-
降雨径流是城市面源污染物空间迁移的主要载体。在降雨过程中,雨水及其形成的地表径流冲刷地面污染物,通过排水沟渠或分流制排水系统直接进入江河湖泊中,对受纳水体的水质保障带来较大压力。为保护水资源、改善水生态、优化水环境、确保水安全,海绵城市建设理念应运而生。为海绵城市主流措施之一的生物滞留系统凭借其应用灵活、径流调控成效突出的优势得到了广泛应用。本课题组前期的研究结果[1]表明,回填填料、种植植物对生物滞留系统的氮磷去除效果具有显著影响,海绵铁的添加有助于提升硝态氮的去除效果。生物滞留系统的填料组成和填料层的深度也会影响污染物的去除效率[2]。同时,植物的栽种可以提升系统对有机物和营养性污染物的去除效率[3]。
为进一步探明填料和植物对生物滞留系统滞净效能的强化情况,国内外学者开展了一系列相关研究。高晓丽等[4]、王书敏等[5]对生物滞留设施填料研究进展和生物滞留介质土理化性质进行了综述分析,介绍了国内外相关研究中填料的组成及配比、去污效果、渗透性能、填料的改良及填料深度,分析了介质土的粒径时空分布特点,可为生物滞留系统填料的筛选提供依据。仇付国等[2, 6-7]尝试用铝污泥和沸石对传统基质填料进行改良以提高系统对氨氮和磷的吸附效果,并在系统底部设置或增加淹没区高度,创造缺氧环境以提高系统对硝态氮的去除效果。为研究季节及植物对生物滞留系统径流污染物去除的影响,HERMAWAN等[8]研究了热带条件下生物滞留系统的季节特性,评估了其性能并筛选出适宜条件生长的植物。余雪花等[3]和陈韬等[9]对生物滞留系统中能有效去除多种污染物的最佳植物进行了研究,比较了雨水中各类污染物在不同种植植物下的去除效果,结果表明,植物对TP的去除影响不显著,对TN去除率良好,对硝态氮去除有一定效果,但并不稳定。
尽管诸多业界学者已在生物滞留系统回填介质填料方面做了一定程度的研究,然而,生物滞留系统滞净效果影响因素众多,研究基础仍然薄弱,在区域环境背景下开展生物滞留系统滞净效能的研究仍需加强。鉴于此,本研究以重庆地区常用的海绵设施种植植物为供试对象,以改良回填介质为装填基质,在模拟径流条件下开展了场次降雨实验,旨在阐明径流污染物在改良填料生物滞留系统中不同季节的去除情况,获得改良填料系统污染物去除的季节分布特征,以期为生物滞留系统优化建设提供参考。
改良填料生物滞留系统除污效果的季节变化
Seasonal changes in the decontamination effect of the biological retention system with improved filler
-
摘要: 为分析径流污染物在生物滞留系统中去除效果的季节特征,设计了改良生物滞留系统,以火山岩和海绵铁为系统填料,种植植物为麦冬和金叶女贞,以不同季节雨水径流在系统中进出水为研究对象,考察了TN、氨氮、硝态氮、TP、磷酸盐及TOC等径流污染物的去除情况。结果表明:TN在春夏秋冬四季的平均去除率分别为53.69%、61.03%、54.68%、69.53%;TP分别为98.20%、92.75%、97.99%、99.24%;TOC分别为52.01%、58.01%、22.87%、22.99%。系统TN、TP和磷酸盐去除率受季节影响较小;氨氮、硝态氮和TOC受季节影响较大,其中氨氮冬季去除率最高,硝态氮和TOC的夏季去除率最高。与其他研究对比,改良填料生物滞留系统去除污染物较其他单一填料效果好,而脱氮及TOC的去除效果略次于其他改良填料。Abstract: In order to analyze the removal effects of runoff pollutants by the biological retention system in different seasons, the improved biological retention system was designed. The fillers for the system were volcanic rock and sponge iron, and the plants were Ophiopogon japonicus and Ligustrum lucidum. In different seasons, The removal of runoff pollutants: TN, ammonia nitrogen, nitrate nitrogen, TP, phosphate and TOC were studied through analysis of water quality of the influent and effluent of the improved biological retention system. The results showed that the average removal rates of TN, TP and TOC in spring, summer, autumn and winter were 53.69%, 61.03%, 54.68%, 69.53%; were 98.20%, 92.75%, 97.99%, 99.24%; were 52.01%, 58.01%, 22.87%, 22.99%, respectively. The removal rates of TN, TP and phosphate in the system were slightly dependent on seasons, while ammonia nitrogen, nitrate nitrogen and TOC were significantly dependent on seasons, of which the removal rate of ammonia nitrogen was the highest in winter, while nitrate nitrogen and TOC were the highest in summer. Compared with other studies, the improved biological retention system had better pollutant removal efficiency than other single fillers, while the denitrification and TOC removal efficiencies were slightly inferior to other modified fillers.
