, LI Qiang, WEN Ling, ZHOU Yan. Seasonal changes in the decontamination effect of the biological retention system with improved filler[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060

改良填料生物滞留系统除污效果的季节变化

    作者简介: 潘伟亮(1985—),男,博士,副教授。研究方向:城市面源污染控制与雨洪管理。E-mail:pan0316@126.com
    通讯作者: 王书敏(1980—),男,博士,副教授。研究方向:城市暴雨径流调控。E-mail:wangshumin5103@sina.com
  • 基金项目:
    重庆市科技局社会民生项目(cstc2017shmsA20011);住房和城乡建设部科学技术计划项目(2016-K6-025);重庆市教委重点项目(KJZD-K201901304);西北旱区生态水利国家重点实验室(西安理工大学)开放基金课题(2019KFKT-12)
  • 中图分类号: X52

Seasonal changes in the decontamination effect of the biological retention system with improved filler

    Corresponding author: WANG Shumin, wangshumin5103@sina.com
  • 摘要: 为分析径流污染物在生物滞留系统中去除效果的季节特征,设计了改良生物滞留系统,以火山岩和海绵铁为系统填料,种植植物为麦冬和金叶女贞,以不同季节雨水径流在系统中进出水为研究对象,考察了TN、氨氮、硝态氮、TP、磷酸盐及TOC等径流污染物的去除情况。结果表明:TN在春夏秋冬四季的平均去除率分别为53.69%、61.03%、54.68%、69.53%;TP分别为98.20%、92.75%、97.99%、99.24%;TOC分别为52.01%、58.01%、22.87%、22.99%。系统TN、TP和磷酸盐去除率受季节影响较小;氨氮、硝态氮和TOC受季节影响较大,其中氨氮冬季去除率最高,硝态氮和TOC的夏季去除率最高。与其他研究对比,改良填料生物滞留系统去除污染物较其他单一填料效果好,而脱氮及TOC的去除效果略次于其他改良填料。
  • 镉(Cd)是水产品中常见的重金属污染物,可以在水环境以及水生动物之间进行迁移转化,并沿着食物链在生物体内蓄积[12]. 前人研究发现,某些甲壳类水生动物对镉具有明显的蓄积特异性. 其中,三疣梭子蟹(Portunus trituberculatus)的镉蓄积问题尤为突出,引起了人们广泛关注.

    三疣梭子蟹是一种生活在水深10—30 m砂质泥或砂质海底的杂食性螃蟹,广泛分布于太平洋的西海岸,北起日本的北海道,南至东南亚的越南、泰国等地[3]. 三疣梭子蟹肉质鲜美,风味独特,是一种深受中国人喜爱的具有较高营养和经济价值的海产品. 《2023中国渔业统计年鉴》[4]指出,2022年,我国海捕梭子蟹的产量就达到45.82万吨,占海捕蟹的70.75%. 然而,膳食摄入是人类暴露镉的主要途径[5],食物中的镉进入人体后会对肝脏、肾脏、骨骼、大脑等部位造成损伤,引起人体慢性中毒,进而产生生殖系统损伤、死亡率升高、预期寿命减少等负面影响[6]. 因此,三疣梭子蟹的食用安全风险问题同样受到广泛关注.

    此外,相关的毒理学研究指出,不同形态的镉可能具有不同的生物学毒性[7]. 因此,在进行三疣梭子蟹的食用健康风险评价时,需考虑不同镉形态的毒性影响. 三疣梭子蟹中镉的赋存形态可以分为无机镉形态和有机镉形态[8]. 无机离子态镉可以通过不同的途径对生物体的某一器官和组织产生多方面的危害,如与体内的生物分子,包括酶和核酸等生物大分子相互作用[9]. 有机镉的具体形态目前尚未明确,并且关于有机镉的毒性机理研究也少有报道. 林建云等[10]实验指出有机结合态镉对水产动物的毒理效应和代谢作用与离子态镉(Cd2+)存在着明显的差异. 目前,国内外主要以总镉含量来评价三疣梭子蟹中镉的污染水平及食用健康风险,鲜少有针对镉形态的深入研究. 这使得三疣梭子蟹中镉的安全性评价缺乏不同镉形态的可靠数据与科学依据.

    迄今为止,大部分研究主要围绕三疣梭子蟹中的镉蓄积水平、地区差异等问题进行,也有部分科学家开展了三疣梭子蟹中镉的蓄积机制及赋存形态问题的初步研究,但尚未有关于此问题的清晰明确的定论. 基于此,围绕三疣梭子蟹对镉的特异性蓄积问题,本文对三疣梭子蟹中镉的蓄积含量、分布特征及污染现状进行了综述,同时对三疣梭子蟹不同可食用组织中镉的赋存形态和健康风险评估的研究进展进行了总结分析,期望能为后续开展有关三疣梭子蟹中镉蓄积机制及赋存形态的研究提供科学参考与基础指导.

    据报道[1112],水生动物中的重金属来源主要分为两种,一种是表皮细胞或鳃等从周围水环境中直接吸收重金属,然后积累在外皮硬组织中;另一种来源则是含有重金属的颗粒状物质(饵料和沉积物颗粒)被水生动物摄食,通过食物链传递,积累在内脏软组织中. 对于甲壳类水生动物,研究人员认为重金属主要通过4个途径进入其体内. 第一,在甲壳类进行鳃呼吸时,重金属通过呼吸作用进入动物体内. 第二,某些甲壳类饵料中的金属离子通过摄食途径进入动物体内;第三,部分甲壳类动物的体表可通过与水体的渗透交换作用富集重金属;第四,水生动植物中富集的重金属通过食物链进入甲壳类体内[13].

    三疣梭子蟹作为典型的甲壳类动物,目前关于其体内的镉来源的研究较少,并且对于三疣梭子蟹各可食组织中蓄积的镉具体来源也未见明确报道. 根据其他蟹类的相关研究[1418],可以推测三疣梭子蟹中镉可能来源于两种途径:①环境途径,三疣梭子蟹的蟹壳和蟹腮与含镉介质(如水体、沉积物)直接接触,通过自由/被动扩散或Ca2+通道截留环境介质中的镉. ②摄食途径,三疣梭子蟹通过食物链从饵料或浮游动植物中富集镉. 作为研究三疣梭子蟹镉蓄积机制的重要组成部分,镉来源的研究还需要结合相关毒理学和生物学方法开展深入实验,以查明镉的不同来源对三疣梭子蟹体内蓄积机制的影响,同时有利于后续开展镉在三疣梭子蟹体内迁移、转运和归趋的相关研究.

    三疣梭子蟹体内可检测出多种金属元素,镉是其中重要的有毒污染物. 尤炬炬等[19]对浙江沿海68个梭子蟹样品进行了铅、镉、总汞和无机砷的检测,发现镉含量远远高于其他重金属. 吴烨飞等[20]检测了梭子蟹中铅、镉、总汞和无机砷,只有镉存在污染问题. 可见,三疣梭子蟹中存在着明显的镉污染状况.

    根据《食品安全国家标准 食品中污染物限量(GB2762—2012/GB2762—2017)》,甲壳类水产品中的镉含量不应超过0.5 mg·kg−1. 但在2012—2022年有关水产品重金属检测的报道中,全国各地市售的三疣梭子蟹普遍存在着镉超标问题(表1). 如高志杰等[21]采集了宁波市售的具有代表性的海产品进行重金属检测,发现其中镉含量最高的是梭子蟹6.808 mg·kg−1,超标率达74.5%,存在严重的镉污染现象. 樊伟等[22]研究了2007—2014年绍兴地区7类992份水产品的重金属污染情况,发现梭子蟹的镉污染最为严重,超标率为38.38%. 庞雨樵等[23]对新疆地区市售的6类水产品进行抽检,发现超标样品均为梭子蟹,最大镉浓度为2.1 mg·kg−1. 然而,即使三疣梭子蟹中镉超标问题严重,仍不能仅凭限量判定镉对三疣梭子蟹食用者的毒性大小和风险高低,还需要结合更科学的方法去研究和评价三疣梭子蟹中镉对人类的危害.