-
Key words:
- improved biological retention system /
- runoff /
- pollutants /
- season characteristics
-
表 1 实验工况
Table 1. Test conditions
季节 降雨
时长/h前期
干旱
天数/d淹没区
高度/cm降雨
强度/
(mm·h−1)气温/
℃进水量/
L出水量/
L春 8 5 40 1.2 23 140 132 8 5 40 1.2 23 140 123 8 5 40 1.6 19.5 187 160.5 8 5 30 1.2 23 140 134.5 夏 8 5 30 1.2 23 140 126.5 8 5 30 1.2 23 140 128 8 5 40 1.2 35 140 131.2 8 5 50 1.2 35 140 139.5 8 5 50 1.6 39 187 160 8 5 50 1.6 39 140 134 8 5 50 0.8 34 94 76 秋 8 5 40 0.8 24 94 85 8 5 30 0.8 25 94 88 8 5 30 1.6 24 187 180.5 8 5 40 0.8 24 94 82 冬 8 5 40 1.2 9 140 138.5 8 5 40 1.6 9 187 175.5 8 5 40 1.6 10 140 134 表 2 本实验和其他改性改良(改性)实验径流污染物去除情况统计
Table 2. Statistics of runoff pollutant removal in this experiment and other modified experiments
采用填料基质 栽种植物 污染物去除率/% 来源 TN NO3-N NH4-N TP 磷酸盐 TOC 建筑废料 麦冬 68.4 — — — 85 — [44] 砂土基质+水厂铝污泥 马莲 44.1 50 96.5 99.6 — — [30] 铝污泥+沸石+淹没区设置 马莲 80 79 93 98 — — [6] 砂土+给水厂污泥 山麦冬 74 78 90 99 — — [45] 红壤+细沙+淹没层(碎砖块) 麦冬草 83.99 72.27 80.45 — — 78.82 [1] 红壤+细沙+淹没层(海绵铁) 87.82 94.38 97 — — 94.54 红壤+细沙+淹没层(火山岩) 84.65 76.55 — — 81.27 中砂+表层土+剩余肥料+废报纸 灌木木槿 80.4 — — 91.8 — — [12] 中砂+表层土+剩余肥料+轮胎屑 50 — — 80 — — 生物炭+C33混凝土砂+粉土和粘土 — — — 50 ~90 — — — [46] 含水层+黄土+碎石 黑眼花 −119.3~85.06 −583.5 ~58.65 40.84 ~94.22 −467.4 ~48.89 — — [36] 种植土+矿渣填料层(2~5 mm)+砾石层 草带 −1.85 — — 53.79 — — [47] 培养基层+粗层+排水层 变叶木 50~70 — — 82~97 — — [26] 砂+粉煤灰 — — — — 84.33 — — [48] C33混凝土+普通生物炭(SWT) — — — — — 49.75 — [31] C33混凝土+铁改良生物炭(GXT) — — — — — 97.86 — [30] 海绵铁+火山岩(3~5 mm)+火山岩
(5~8 mm)+河砂+人工配土金叶女贞+麦冬 60.58 41.20 56.29 96.56 97.02 38.97 本研究 -
[1] 林修咏. 阶梯式生物滞留系统运行效能优化与脱氮机理研究[D]. 福州: 福州大学, 2018. [2] 仇付国, 李林彬, 王娟丽, 等. 给水厂污泥改良雨水生物滞留系统填料层最优设计深度研究[J]. 环境工程, 2018, 36(12): 81-86. [3] 余雪花, 陈垚, 任萍萍, 等. 生物滞留系统植物筛选与综合评价[J]. 环境工程学报, 2019, 13(7): 1634-1644. [4] 高晓丽, 张书函, 肖娟, 等. 雨水生物滞留设施中填料的研究进展[J]. 中国给水排水, 2015, 31(20): 17-21. [5] 王书敏, 黄克舒, DAVIS P A, 等. 生物滞留系统介质土的理化性质比较研究[J]. 中国给水排水, 2019, 35(17): 133-138. [6] 仇付国, 代一帆, 卢超, 等. 基质改良和结构优化强化雨水生物滞留系统除污[J]. 中国给水排水, 2017, 33(7): 157-162. [7] 仇付国, 王珂, 李林彬, 等. 滞留时间和进水有机物对生物滞留系统除氮的影响[J]. 科学技术与工程, 2018, 18(4): 197-202. [8] HERMAWAN A A, TALEI A, SALAMATINIA, et al. Seasonal performance of stormwater biofiltration system under tropical conditions[J]. Ecological Engineering, 2020, 143: 105676. [9] 陈韬, 张本, 李剑沣, 等. 几种生物滞留植物对雨水中营养物的吸收动力学特征[J]. 环境工程, 2018, 36(9): 26-30. [10] 王书敏, 何强, 徐强, 等. 生物滞留系统去除地表径流中的氮素研究评述[J]. 水科学进展, 2015, 26(1): 140-150. [11] 王书敏, 何强, 艾海男, 等. 山地城市暴雨径流污染特性及控制对策[J]. 环境工程学报, 2012, 6(5): 1445-1450. [12] GOH H W, ZAKARIA N A, LAU T L, et al. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area[J]. Urban Water Journal, 2015, 7(1/2): 581-590. [13] 陈垚, 任萍萍, 张彩, 等. 生物滞留系统中植物去除氮素机理及影响因素[J]. 环境科学与技术, 2017, 40(S2): 85-90. [14] WANG R, ZHANG X, LI M H. Predicting bioretention pollutant removal efficiency with design features: A data-driven approach[J]. Journal of Environmental Management, 2019, 242(15): 403-414. [15] GITARI H I, KARANJA N N, GACHENE C K K, et al. Nitrogen and phosphorous uptake by potato (Solanum tuberosum l.) and their use efficiency under potato-legume intercropping systems[J]. Field Crops Research, 2018, 222: 78-84. doi: 10.1016/j.fcr.2018.03.019 [16] PAYNE E G I, PHAM T, DELETIC A, et al. Which species? A decision-support tool to guide plant selection in stormwater biofilters[J]. Advances in Water Resources, 2018, 113: 86-99. doi: 10.1016/j.advwatres.2017.12.022 [17] 王红莲. 不同水生植物对富营养化水体反硝化脱氮及净化效果影响的研究[D]. 南京: 南京农业大学, 2014. [18] 李迪, 陈垚, 吕波. 生物滞留系统对溶解性污染物的去除特性及优化途径[J]. 环境工程, 2020, 38(10): 120-127. [19] PAYNE E G, FLETCHER T D, RUSSELL D G, et al. Temporary storage or permanent removal?The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems[J]. Plos One, 2014, 9(3): 1-12. [20] 王超, 陈煜权, 蔡丽婧, 等. 不同季节大型生态净化工程对原水氮素净化效果[J]. 环境工程学报, 2015, 9(8): 3763-3767. [21] 李品, 木勒德尔·吐尔汗拜, 田地, 等. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. [22] LEFEVRE G H, PAUS K H, NATARAJAN P, et al. Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells[J]. Journal of Environmental Engineering, 2015, 141(1): 04014050. doi: 10.1061/(ASCE)EE.1943-7870.0000876 [23] MUERDTER C P, SMITH D J, DAVIS A P. Impact of vegetation selection on nitrogen and phosphorus processing in bioretention containers[J]. Water Environment Research, 2020, 92(2): 236-244. doi: 10.1002/wer.1195 [24] OSMAN M, WAN YUSOF K, et al. A review of nitrogen removal for urban stormwater runoff in bioretention system[J]. Sustainability, 2019, 11(19): 5415. [25] WANG C, WANG F, QIN H, et al. Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems[J]. Water, 2018, 10(2): 162. [26] YOU Z, ZHANG L, PAN S Y, et aL. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff[J]. Water Research, 2019, 161(15): 61-73. [27] 朱越, 滕俊伟, 陈瑞弘, 等. 内部蓄水层对生物滞留设施中氮去除效率的中试[J]. 