    表 1  相关文献报道的三疣梭子蟹中镉含量水平及超标率
    Table 1.  The cadmium concentrations and exceedance rates in Portunus trituberculatus reported in relevant literature
    采样地点Sampling region 采样年份Sampling year 报道年份Year of reporting 平均含量/(mg·kg−1)Average content 超标率/%Exceedance rate 参考文献Reference
    宁波Ningbo 2012 2014 6. 808 74.5 [21]
    绍兴Shaoxing 2007—2014 2016 0.90±1.35 38.38 [22]
    廊坊Langfang 2016 1.06 73.1 [24]
    青岛Qingdao 2017 2.79 100 [8]
    渤海Bohai Sea 2014 2018 1.60 [25]
    温州Wenzhou 2013-2017 2020 1.99 88.4 [26]
    山东Shandong 2020 2.26 [27]
    舟山Zhoushan 2016 2021 1.44 75.6 [28]
    莱州Laizhou 2021 0.36 18.6 [29]
    上海Shanghai 2021 2022 2.635 ±1.784 [30]
      注:“—”代表引用文献中未提供该信息. Note:‘—’represents in formation is not provided in the cited references.
     | Show Table
    DownLoad: CSV

    三疣梭子蟹对镉具有显著的蓄积特异性[31],其体内的镉含量往往远高于其他甲壳类水产品[3233]. 可能是因为口虾姑[34]和三疣梭子蟹等海水蟹[35]具有不同于其他甲壳类水产品对镉的强蓄积特异性,在我国新实行的国标GB2762—2022《食品安全国家标准 食品中污染物限量》中,就将海蟹和虾蛄中的镉限量指标单独设立,把镉的限量值由原来的0.5 mg·kg−1调整为3 mg·kg−1. 除此之外,对限量值的改动,还可能是因为镉在不同生物体内的不同的赋存形态具有不同的生物利用率和生物学毒性. 依据我国相关检测标准,对水产品进行检测得到的镉总量是以毒性最高的无机离子态镉为限量值的评价标准. 但已有研究指出,三疣梭子蟹和虾蛄中的镉大部分以毒性较低的有机形态存在[8]. 因此,仅以0.5 mg·kg−1作为镉的限量标准,可能会高估三疣梭子蟹等海蟹和虾蛄中镉的毒性. 在港澳台地区,三疣梭子蟹中镉的限量标准有所不同. 澳门规定了去除内脏后的甲壳类镉的最高限量为2 mg·kg−1. 香港则是明确要求去除蟹壳和鳃后的整体(包括性腺、肝及其他消化器官)中镉的限量为2 mg·kg−1. 台湾地区仅规定甲壳类可食用组织限量值不超过0.5 mg·kg−1.

    对于三疣梭子蟹中镉的限量值,国际上并没有统一的限量标准. 查阅相关法案文件(表2),可以发现不同国家相关的镉限量值有所不同,最低可至0.5 mg·kg−1,最高可至5.0 mg·kg−1,相差可至10倍. 不同国家的甲壳类水产品中镉含量限定对象的范围也有所不同. 比如,韩国、欧盟等国家会针对甲壳类不同组织进行限量值的规定. 对于各国镉限量差异问题,原因在于各国在划定限量值时没有统一的科学参考依据. 因此,有必要完善甲壳类中镉限量的判断指标. 不仅要根据甲壳类自身特征与生长环境进行评估,还要继续研究不同镉形态的毒理学效应,根据甲壳类中无机镉与总镉的占比情况,更细致地划分限量对象与限量值,更好地保障公众的食品安全.

    表 2  部分组织或国家有关三疣梭子蟹中镉的限量值比较
    Table 2.  The comparison of limit values for cadmium in Portunus trituberculatus in some organizations or countries
    组织或国家Organizations or countries 执行对象Implementation aims 限量值/(mg·kg−1)Limited value 执行标准/法规Implementing standards/regulations
    中国China 甲壳类(海蟹、虾蛄除外)Crustaceans(except sea crabs and mantis shrimps) 0.5 GB2762—2022[36]
    海蟹、虾蛄Sea crabs and mantis shrimps 3.0
    中国澳门Macau, China 甲壳类(去除内脏)Crustaceans(Removal of internal organs) 2.0 第23/2018号行政法规食品中重金属污染物最高限量[37]Administrative Regulation No. 23/2018Maximum limits for heavy metal contaminants in food[37]
    中国香港Hong Kong, China 蟹(去除壳和鳃后的整体)Crab (whole after shell and gills removed) 2.0 2018年食物搀杂(金属杂质含量)(修订)规例[38]Food adulteration (Metallic Contamination) (Amendment) Regulation 2018[38]
    中国台湾Taiwan, China 甲壳类可食用组织Edible tissues of crustaceans 0.5 食品中污染物质及毒素卫生标准[39]Hygienic Standards for Contaminants and Toxins in Food [39].
    欧盟European Union 蟹类附肢的肌肉Muscles of crab appendages 0.5 European commission (EU) 2023/915 Regulation on the maximum levels of certain contaminants in food[40]
    俄罗斯Russia 甲壳类Crustaceans 2.0 Customs Union TR CU 021/2011[41]
    韩国South Korea 甲壳类Crustaceans 1.0 Food Code 2021[42]
    带内脏的梭子蟹Swimming crab with entrails 5.0
    美国American 甲壳类Crustaceans 3.0 Food and Drug Administration[43]
    土耳其Turkey 甲壳类(蟹类的棕肉除外)Crustaceans(excluding brown meat of crabs) 0.5 Food Code 2011[44]
    孟加拉Bangladesh 甲壳类Crustaceans 0.5 Bangladesh Bulletin 2014[41]
     | Show Table
    DownLoad: CSV

    目前,我国对于食品中污染物的限量仍以总的可食用部分计算,并没有针对甲壳类特定组织的浓度限制. 在进行水产品质量安全检测时,若仅将各个可食组织混合检测,并不能全面准确地评价重金属对甲壳类动物的污染程度,也无法准确评估不同可食组织的重金属潜在健康风险. 因此,对甲壳类的不同食用组织进行分类限量,将有助于科学评价水产品质量.

    环境中的镉可以通过各种途径进入三疣梭子蟹体内,并以不同的速率在各种器官中积累[45]. 前人研究发现,镉在三疣梭子蟹体内不同组织的蓄积量存在差异[46]. 本文总结了三疣梭子蟹不同可食组织中总镉含量的研究现状,以了解镉在各可食组织中的分布特征,期待为后续镉蓄积相关研究提供参考.

    作为三疣梭子蟹体内重要的消化代谢器官,肝胰腺兼具肝脏和胰腺的功能,能够直接参与金属的摄取、存储和排泄[47]. 同时,肝胰腺作为镉的靶标器官,还会从生物体内的其他组织积累镉[48]. 此外,肝胰腺中存在的金属硫蛋白(metallothionein,MT)还被认为与三疣梭子蟹对重金属的解毒机制有关[49]. 有报道指出,三疣梭子蟹肝胰腺对镉的响应较敏感,能够在感应到镉的胁迫后迅速提高MT的表达[50],产生的MT结合游离的镉,形成低毒状态的金属硫蛋白-镉(cadmium-metallothionein,Cd-MT),从而降低血淋巴中的镉浓度,保证其他维持生命的器官和组织功能不受影响[5153]. 因此,有学者认为三疣梭子蟹的肝胰腺可能是镉的主要蓄积组织[54].

    由于肝胰腺与性腺位置相连,难以剥离,研究人员常检测的是肝胰腺和性腺的混合组织(棕肉),而不是单独检测肝胰腺组织. 因此,当前单独针对三疣梭子蟹肝胰腺组织进行镉检测的报道较少. 在仅有的报道中,有学者指出三疣梭子蟹的肝胰腺中镉含量显著高于其他可食组织[33]. 如牛红鑫等[55]对上海市售的梭子蟹中镉的残留量进行了调查,发现梭子蟹各部位中镉的含量为肝胰腺(18.44±10.50) mg·kg−1>性腺(0.49±0.37) mg·kg−1>肌肉(0.22±0.15) mg·kg−1. 然而,仅少量文献不足以说明肝胰腺对镉的蓄积特异性,往后还需要更多的研究支撑.

    目前,关于肝胰腺中镉的来源、迁移与归趋的机理问题尚未有科学解释,也未有更深入的分子生物学上的研究. 并且,除了金属硫蛋白之外,肝胰腺是否存在其他蓄积镉的途径也未有明确定论. 综上可知,有关三疣梭子蟹肝胰腺的镉蓄积问题还需要不断探索.

    三疣梭子蟹的性腺是消费者极为喜爱食用的组织,尤其是发育成熟的性腺[27]. 然而,专门检测三疣梭子蟹性腺中镉含量的报道非常少,绝大多数检测的是性腺与肝胰腺混合物(棕肉)中镉的含量水平. 因为三疣梭子蟹的性腺与肝胰腺位置极为相近,以往有观点认为性腺也可能是三疣梭子蟹中重要的镉蓄积组织. 有学者认为肝胰腺与性腺分布相近,两者在重金属富集分布上具有高度的相似性[33]. 此外,对于肝胰腺中某些脂类及蛋白质会在蟹类性成熟时期通过血淋巴转运至生殖腺,有学者推测某些脂溶性的镉形态可能会随之转移至性腺中[56]. 但棕肉中的镉含量并不能说明镉在性腺中蓄积的情况. 因为棕肉中的成分会因性腺发育时期的不同而产生差异. 例如,有的文献[24]检测的棕肉样品中性腺尚未发育,此时棕肉的成分几乎全是肝胰腺. 另有文献[30]对性成熟的梭子蟹样品中的棕肉进行检测,此时棕肉成分中除了肝胰腺以外,性腺也占有不小的比例. 因此,不能仅依靠棕肉的镉含量水平去单独判断肝胰腺或性腺对镉的蓄积能力.