净水技术, 2017, 36(2): 26-30. [28] AHMAD A, ARIF M S, YASMEEN T, et al. Seasonal variations of soil phosphorus and associated fertility indicators in wastewater irrigated urban aridisol[J]. Chemosphere, 2020, 239: 124725. doi: 10.1016/j.chemosphere.2019.124725 [29] YUJIA S, SHOUFA S. Migration and transformation of different phosphorus forms in rainfall runoff in bioretention system[J]. Environmental Science & Pollution Research, 2018, 26: 30633-30640. [30] 仇付国, 卢超, 代一帆, 等. 改良雨水生物滞留系统除污效果及基质中磷的形态分布研究[J]. 给水排水, 2017, 53(3): 48-54. [31] 熊家晴, 何一帆, 白雪琛, 等. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9): 2164-2172. [32] 李来燕. 改良生物滞留设施对磷素净化性能的试验研究[D]. 西安: 西安理工大学, 2019. [33] 匡颖, 董启荣, 王鹤立. 海绵铁与火山岩填料A/O生物滴滤池脱氮除磷的中试研究[J]. 水处理技术, 2012, 38(9): 50-53. [34] LI J, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90(86): 141-155. [35] 仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展[J]. 环境工程学报, 2016, 10(4): 1593-1602. [36] GUO C, LI J, LI H, et al. Seven-year running effect Evaluation and fate analysis of rain gardens in Xi′an, Northwest China[J]. Water, 2018, 10(7): 944. doi: 10.3390/w10070944 [37] YANG H, DICK W A, MCCOY E L, et al. Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal[J]. Ecological Engineering, 2013, 54: 22-31. doi: 10.1016/j.ecoleng.2013.01.005 [38] 郭超. 雨水花园集中入渗对土壤和地下水影响的试验研究[D]. 西安: 西安理工大学, 2019. [39] 宫永伟, 张贤巍, 翟丹丹, 等. 简单式绿色屋顶对雨水径流水质的影响规律研究[J]. 环境污染与防治, 2020, 42(3): 264-267. [40] 蒋春博. 生物滞留系统填料改良及径流调控研究[D]. 西安: 西安理工大学, 2019. [41] JIANG C, LI J, LI H, et al. An improved approach to design bioretention system media[J]. Ecological Engineering, 2019, 136: 125-133. doi: 10.1016/j.ecoleng.2019.06.014 [42] 刘增超, 李家科, 蒋春博, 等. 4种生物滞留填料对径流污染净化效果对比[J]. 水资源保护, 2018, 34(4): 71-79. [43] 卢静芳, 孔祥媚, 赵瑞斌. 强化混凝去除微污染湖泊水浊度及TOC的研究[J]. 环境科学与技术, 2010, 33(3): 76-79. [44] 付山. 不同基质生物滞留系统雨水净化效果研究[D]. 西安: 西安建筑科技大学, 2018. [45] 王娟丽. 给水厂污泥改良生物滞留系统对氮磷去除的优化探究[D]. 北京: 北京建筑大学, 2019. [46] 田婧, 刘丹. 生物炭对去除生物滞留池氨氮及雨水持留的影响[J]. 西南交通大学学报, 2017, 52(6): 1201-1207. [47] JIANG C, LI J, LI H, et al. Field performance of bioretention systems for runoff quantity regulation and pollutant removal[J]. Water, Air, and Soil Pollution, 2017, 228(12): 468. doi: 10.1007/s11270-017-3636-6 [48] THOMAS S C, HALIM M A, GALE N V, et al. Biochar enhancement of facilitation effects in agroforestry: Early growth and physiological responses in a maize-leucaena model system[J]. Agroforestry Systems, 2019, 93: 2213-2225. doi: 10.1007/s10457-018-0336-1