    目前,有极少量报道[32]单独检测了性腺中的镉含量,指出肝胰腺中的镉含量要高于性腺. 但是如此少量的报道,并不足以说明镉在三疣梭子蟹性腺中的蓄积情况,仍需要后续对性腺进行单独检测和研究. 性腺是三疣梭子蟹繁殖的重要器官,探究性腺中镉的蓄积情况,对研究镉对三疣梭子蟹可能存在的生殖毒性[57],以及对消费者食用三疣梭子蟹的安全风险评估研究有着重要意义. 值得注意的是,目前对于三疣梭子蟹性腺不同发育时期的镉含量检测未见报道. 性腺不同发育时期中镉含量的变化规律也是研究三疣梭子蟹中镉蓄积机制的重要部分. 因此,对于三疣梭子蟹性腺中镉的蓄积问题后续需要针对性腺不同发育时期进行更为详细和深入的实验与研究.

    在绝大多数报道中,三疣梭子蟹的肌肉(包括胸肌、腿肌、钳肌)较其他可食组织的镉含量水平最低. 如Mei等[28]对东海舟山渔场捕捞的三疣梭子蟹进行了检测,发现内脏组织的Cd水平大约是肌肉组织的9.5倍. 有研究指出,蟹类肌肉组织中的重金属含量与多种复杂因素有关,包括环境参数、种间的生理变异、以及重金属的理化性质、生物活性和累积特性等[58]. 蟹类肌肉中的镉主要来源于血淋巴的输送[59]. 研究指出,环境中的镉进入三疣梭子蟹体内后,会先经过肝胰腺的解毒,若是肝胰腺中重金属过度积累,会加快镉向肌肉组织迁移的速度[49]. 研究指出,镉与生物体中内源性物质亲和力的差异导致其在组织器官蓄积的异质性[60]. 因此,可能是肌肉对重金属的低亲和力导致了镉在肌肉中的蓄积量远低于其他组织[61].

    图1展示了部分文献报道的三疣梭子蟹各个可食用组织中镉含量的堆积百分比. 可见,在多数报道中,三疣梭子蟹的可食组织被分为棕肉和白肉(肌肉)组织进行检测,且棕肉中镉含量占比显著高于白肉;对于肝胰腺和性腺分开检测的报道较少,仅有的报道显示肝胰腺中镉含量占比远高于性腺和肌肉组织. 综合而言,关于镉在三疣梭子蟹各可食组织中的分布特征,目前较为明确的是肌肉组织的镉含量水平明显低于其他可食组织,尤其是低于棕肉组织和肝胰腺组织;对于肝胰腺组织,较多学者猜测其为三疣梭子蟹的镉主要蓄积组织,但对其单独进行镉含量检测的报道较少,需要后续进行更多的实验和研究;对于性腺组织,有观点认为性腺也可能是三疣梭子蟹中重要的镉蓄积组织,但相关报道太少并不足以支撑此观点,因此后续仍需要学者们对性腺展开相关研究,尤其要针对性腺不同发育时期进行研究.

    图 1  部分文献报道的三疣梭子蟹可食用组织中镉含量的堆积百分比(数据来源文献 [62, 27, 8, 26, 63, 32, 46, 55, 64]
    Figure 1.  Percentage accumulation of cadmium in edible tissue of Portunus trituberculatus in some literature(Data source: [62, 27, 8, 26, 63, 32, 46, 55, 64]

    重金属在环境中的迁移转化规律及其对生物的毒理学效应,并非取决于重金属的总浓度,而是由其赋存形态的性质决定[60]. 镉在三疣梭子蟹体内的赋存形态可分类为两种,一种是镉与有机物结合形成的有机镉形态,第二种则是镉以游离的无机离子态形式存在[65]. 多数毒理学研究指出,镉的毒性与其存在形态有关,无机游离态镉的毒性较高,有机结合态镉毒性较低[66]. 目前,镉在生物体内具体的赋存形态尚未清晰,针对具有镉蓄积特异性的三疣梭子蟹开展不同镉形态的分析,不仅有助于揭示三疣梭子蟹中镉的蓄积机制,同时也能为不同形态镉在其他生物体内的研究提供探索思路与数据支持.

    研究镉的形态,首先需要将不同形态的镉从生物体内提取和分离出来. 因此,选择适当的提取剂是准确测定镉形态的前提条件. 并且提取形态所用的提取剂应能将生物体内不同形态的镉完整而充分地提取且不破坏其原有形态结构. 水生生物中镉形态的研究起步较晚,关于土壤[6769]、陆生植物[7074]、藻类[7576]中的镉形态提取分离模式和方法研究较多,且大多数提取方法是利用连续化学浸提法,即利用不同的提取剂进行分级提取后测定提取剂中的镉. 至于这些提取剂是否会在连续提取的过程中影响和破坏镉的具体化学形态,鲜有报道.

    目前,有学者对水生生物中镉形态的提取开展了相关的研究. 先是有学者尝试用碱性酶缓冲液对海豚肝脏进行提取,发现提取到的可溶态镉只占镉总量的45%左右,且这部分镉全部都与蛋白质(非金属硫蛋白)相结合[77]. 除此之外,还有学者尝试用柠檬酸和琥珀酸两种有机酸溶剂提取牡蛎匀浆液中的镉,提取率可达到90.2%—91.8%,但未研究此种提取法是否会对镉形态产生影响[78]. 针对不同的浸提方法,李敏[65]分析了渔用饲料的镉形态,发现有机溶剂环己烷和乙醇无法浸提出饲料中的有机态镉,同时发现较低浓度的盐酸就能使有机态镉发生解离. 也有研究人员对比了不同提取剂的逐级提取效果,田姣姣等[79]对比了Tris-HCl缓冲溶液、HCl(pH值3.5)和碱性蛋白酶3种不同的提取剂对三疣梭子蟹可食用组织中镉形态逐级提取的效果,结果表明Tris-HCl具备较好的提取效果,对肝胰腺、性腺等组织的镉提取率高达90%,但对肌肉组织中的提取率仅为60%,仍有37%的非游离态镉存在,而经碱性蛋白酶处理后可有效溶出.

    综上所述,镉形态的提取常用到酸性溶液、有机溶剂以及碱性蛋白酶缓冲液,但这些提取溶液的使用都有可能会引起有机镉形态的破坏,从而影响形态检测的结果. 目前,有研究人员开始使用与生物体生理条件相似的中性Tris-HCI缓冲溶液,以最大程度保证镉的形态在提取过程中不发生变化. 对于镉形态的研究,提取剂的选择固然重要,但目前大部分的镉形态研究仍停留在依赖不同的提取剂将镉形态进行分类后检测其中无机镉含量,未能实现直接检测镉的具体化学形态. 因此,往后对于提取方法的研究应当针对镉的具体化学形态,这对于镉具体化学形态的研究也具有重要意义.

    国内有关水产品中无机镉的分析研究起步较晚,且所用方法大多为高效液相色谱在线联用电感耦合等离子体质谱法(high performance liquid chromatography-inductively coupled plasma mass spectrometer,HPLC-ICP-MS). 章红等[80]最早建立了水产品中无机镉的测定方法. 他们使用石墨炉原子吸收法(graphite furnace atomic absorption spectrometry, GFAAS),利用盐酸作为浸提液,测定了7种水产品中无机镉的含量. 但此方法并未分析使用盐酸浸提对样品中无机镉离子的提取效果,也没有考虑到是否存在有机镉形态被盐酸破坏转化为无机镉. 随后,赵艳芳等[81]利用Tris-HCl缓冲溶液作为浸提液,借助CG5A阳离子保护柱和CS5A阳离子分析柱对样品中Cd2+分离,建立了HPLC-ICP-MS法测定海水贝中离子态镉的含量. 自此之后,大部分有关于水产品中无机镉离子的检测方法都在此研究基础上做出优化. 如姜芳等[82]同样采用HPLC-ICP-MS法测定了海水贝中无机镉离子含量,通过进一步优化前处理过程及流动相浓度,完善了海水贝中无机镉离子的定性和定量分析方法.

    国内有关三疣梭子蟹中无机镉离子的形态研究少之又少. 仅田姣姣[83]和冯瑞雪等[84]对三疣梭子蟹不同组织中的无机镉进行了探究. 在赵艳芳[81]的研究基础上,田姣姣[83]探讨了流动相浓度、pH、流速对HPLC-ICP-MS检测Cd2+的影响规律,建立了三疣梭子蟹各部位离子态镉检测的前处理方法,并且测得的三疣梭子蟹中只有蟹膏部位含有离子态镉,约占蟹膏部位总镉的9.4%. 这说明三疣梭子蟹不同部位镉的赋存形态存在差异. 而在此基础上,冯瑞雪等[84]进一步优化了HPLC-ICP-MS检测离子态镉的方法,探究了经过蒸煮和模拟消化后三疣梭子蟹各部位镉的变化. 发现经过蒸煮加工及模拟消化后,肌肉中Cd2+含量上升,蟹膏、蟹黄中Cd2+含量下降. 他们认为在蒸煮过程中,可能因汁液流失、浓缩效应或在不同部位间存在的迁移转化使样本中Cd2+含量发生变化. 综合来看,针对三疣梭子蟹体内无机镉形态的研究尚处于起步阶段,仍需要后续不断优化和完善提取、检测、定量方法,以便深入地探索三疣梭子蟹体内镉赋存形态的分布特征及蓄积机制,同时也为后续更加科学合理地评估三疣梭子蟹的食用安全风险提供研究数据.

    研究发现,三疣梭子蟹体内毒性较高的无机镉离子含量占总镉的比例较小,间接地表明了低毒性的有机镉形态在总镉中的占比较大[85]. 目前,分析生物体中有机镉形态最常用的方法是体积排阻色谱(size exclusion chromatography,SEC)与高效液相色谱(HPLC)串联电感耦合等离子体质谱(ICP-MS)联用技术[73, 76, 8687]. 然而,有机镉形态的检测存在着标准物质缺乏的问题,难以对生物体内的有机镉形态进行定性. 为此,有学者尝试将无机镉的标准溶液与其他溶液进行络合,根据镉络合物的保留时间来初步判断镉可能在生物体内存在的形态[73].

    在前人的研究基础上,赵艳芳等[8]运用了SEC-HPLC-ICP-MS首次对三疣梭子蟹中的有机镉形态进行分析. 发现三疣梭子蟹肝胰腺组织中的镉主要以金属硫蛋白-镉(metallothionein-Cadmium,MT-Cd)和半胱氨酸-镉(cysteine-Cadmium,Cys-Cd)两种形态存在. 并且,根据总镉量的不同,肝胰腺中有机镉的主要存在形态也有所不同. 而对于肌肉组织,镉主要以Cys-Cd形态存在. 此后,田姣姣等[79]进一步对三疣梭子蟹体内镉赋存形态开展了研究. 他们利用Tris-HCl缓冲液进行提取,结合超滤结合透析的方式,对提取液中不同分子质量镉复合物进行分离测定. 结果显示,分子质量>10 kDa的镉复合物占比最高,可能是MT以外的其它蛋白或多糖、脂类等与镉形成大分子复合物. 这说明三疣梭子蟹在MT所介导的途径之外,可能存在其它的蓄积代谢机制;同时<500 Da的镉组分约占4%—25%,可能是存在离子态镉、氨基酸-镉等小分子镉组分.

    目前,三疣梭子蟹体内有机镉形态尚未完全明确,并且有机镉的标准物质缺乏,定性与定量存在困难. 后续需要进一步确定三疣梭子蟹体内有机镉的具体形态,同时确定不同结合态的有机镉的毒性效应和转化机制,对于三疣梭子蟹中无机镉与有机镉的占比问题也值得进行更深入的探索与验证.

    无论有机镉还是无机镉,国内外针对三疣梭子蟹中镉的赋存形态分析的研究非常少. 并且,研究镉形态的检测手段、测定方法并不完善,仪器设备的发展水平和镉形态的提取与分离都限制了镉形态分析. 此外,由于缺少镉形态的标准品,无法明确三疣梭子蟹等水产品中镉存在的不同形态及其相关毒理效应[31]. 因此,后续需要对镉形态的定性和定量分析开展进一步的研究,以便更科学地评估不同形态镉的毒性效应,并将研究结论应用于完善相关限量标准.

    镉作为一种高危有毒的环境污染物,仅关注其在三疣梭子蟹中的蓄积量不足以评估其对生物体健康的危害风险. 因此,对三疣梭子蟹中的镉进行健康风险评估可以将三疣梭子蟹中镉的膳食摄入量与机体负荷有机联系起来,同时监测镉对人体健康的潜在影响. 人体健康风险评估不单取决于食品中重金属的摄入量,还需要借助各种指标和参数[88]. 目标危害系数(Target hazard quotient, THQ)和靶标癌症风险(Target cancer risk, TCR)是人类健康风险评估最常关注的指标. THQ可以评估通过水产品途径的接触单一重金属的非致癌健康风险[89]. TCR是一种衡量个体在食用水产品期间长期暴露于潜在致癌物而患癌症风险的指标[90]. 除此之外,生物可及性(Bioaccessibility)也常用于评估食品中有毒物质的危害性. 它是指在胃肠消化过程中,营养素或污染物从食物基质中释放溶出并可以被人体吸收的百分比[91]. 考虑到一定比例的重金属不具有生物可及性[92],将生物可及性因素纳入风险计算有助于更全面地进行评估.

    目前,有关三疣梭子蟹中镉的人类健康风险评估的研究大多着眼于两个方面. 一方面,研究主要针对不同食用人群进行健康风险评估[9394],年龄、性别和体重是重要的影响因素. 据报道,对于同性别不同年龄段人群,三疣梭子蟹中引起的健康风险趋势表现为年龄越小,健康风险越大;对于同年龄段不同性别人群,三疣梭子蟹中镉引起的健康风险趋势表现为女性大于男性. 有学者认为,因为计算THQ时体重作为分母,低龄人群和女性群体较轻的体重导致了THQ结果较大,因此,低龄儿童和女性群体食用三疣梭子蟹的风险相对较大,并且在食用三疣梭子蟹时需要避免食用过量. 另一方面,针对三疣梭子蟹不同可食组织进行健康风险评估. 对于肌肉组织,有研究指出[49],无论镉暴露浓度的高低(1—50 μg·L−1),肌肉中的THQ值均小于限值1,这说明食用三疣梭子蟹肌肉组织造成的健康风险属于低关注级别. 然而,对于肝胰腺或棕肉组织,常常显示较高的食用风险[27, 30]. 如Yang等[95]分别评估了食用三疣梭子蟹的白肉和棕肉样品的人类健康风险,发现棕肉的非致癌风险(THQ)是白肉的16倍,致癌风险(TCR)是白肉的100倍. 即使经过烹饪后棕肉中镉的含量下降,但THQ仍接近风险限值. Zhao等[27]利用镉的生物可及性浓度计算了三疣梭子蟹组织允许每周消耗量,并由此评估了山东沿海地区三疣梭子蟹的食用安全性,指出在山东的成年人每周食用0.13 kg棕色肉和1.56 kg白肉,对机体不会产生明显的危害,并且不建议食用棕肉,更推荐食用白肉. 此外,有研究指出[95],煮熟后的三疣梭子蟹中的镉浓度有所下降,建议消费者最好只食用熟蟹黄或熟蟹肉,避免食用烹饪螃蟹的汁水或油,以减少镉对人体健康的危害. 综上,对于三疣梭子蟹不同的可食组织,消费者最好少食用或不食用肝胰腺或棕肉,更推荐食用安全性更高的肌肉组织.

    关于三疣梭子蟹的人类健康风险评估,后续研究除了可以针对如孕妇、幼童等易受镉污染影响的敏感人群进行研究,还可以针对三疣梭子蟹食用频次和数量较高的沿海居民进行健康风险观察. 另外,野生捕捞和规模养殖的三疣梭子蟹中镉的健康风险尚未见报道. 总而言之,食用三疣梭子蟹作为一种可预见的、可判断的人类膳食摄入镉的途径,研究三疣梭子蟹中镉的人类健康风险有助于相关限量的制定以及对食用量和膳食人群做出推荐.

    针对三疣梭子蟹中镉的特异性蓄积问题,相关研究大多着眼于三疣梭子蟹不同组织中总镉的含量水平,而有关镉在三疣梭子蟹中的蓄积机制及赋存形态问题的研究仍处于探索阶段. 虽然已经有研究初步检测了三疣梭子蟹不同组织中的镉形态,但受限于镉形态的提取、分离、定性和定量方法的不完善,后续仍需要建立相应的技术方法,以便更好地研究三疣梭子蟹中不同形态镉的具体类型以及各组织中不同形态镉的占比问题,为深入研究三疣梭子蟹中镉的蓄积机制和赋存形态提供技术基础,同时为食用三疣梭子蟹的镉安全性问题提供新的风险评价思路.

    基于三疣梭子蟹中镉的蓄积机制及赋存形态尚未明晰的现状,今后可从以下几方面着手进行更深入的研究:①镉在三疣梭子蟹不同组织中的迁移、转化、蓄积以及释放的全过程未有研究,可以开展相关的检测实验,寻找镉在三疣梭子蟹中的变化规律,进而探索镉在三疣梭子蟹体内的蓄积机制,还可为后续标准限量的修订提供科学参考依据. ②为更深入探索镉在三疣梭子蟹中的蓄积机制,也为更加全面评估不同毒性的镉形态对人类健康的影响,三疣梭子蟹各组织中赋存的镉形态研究必不可少. 镉形态标准物缺乏、分离分析方法不完善、仪器设备不够精密等问题,有待后续的学者们持续研究和解决. 建立科学的方法,才能够更清晰地了解三疣梭子蟹中镉的赋存形态及分布规律,最终摸索出三疣梭子蟹对镉的蓄积机制. ③研究三疣梭子蟹中镉的特异性蓄积问题,终是为了能更加准确地评估人们食用三疣梭子蟹的膳食风险. 虽然前人已经进行了相关研究,但考虑到人群和时空的差异,不能仅依靠过往的评估结果进行食用三疣梭子蟹的安全性判断,需要持续对食用三疣梭子蟹进行镉的安全性评估. 在进行评估时,孕妇、幼童等易受镉污染影响的敏感人群以及食用三疣梭子蟹频次和数量较高的沿海居民都是重点研究对象. 此外,还可以进行不同养殖方式、不同食用组织、不同镉赋存形态等方面的健康风险评估,全面分析三疣梭子蟹中镉的膳食风险,保障人们在食用三疣梭子蟹时不受重金属镉的威胁.

  • 图 1  实验装置

    Figure 1.  Experimental device

    图 2  系统TN随季节的变化

    Figure 2.  Changes of TN in the system with seasons

    图 3  系统氨氮随季节的变化

    Figure 3.  Changes of ammonia nitrogen in the system with the seasons

    图 4  系统硝态氮随季节的变化

    Figure 4.  Variation of nitrate nitrogen in the system with seasons

    图 5  系统TP随季节的变化

    Figure 5.  Changes of TP in the system with seasons

    图 6  系统磷酸盐随季节的变化

    Figure 6.  Variation of phosphate in the system with seasons

    图 7  系统TOC随季节的变化

    Figure 7.  Change of TOC in the system with the seasons

    表 1  实验工况

    Table 1.  Test conditions

    季节降雨时长/h前期干旱天数/d淹没区高度/cm降雨强度/(mm·h−1)气温/℃进水量/L出水量/L
    85401.223140132
    85401.223140123
    85401.619.5187160.5
    85301.223140134.5
    85301.223140126.5
    85301.223140128
    85401.235140131.2
    85501.235140139.5
    85501.639187160
    85501.639140134
    85500.8349476
    85400.8249485
    85300.8259488
    85301.624187180.5
    85400.8249482
    85401.29140138.5
    85401.69187175.5
    85401.610140134
    季节降雨时长/h前期干旱天数/d淹没区高度/cm降雨强度/(mm·h−1)气温/℃进水量/L出水量/L
    85401.223140132
    85401.223140123
    85401.619.5187160.5
    85301.223140134.5
    85301.223140126.5
    85301.223140128
    85401.235140131.2
    85501.235140139.5
    85501.639187160
    85501.639140134
    85500.8349476
    85400.8249485
    85300.8259488
    85301.624187180.5
    85400.8249482
    85401.29140138.5
    85401.69187175.5
    85401.610140134
    下载: 导出CSV

    表 2  本实验和其他改性改良(改性)实验径流污染物去除情况统计

    Table 2.  Statistics of runoff pollutant removal in this experiment and other modified experiments

    采用填料基质栽种植物污染物去除率/%来源
    TNNO3-NNH4-NTP磷酸盐TOC
    建筑废料麦冬68.485[44]
    砂土基质+水厂铝污泥马莲44.15096.599.6[30]
    铝污泥+沸石+淹没区设置马莲80799398[6]
    砂土+给水厂污泥山麦冬74789099[45]
    红壤+细沙+淹没层(碎砖块)麦冬草83.9972.2780.4578.82[1]
    红壤+细沙+淹没层(海绵铁)87.8294.389794.54
    红壤+细沙+淹没层(火山岩)84.6576.5581.27
    中砂+表层土+剩余肥料+废报纸灌木木槿80.491.8[12]
    中砂+表层土+剩余肥料+轮胎屑5080
    生物炭+C33混凝土砂+粉土和粘土50 ~90[46]
    含水层+黄土+碎石黑眼花−119.3~85.06−583.5 ~58.6540.84 ~94.22−467.4 ~48.89[36]
    种植土+矿渣填料层(2~5 mm)+砾石层草带−1.8553.79[47]
    培养基层+粗层+排水层变叶木50~7082~97[26]
    砂+粉煤灰84.33[48]
    C33混凝土+普通生物炭(SWT)49.75[31]
    C33混凝土+铁改良生物炭(GXT)97.86[30]
    海绵铁+火山岩(3~5 mm)+火山岩(5~8 mm)+河砂+人工配土金叶女贞+麦冬60.5841.2056.2996.5697.0238.97本研究
    采用填料基质栽种植物污染物去除率/%来源
    TNNO3-NNH4-NTP磷酸盐TOC
    建筑废料麦冬68.485[44]
    砂土基质+水厂铝污泥马莲44.15096.599.6[30]
    铝污泥+沸石+淹没区设置马莲80799398[6]
    砂土+给水厂污泥山麦冬74789099[45]
    红壤+细沙+淹没层(碎砖块)麦冬草83.9972.2780.4578.82[1]
    红壤+细沙+淹没层(海绵铁)87.8294.389794.54
    红壤+细沙+淹没层(火山岩)84.6576.5581.27
    中砂+表层土+剩余肥料+废报纸灌木木槿80.491.8[12]
    中砂+表层土+剩余肥料+轮胎屑5080
    生物炭+C33混凝土砂+粉土和粘土50 ~90[46]
    含水层+黄土+碎石黑眼花−119.3~85.06−583.5 ~58.6540.84 ~94.22−467.4 ~48.89[36]
    种植土+矿渣填料层(2~5 mm)+砾石层草带−1.8553.79[47]
    培养基层+粗层+排水层变叶木50~7082~97[26]
    砂+粉煤灰84.33[48]
    C33混凝土+普通生物炭(SWT)49.75[31]
    C33混凝土+铁改良生物炭(GXT)97.86[30]
    海绵铁+火山岩(3~5 mm)+火山岩(5~8 mm)+河砂+人工配土金叶女贞+麦冬60.5841.2056.2996.5697.0238.97本研究
    下载: 导出CSV
  • [1] 林修咏. 阶梯式生物滞留系统运行效能优化与脱氮机理研究[D]. 福州: 福州大学, 2018.
    [2] 仇付国, 李林彬, 王娟丽, 等. 给水厂污泥改良雨水生物滞留系统填料层最优设计深度研究[J]. 环境工程, 2018, 36(12): 81-86.
    [3] 余雪花, 陈垚, 任萍萍, 等. 生物滞留系统植物筛选与综合评价[J]. 环境工程学报, 2019, 13(7): 1634-1644.
    [4] 高晓丽, 张书函, 肖娟, 等. 雨水生物滞留设施中填料的研究进展[J]. 中国给水排水, 2015, 31(20): 17-21.
    [5] 王书敏, 黄克舒, DAVIS P A, 等. 生物滞留系统介质土的理化性质比较研究[J]. 中国给水排水, 2019, 35(17): 133-138.
    [6] 仇付国, 代一帆, 卢超, 等. 基质改良和结构优化强化雨水生物滞留系统除污[J]. 中国给水排水, 2017, 33(7): 157-162.
    [7] 仇付国, 王珂, 李林彬, 等. 滞留时间和进水有机物对生物滞留系统除氮的影响[J]. 科学技术与工程, 2018, 18(4): 197-202.
    [8] HERMAWAN A A, TALEI A, SALAMATINIA, et al. Seasonal performance of stormwater biofiltration system under tropical conditions[J]. Ecological Engineering, 2020, 143: 105676.
    [9] 陈韬, 张本, 李剑沣, 等. 几种生物滞留植物对雨水中营养物的吸收动力学特征[J]. 环境工程, 2018, 36(9): 26-30.
    [10] 王书敏, 何强, 徐强, 等. 生物滞留系统去除地表径流中的氮素研究评述[J]. 水科学进展, 2015, 26(1): 140-150.
    [11] 王书敏, 何强, 艾海男, 等. 山地城市暴雨径流污染特性及控制对策[J]. 环境工程学报, 2012, 6(5): 1445-1450.
    [12] GOH H W, ZAKARIA N A, LAU T L, et al. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area[J]. Urban Water Journal, 2015, 7(1/2): 581-590.
    [13] 陈垚, 任萍萍, 张彩, 等. 生物滞留系统中植物去除氮素机理及影响因素[J]. 环境科学与技术, 2017, 40(S2): 85-90.
    [14] WANG R, ZHANG X, LI M H. Predicting bioretention pollutant removal efficiency with design features: A data-driven approach[J]. Journal of Environmental Management, 2019, 242(15): 403-414.
    [15] GITARI H I, KARANJA N N, GACHENE C K K, et al. Nitrogen and phosphorous uptake by potato (Solanum tuberosum l.) and their use efficiency under potato-legume intercropping systems[J]. Field Crops Research, 2018, 222: 78-84. doi: 10.1016/j.fcr.2018.03.019
    [16] PAYNE E G I, PHAM T, DELETIC A, et al. Which species? A decision-support tool to guide plant selection in stormwater biofilters[J]. Advances in Water Resources, 2018, 113: 86-99. doi: 10.1016/j.advwatres.2017.12.022
    [17] 王红莲. 不同水生植物对富营养化水体反硝化脱氮及净化效果影响的研究[D]. 南京: 南京农业大学, 2014.
    [18] 李迪, 陈垚, 吕波. 生物滞留系统对溶解性污染物的去除特性及优化途径[J]. 环境工程, 2020, 38(10): 120-127.
    [19] PAYNE E G, FLETCHER T D, RUSSELL D G, et al. Temporary storage or permanent removal?The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems[J]. Plos One, 2014, 9(3): 1-12.
    [20] 王超, 陈煜权, 蔡丽婧, 等. 不同季节大型生态净化工程对原水氮素净化效果[J]. 环境工程学报, 2015, 9(8): 3763-3767.
    [21] 李品, 木勒德尔·吐尔汗拜, 田地, 等. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542.
    [22] LEFEVRE G H, PAUS K H, NATARAJAN P, et al. Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells[J]. Journal of Environmental Engineering, 2015, 141(1): 04014050. doi: 10.1061/(ASCE)EE.1943-7870.0000876
    [23] MUERDTER C P, SMITH D J, DAVIS A P. Impact of vegetation selection on nitrogen and phosphorus processing in bioretention containers[J]. Water Environment Research, 2020, 92(2): 236-244. doi: 10.1002/wer.1195
    [24] OSMAN M, WAN YUSOF K, et al. A review of nitrogen removal for urban stormwater runoff in bioretention system[J]. Sustainability, 2019, 11(19): 5415.
    [25] WANG C, WANG F, QIN H, et al. Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems[J]. Water, 2018, 10(2): 162.
    [26] YOU Z, ZHANG L, PAN S Y, et aL. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff[J]. Water Research, 2019, 161(15): 61-73.
    [27] 朱越, 滕俊伟, 陈瑞弘, 等. 内部蓄水层对生物滞留设施中氮去除效率的中试[J]. 净水技术, 2017, 36(2): 26-30.
    [28] AHMAD A, ARIF M S, YASMEEN T, et al. Seasonal variations of soil phosphorus and associated fertility indicators in wastewater irrigated urban aridisol[J]. Chemosphere, 2020, 239: 124725. doi: 10.1016/j.chemosphere.2019.124725
    [29] YUJIA S, SHOUFA S. Migration and transformation of different phosphorus forms in rainfall runoff in bioretention system[J]. Environmental Science & Pollution Research, 2018, 26: 30633-30640.
    [30] 仇付国, 卢超, 代一帆, 等. 改良雨水生物滞留系统除污效果及基质中磷的形态分布研究[J]. 给水排水, 2017, 53(3): 48-54.
    [31] 熊家晴, 何一帆, 白雪琛, 等. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9): 2164-2172.
    [32] 李来燕. 改良生物滞留设施对磷素净化性能的试验研究[D]. 西安: 西安理工大学, 2019.
    [33] 匡颖, 董启荣, 王鹤立. 海绵铁与火山岩填料A/O生物滴滤池脱氮除磷的中试研究[J]. 水处理技术, 2012, 38(9): 50-53.
    [34] LI J, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90(86): 141-155.
    [35] 仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展[J]. 环境工程学报, 2016, 10(4): 1593-1602.
    [36] GUO C, LI J, LI H, et al. Seven-year running effect Evaluation and fate analysis of rain gardens in Xi′an, Northwest China[J]. Water, 2018, 10(7): 944. doi: 10.3390/w10070944
    [37] YANG H, DICK W A, MCCOY E L, et al. Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal[J]. Ecological Engineering, 2013, 54: 22-31. doi: 10.1016/j.ecoleng.2013.01.005
    [38] 郭超. 雨水花园集中入渗对土壤和地下水影响的试验研究[D]. 西安: 西安理工大学, 2019.
    [39] 宫永伟, 张贤巍, 翟丹丹, 等. 简单式绿色屋顶对雨水径流水质的影响规律研究[J]. 环境污染与防治, 2020, 42(3): 264-267.
    [40] 蒋春博. 生物滞留系统填料改良及径流调控研究[D]. 西安: 西安理工大学, 2019.
    [41] JIANG C, LI J, LI H, et al. An improved approach to design bioretention system media[J]. Ecological Engineering, 2019, 136: 125-133. doi: 10.1016/j.ecoleng.2019.06.014
    [42] 刘增超, 李家科, 蒋春博, 等. 4种生物滞留填料对径流污染净化效果对比[J]. 水资源保护, 2018, 34(4): 71-79.
    [43] 卢静芳, 孔祥媚, 赵瑞斌. 强化混凝去除微污染湖泊水浊度及TOC的研究[J]. 环境科学与技术, 2010, 33(3): 76-79.
    [44] 付山. 不同基质生物滞留系统雨水净化效果研究[D]. 西安: 西安建筑科技大学, 2018.
    [45] 王娟丽. 给水厂污泥改良生物滞留系统对氮磷去除的优化探究[D]. 北京: 北京建筑大学, 2019.
    [46] 田婧, 刘丹. 生物炭对去除生物滞留池氨氮及雨水持留的影响[J]. 西南交通大学学报, 2017, 52(6): 1201-1207.
    [47] JIANG C, LI J, LI H, et al. Field performance of bioretention systems for runoff quantity regulation and pollutant removal[J]. Water, Air, and Soil Pollution, 2017, 228(12): 468. doi: 10.1007/s11270-017-3636-6
    [48] THOMAS S C, HALIM M A, GALE N V, et al. Biochar enhancement of facilitation effects in agroforestry: Early growth and physiological responses in a maize-leucaena model system[J]. Agroforestry Systems, 2019, 93: 2213-2225. doi: 10.1007/s10457-018-0336-1
  • 期刊类型引用(2)

    1. 马煜萱,包峻松,洪坤钰,金军,陈坦,刘颖,杨婷,张冰. 春灌期阅海水体的氮磷分布特征及富营养化趋势. 科学技术与工程. 2025(02): 850-861 . 百度学术
    2. 孙方圆,周昌林,谈云志,刘杨,杨杰. 耐水低磷氟溶出相变磷石膏砌块的制备及应用. 高分子材料科学与工程. 2024(10): 46-56 . 百度学术

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.3 %DOWNLOAD: 4.3 %HTML全文: 94.2 %HTML全文: 94.2 %摘要: 1.5 %摘要: 1.5 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.5 %其他: 99.5 %北京: 0.3 %北京: 0.3 %荆州: 0.3 %荆州: 0.3 %其他北京荆州Highcharts.com
图( 7) 表( 2)
计量
  • 文章访问数:  4878
  • HTML全文浏览数:  4878
  • PDF下载数:  60
  • 施引文献:  3
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2021-02-28
  • 刊出日期:  2021-05-10
潘伟亮, 罗玲利, 王书敏, 李强, 温灵, 周彦. 改良填料生物滞留系统除污效果的季节变化[J]. 环境工程学报, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060
引用本文: 潘伟亮, 罗玲利, 王书敏, 李强, 温灵, 周彦. 改良填料生物滞留系统除污效果的季节变化[J]. 环境工程学报, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060
PAN Weiliang, LUO Lingli, WANG Shumin, LI Qiang, WEN Ling, ZHOU Yan. Seasonal changes in the decontamination effect of the biological retention system with improved filler[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060
Citation: PAN Weiliang, LUO Lingli, WANG Shumin, LI Qiang, WEN Ling, ZHOU Yan. Seasonal changes in the decontamination effect of the biological retention system with improved filler[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1763-1772. doi: 10.12030/j.cjee.202010060

改良填料生物滞留系统除污效果的季节变化

    通讯作者: 王书敏(1980—),男,博士,副教授。研究方向:城市暴雨径流调控。E-mail:wangshumin5103@sina.com
    作者简介: 潘伟亮(1985—),男,博士,副教授。研究方向:城市面源污染控制与雨洪管理。E-mail:pan0316@126.com
  • 1. 重庆交通大学水利水运工程教育部重点实验室,重庆 400074
  • 2. 环境材料与修复技术重庆市重点实验室,重庆 402160
  • 3. 重庆市铜梁区生态环境局,重庆 402560
基金项目:
重庆市科技局社会民生项目(cstc2017shmsA20011);住房和城乡建设部科学技术计划项目(2016-K6-025);重庆市教委重点项目(KJZD-K201901304);西北旱区生态水利国家重点实验室(西安理工大学)开放基金课题(2019KFKT-12)

摘要: 为分析径流污染物在生物滞留系统中去除效果的季节特征,设计了改良生物滞留系统,以火山岩和海绵铁为系统填料,种植植物为麦冬和金叶女贞,以不同季节雨水径流在系统中进出水为研究对象,考察了TN、氨氮、硝态氮、TP、磷酸盐及TOC等径流污染物的去除情况。结果表明:TN在春夏秋冬四季的平均去除率分别为53.69%、61.03%、54.68%、69.53%;TP分别为98.20%、92.75%、97.99%、99.24%;TOC分别为52.01%、58.01%、22.87%、22.99%。系统TN、TP和磷酸盐去除率受季节影响较小;氨氮、硝态氮和TOC受季节影响较大,其中氨氮冬季去除率最高,硝态氮和TOC的夏季去除率最高。与其他研究对比,改良填料生物滞留系统去除污染物较其他单一填料效果好,而脱氮及TOC的去除效果略次于其他改良填料。

English Abstract

  • 降雨径流是城市面源污染物空间迁移的主要载体。在降雨过程中,雨水及其形成的地表径流冲刷地面污染物,通过排水沟渠或分流制排水系统直接进入江河湖泊中,对受纳水体的水质保障带来较大压力。为保护水资源、改善水生态、优化水环境、确保水安全,海绵城市建设理念应运而生。为海绵城市主流措施之一的生物滞留系统凭借其应用灵活、径流调控成效突出的优势得到了广泛应用。本课题组前期的研究结果[1]表明,回填填料、种植植物对生物滞留系统的氮磷去除效果具有显著影响,海绵铁的添加有助于提升硝态氮的去除效果。生物滞留系统的填料组成和填料层的深度也会影响污染物的去除效率[2]。同时,植物的栽种可以提升系统对有机物和营养性污染物的去除效率[3]

    为进一步探明填料和植物对生物滞留系统滞净效能的强化情况,国内外学者开展了一系列相关研究。高晓丽等[4]、王书敏等[5]对生物滞留设施填料研究进展和生物滞留介质土理化性质进行了综述分析,介绍了国内外相关研究中填料的组成及配比、去污效果、渗透性能、填料的改良及填料深度,分析了介质土的粒径时空分布特点,可为生物滞留系统填料的筛选提供依据。仇付国等[2, 6-7]尝试用铝污泥和沸石对传统基质填料进行改良以提高系统对氨氮和磷的吸附效果,并在系统底部设置或增加淹没区高度,创造缺氧环境以提高系统对硝态氮的去除效果。为研究季节及植物对生物滞留系统径流污染物去除的影响,HERMAWAN等[8]研究了热带条件下生物滞留系统的季节特性,评估了其性能并筛选出适宜条件生长的植物。余雪花等[3]和陈韬等[9]对生物滞留系统中能有效去除多种污染物的最佳植物进行了研究,比较了雨水中各类污染物在不同种植植物下的去除效果,结果表明,植物对TP的去除影响不显著,对TN去除率良好,对硝态氮去除有一定效果,但并不稳定。

    尽管诸多业界学者已在生物滞留系统回填介质填料方面做了一定程度的研究,然而,生物滞留系统滞净效果影响因素众多,研究基础仍然薄弱,在区域环境背景下开展生物滞留系统滞净效能的研究仍需加强。鉴于此,本研究以重庆地区常用的海绵设施种植植物为供试对象,以改良回填介质为装填基质,在模拟径流条件下开展了场次降雨实验,旨在阐明径流污染物在改良填料生物滞留系统中不同季节的去除情况,获得改良填料系统污染物去除的季节分布特征,以期为生物滞留系统优化建设提供参考。

  • 图1所示,设计生物滞留是实验装置为长方体柱状,柱子高约1.2 m,底面长宽均为36 cm,前后两面从上到下设置5个出水阀门,左右两面设置4个出水阀门;综合设计生物滞留装置内填料由下往上依次为 21 cm海绵铁、7 cm高度的3~5 mm火山岩、9 cm高度的5~8 mm火山岩、5 cm高度的河砂和50 cm高度的沙土比7∶3的人工配土[1, 5];栽种植物为金叶女贞(Ligustrum × vicaryi Rehder)和麦冬(Ophiopogon japonicus (Linn. f.) Ker-Gawl.)。土壤取自重庆文理学院校内实验外场地旁,自然风干后,打磨成100目左右的细土。

  • 模拟雨水径流实验工况如表1所示,参考王书敏等[10-11]山城雨水径流相关研究,计算出各污染物进水浓度。实验模拟雨水采用磷酸二氢钾、硫酸铵、硝酸钾等药剂配制。TN进水浓度为4.76~10.04 mg·L−1,硝态氮进水浓度为0.3~2.64 mg·L−1,氨氮进水浓度为1.98~3.96 mg·L−1,TP进水浓度为1.51~2.53 mg·L−1,磷酸盐进水浓度为1.33~2.88 mg·L−1,TOC进水浓度为7.9~21.68 mg·L−1。进水开始后约2 h,打开最下面的阀门,其连接的高度与出水高度(30 cm/40 cm/50 cm)一致的导管开始出水,而后不间断接水,取5~10 L水样后摇匀从中取500 mL左右,现场测pH、氧化还原电位等参数,冷藏备用。

  • 水样使用0.45 μm的滤膜过滤处理,氨氮和硝态氮分别采用紫外分光光度计(岛津UV-2600, 日本)和全自动间断化学分析仪(CleverChem380, 德国)进行测定;水样中TN用紫外分光光度计检测;TOC测定采用TOC分析仪(Analytikjena Multi N/C 2100 s,德国);总磷用分光光度计测定;磷酸盐则添加抗坏血酸和钼酸铵后,用分光光度计测定。数据处理和绘图采用软件Excel 2016和Origin 2018。

  • 1)季节变化对TN去除效果的影响。由图2可知,在春夏秋冬四季,秋季径流的总氮平均进水浓度最高为10.04 mg·L−1,平均出水浓度为4.21 mg·L−1;冬季平均进水浓度为4.76 mg·L−1,出水浓度为1.37 mg·L−1,夏冬两季出水水质均满足地表水环境质量标准Ⅴ类限值,春秋两季不满足。生物滞留系统对总氮的去除率冬季表现最高,夏季,秋季与春季表现略差,整体在20%以内变化。

    TN在冬季去除率较高的原因可能是因为春季开始种植的麦冬生长到冬季,根系较其他季节多。GOH等[12]发现,繁盛的根系在吸收TN、保持介质的导水性以及减少系统径流方面发挥着重要作用。生物滞留系统对氮污染物的去除机理主要有吸附、过滤、硝化反硝化、微生物同化和植物吸收等作用。TN去除率高则说明系统的反硝化能力较强。有研究[1]表明,海绵铁对TN的去除有良好效果。海绵铁促进硝化作用的机理主要是:硝化细菌的细胞膜具有复杂的内褶结构,铁离子通过加大对其的渗透性进而加快硝化的进行;同时由于海绵铁对NO3-N和有机氮有一定的还原作用,从而使有机氮和NO3-N转化为NH+4-N。而植物对氮素的去除效果受植物种类、干湿条件、气候变化、植物与根际微生物协同作用等因素的综合影响,因此,选择合适的植物,对生物滞留系统的设计具有重要的实际意义[13]。植被的存在可以极大地提高TN去除率或其吸收利用率[2, 13-15]。本研究的实验系统填料中有海绵铁,种植植物为适应性强、根系较长且多的金叶女贞和麦冬。从整体来看,系统全年TN去除率平均值为60.58%,冬夏季去除率较春秋两季偏高。这可能是因为在干燥条件下,对于根长的物种,非饱和(自由排水)设计的本地植物的脱氮性能较高,且存在饱和带的情况下,植物生长速度慢、叶面积大,与出水氮浓度较低显著相关[16]

    2)季节变化对氨氮去除效果的影响。如图3所示,在春夏秋冬四季,出水氨氮平均浓度在冬季最低,春季最高。春季平均进水浓度为6.08 mg·L−1,出水浓度平均为1.26 mg·L−1,冬季平均进水浓度为3.74 mg·L−1,平均出水浓度为0.02 mg·L−1,春夏秋冬平均出水浓度均满足地表水环境质量标准Ⅳ类限值。在实验系统中,氨氮最高去除率在冬季,为96.88%,最低在春季,为69.34%。

    硝化作用是指氨氮在有氧条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。植物通过根系储氧,在根毛周围形成好氧区,离根毛较远的区域则呈现缺氧状态,更远的区域则是完全厌氧,进而形成内部好氧、缺氧、厌氧区的多串联单元,使硝化反硝化作用同时发生[17]。城市径流中的有机氮可经过吸附、沉淀等物理作用被介质截留,在微生物作用下转化为 NH+4-N和NO3-N等形态的无机氮。NH+4-N可被带负电荷的介质颗粒吸附而去除,也可经硝化细菌在好氧条件下氧化成NO3-N,进而先被植物吸收进行生物同化,剩余部分则在缺氧条件下经反硝化作用还原成气态氮并排出系统[18]。在这个过程中,NO3-N前期去除的主要途径是生物同化,此时反硝化作用对氮污染物去除的贡献率不到10%[19]。本研究中,系统对氨氮的去除率比较理想,这可能是因为填料层中微生物的硝化作用以及种植植物对氨氮的去除效果优于硝态氮所致[13]。氨氮在冬季去除率较高,这与王超等[20]研究的结果“夏季氨氮去除率最高”有所不同。其原因可能是,本实验模拟的山城雨水径流,与文献[20]报道的河水原水相比,进水水质和条件不同。

    3)季节变化对硝态氮去除效果的影响。硝态氮的去除是生物滞留系统的一大技术难点。其原因是系统中硝态氮的去除不稳定或者说去除效能过低。如图4所示,硝态氮在秋季平均进水浓度最高为2.64 mg·L−1,平均出水浓度为1.54 mg·L−1,不满足地表水环境质量标准限值。本研究系统对硝态氮的去除率较低,在春季去除率最低为28.98%,夏、秋、冬三季则在5%左右浮动,且相对稳定,全年整体去除效能偏低。

    有研究[21-22]表明,硝态氮在春季的去除与植物无关,而可能是由微生物群落驱动的,这是因为土壤微生物量C、N、P在春季和冬季含量较高。在实验系统中,硝态氮在冬季出水浓度最低,这可能是因为植物在种植几个月后达到一定的生物量水平,而根质量增长与硝态氮去除率息息相关[23]。此外,增加饱和带深度可以显著提高NO3的去除率,通过改造饱和区为反硝化过程创造厌氧条件,从而可以提高脱氮效果[24]。在饱和区深度由0 cm增加到60 cm的过程中,NO3的去除率显著提高,而NH+4的去除率不受饱和区深度的影响[25-26]。本研究的实验系统参考其他研究[1, 27]的优化方案,为创造更好的反硝化环境而设置有不同深度淹没区(30、40、50 cm),且将海绵铁作为淹没区材料以加强硝态氮的去除。结果表明,氨氮去除效果良好,硝态氮去除效果略差。这说明实验系统淹没区的设置没有为反硝化菌创造良好的环境,可能是由于淹没区高度设置不够高所致。

    4)季节变化对TP去除效果的影响。如图5所示,在春夏秋冬四季,秋季最低平均进水浓度为1.57 mg.L−1,平均出水浓度为0.01 mg.L−1,春夏秋冬平均出水浓度均满足地表水环境质量标准Ⅲ类限值。实验系统对雨水径流中总磷的去除效率全年处于高水平状态,对TP去除率较为理想,全年最高去除率为99.24%。

    结果表明,TP的去除率与季节关系不大,这可能是因为TP的去除主要由填料层介质驱动的。AHMAD等[28]对土壤中磷的组分进行季节性分析发现,各磷组分的定位-季节互作效应不显著,但从夏季到冬季土壤中的TP含量会增加。有研究[3, 8, 23]表明,TP的去除与植物种类无关或者关联较小。TP在不同降雨期迁移到土壤中,然后在土壤中转化为不同的磷形态,植物在根系和微生物的作用下,不断地转化、吸收和利用磷,实现水-土-根系/生物系统中磷的动态平衡[29]。通常生物滞留系统对径流雨水中TP的去除率在80%以上,而改变填料类型、配比及添加改良剂则去除率增至90%以上[8, 29-32]。本研究的实验系统在淹没层设置海绵铁的情况下,还设有2种粒径火山岩,此设计填料层极好地提高了TP的去除率,这与匡颖等[33]、林修咏[1]的研究结果一致,且系统TP的去除率受季节影响较小。

    5)季节变化对磷酸盐去除效果的影响。如图6所示,实验系统对磷酸盐的去除率极为理想。在春夏秋冬四季,夏季平均进水浓度最高为2.88 mg.L−1,相应平均出水浓度为0.89 mg.L−1,去除率高达96%。磷酸盐去除率同TP情况相似,全年去除率整体水平较高,各季度去除率变化差别不大。磷酸盐是生物滞留系统去除的主要营养元素之一。城市径流中的磷主要分布在溶解态(一般为有机磷和磷酸盐)和附属于颗粒物的磷之间[34]。溶解态磷中最主要的正磷酸盐通过填料的吸附和植物的吸收而去除[35]。实验系统选用的火山岩填料,其主要成份为硅、铝、锰、铁等几十种矿物质和微量元素,而Al和Fe与 PO34可通过化学键或离子键结合而生成磷酸盐沉淀,从而实现除磷。从整体来说,生物滞留系统在磷酸盐去除方面的研究已经取得良好成果。其他学者的研究结果显示,相比普通生物滞留系统,填料改良、淹没区设置、高负荷进水等条件下改造的生物滞留系统磷酸盐去除率在90%及以上[31, 36-37]。综上所述,本研究中系统磷酸盐去除率高的原因可能是实验种植的麦冬是根系发达的植物,且填料层添加有火山岩。

    6)季节变化对TOC去除效果的影响。如图7所示,在实验系统中,TOC在春夏两季进水浓度高,春季平均进水浓度最高为21.68 mg·L−1,平均出水浓度为10.41 mg·L−1,相应去除率为52.01%,较秋冬两季高。这可能是因为秋季植物枯萎凋谢增加了土壤中的有机碳[38]。整体来看,系统对TOC的去除率并不理想。据了解,不同种植基质对雨水径流中的TOC浓度具有非常显著的影响[39]。总有机碳(TOC)是以碳的含量表示水中有机物的总量,水的TOC值越高,说明水中有机物含量越高。雨水径流中TOC的来源主要有2个方面:一是自然界本身,如腐烂的动植物;二是人类活动,如工业有机试剂,人畜排泄物等。实验系统中的种植层是沙土比为7∶3的人工配土,土壤则选取当地土壤以便于植物生长以及适应当地气温环境。有研究[40]表明,在土壤中掺入木质有机质后,土壤水分、肥力、有机碳含量均可得到改善进而改善微生物活性和植物生长。TOC去除率越高,说明其中的微生物对有机物的需求越高[1]。可能是系统中微生物活性的缘故,出水TOC浓度在实验系统中四季均不稳定,尤其是在春季达到极端异常值。

  • 生物滞留系统对径流污染物的去除情况除了受季节影响外,填料基质也是其主要影响因素之一。有研究[4, 14, 41-42]表明,填料的类型、填料层的深度、填料组成及配比等均会影响TN的去除效果。本实验系统以火山岩矿物为填料,通过设置内部缺氧段,采用海绵铁强化除磷,可以提高其脱氮除磷能力[33]。就本实验系统的实验结果来说,其TN和TP去除率同文献报道的其他实验结果[1, 26]基本一致,且磷酸盐去除率也很理想。生物滞留系统填料层中采用的火山岩具有天然蜂窝多孔性结构,孔径间隙分布不均、表面粗糙且亲水性强,适宜微生物在其表面繁殖生长形成生物膜,有利于硝化菌的增殖生长,提高介质层的硝化能力,从而使填料层能去除更多的氨氮[18]。因为硝化菌增殖生长,对反硝化菌可能造成了一定影响,故系统硝态氮去除效果不是很理想。有研究[1]表明,海绵铁填料对TOC(约94.53%)的去除率较高。本研究实验系统未能达到理想去除效果,这可能是因为pH过高和水温过低,从而影响了TOC的去除[43]

    对比了本研究与其他改良填料基质下径流污染物的去除情况,结果如表2所示。由表2可知,本研究实验系统相比其他研究,在脱氮除磷方面同其他单一填料较占优势。但同其他改良填料相比,氮污染物及TOC去除效果相对不是很好,磷污染物去除效果与其他改良填料相差无几甚至普遍偏高。

  • 1)生物滞留系统对总氮和氨氮的去除效果趋势均为夏冬两季高于春秋两季,去除率均在冬季最高,分别达到69.53%和96.88%;而对于硝态氮来说,整体去除率较低,在28.98%~47.18%内波动,且受季节的影响较大。

    2)生物滞留系统对总磷和磷酸盐的去除效果受到季节的影响最小,四季去除率波动幅度不大,且长时间稳定保持在90%以上;TOC全年平均去除率为38.96%,夏季去除率最高为58.01%,春夏两季去除率较秋冬两季去除率高,受季节影响较大。

    3)本研究的实验系统的脱氮除磷性能较其他单一填料更有优势,但同其他改良填料相比,氮污染物及TOC去除效果并不是很好,磷污染物去除情况与其相差不大且去除率较高。

参考文献 (48)

返回顶部

目录

/

返回文章
返回