-
盐酸四环素(tetracycline,TC)是抗生素中比较典型的一种[1],四环素类药物在经生物代谢后,大部分的四环素随排泄物仍以原始形式排出,导致四环素在环境中大量蓄积残留[2-4]。长期低浓度的药物残留会危害人类健康,对胃肠、肝肠都有损害。因此,如何有效去除废水中的四环素至关重要[5-6]。目前,在对抗生素的处理方法中,主要有离子交换法[7]、吸附法[8]、絮凝[9]、活性污泥法[10-11]、光催化氧化[12-13], 但这些传统的处理方法存在处理周期长、降解不彻底、容易造成二次污染的问题[14]。
近年来,超声波技术在水处理领域中取得了较大的进展[15]。超声波处理水是基于水分子分解产生的羟基自由基的氧化过程。超声波产生的声空化泡溃灭后可在极短时间内生成高温高压,这种极端环境会伴随放电、发光及射流等,从而使水中污染物得以去除[16-17]。有研究[18]表明,在利用超声波处理三氯乙烯和四氯化碳的过程中,发现三氯乙烯是由于超声空化技术产生的·OH被四氯化碳捕获而降解的。超声波与臭氧的协同作用主要归因于超声波的机械效应,机械效应增强了溶液中臭氧的质量传递[19]。H2O2是一种易获得、成本低的强氧化剂,能有效去除生物毒素等有机污染物[20]。在超声波处理偶氮染料废水的研究[21]中,将超声波与H2O2耦合,结果表明,酸性黑210去除率有了显著提高。然而,将超声协同H2O2降解抗生素的研究却少有报道,2种方法的结合既能发挥超声波技术的优势,又能利用H2O2的强氧化性,从而使得抗生素得以完全降解和矿化。
本研究将超声波和H2O2相结合,分别考察了H2O2投加量、超声功率、TC初始浓度和pH对盐酸四环素去除率的影响;在此基础上,通过液相色谱质谱联用(LC-MS)以及电子顺磁共振(electron spin-resonance spectroscopy, ESR)分析了盐酸四环素在超声波/H2O2体系下可能的降解途径,以期为制药废水的处理方法提供参考。
超声强化H2O2处理废水中的盐酸四环素
Treatment of tetracycline hydrochloride in wastewater by ultrasonic enhanced H2O2
-
摘要: 采用超声波强化H2O2处理盐酸四环素(tetracycline,TC)模拟废水,研究了不同处理方式、H2O2投加量、超声功率、TC初始浓度和pH对TC去除率的影响。结果表明,超声协同H2O2技术能有效处理含TC的废水,且其降解符合拟一级反应动力学模型。当TC溶液浓度为10 mg·L−1、H2O2的投加量为50 mmol·L−1、超声功率为120 W、初始pH为11时,TC的去除率可达到90.4%。电子顺磁共振(EPR)的实验结果表明,在超声/H2O2体系中的主要活性自由基是·OH,通过液相-质谱联用仪(LC-MS)检测出10种中间产物,并由此推测了TC可能的降解路径。Abstract: Ultrasonic enhanced H2O2 was used to treat tetracycline hydrochloride (TC) simulated wastewater. The effects of different treatment methods, H2O2 dosage, ultrasonic power, initial concentration of TC and pH on the TC removal rate were studied. The results showed that ultrasonic combined H2O2 technology could effectively treat TC wastewater, and its degradation conformed to the pseudo-first-order reaction kinetic model. When the concentration of wastewater solution was 10 mg·L−1, the dosage of H2O2 was 50 mmol·L−1, the ultrasonic power was 120 W, and the initial pH was 11, the TC removal rate could reach 90.4%. Electronic paramagnetic resonance(EPR) experimental results confirmed that the main active free radical in ultrasonic/H2O2 system was ·OH. Ten intermediate products were detected by liquid chromatography-mass spectrometry (LC-MS), and their possible degradation pathways were inferred.
-
Key words:
- tetracycline /
- ultrasonic /
- H2O2 /
- LC-MS /
- EPR
-
-
[1] BHATIA V, RAY A K, DHIR A. Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation[J]. Separation & Purification Technology, 2016, 161: 1-7. [2] ZHAO X D, LI X J, ZHANG X L, et al. Bioelectrochemical removal of tetracycline from four typical soils in China: A performance assessment[J]. Bioelectrochemistry, 2019, 129: 26-33. doi: 10.1016/j.bioelechem.2019.04.016 [3] YU Y S, CHEN L J, FANG Y, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862. doi: 10.1016/j.jhazmat.2019.120862 [4] 安小英. g-C3N4基复合光催化材料的制备及其降解盐酸四环素研究[D]. 西安: 长安大学, 2016. [5] LI S, HU J. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318: 134-144. doi: 10.1016/j.jhazmat.2016.05.100 [6] ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 588-599. doi: 10.1016/j.cej.2019.03.112 [7] CHOI K J, SON H J, KIM S H. Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic[J]. Science of the Total Environment, 2007, 387(1/2/3): 247-256. [8] SELMI T, SANCHEZ S A, GADONNEIX P, et al. Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin[J]. Industrial Crops and Products, 2018, 115: 146-157. doi: 10.1016/j.indcrop.2018.02.005 [9] QI N, WANG P, WANG C, et al. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO2 nanoparticles in an aquatic environment[J]. Journal of Hazardous Materials, 2017, 341: 187-197. [10] ZHANG F L, YUE Q Y, GAO Y, et al. Application for oxytetracycline wastewater pretreatment by Fe-C-Ni catalytic cathodic-anodic-electrolysis granular fillers from rare-earth tailings[J]. Ecotoxicology and Environmental Safety, 2018, 164: 641-647. doi: 10.1016/j.ecoenv.2018.08.081 [11] WANG Y, LI B, LI G, et al. A modified Z-scheme Er3+: YAlO3@(PdS/BiPO4)/(Au/rGO)/CdS photocatalyst for enhanced solar-light photocatalytic conversion of nitrite[J]. Chemical Engineering Journal, 2017, 322: 556-570. doi: 10.1016/j.cej.2017.04.053 [12] WU F, ZHOU F, ZHU Z Y, et al. Enhanced photocatalytic activities of Ag3PO4/GO in tetracycline degradation[J]. Chemical Physics Letters, 2019, 724: 90-95. doi: 10.1016/j.cplett.2019.03.058 [13] HU J Y, YANG R, LI Z H, et al. In-situ growth zinc oxide globular on the graphitic carbon nitride to fabrication binary heterojunctions and their photocatalytic degradation performance for the tetracycline[J]. Solid State Sciences, 2019, 92: 60-67. doi: 10.1016/j.solidstatesciences.2019.02.009 [14] QIAO J, ZHANG H, LI G, et al. Fabrication of a novel Z-scheme SrTiO3/Ag2S/CoWO4 composite and its application in sonocatalytic degradation of tetracyclines[J]. Separation & Purification Technology, 2018, 211: 843-856. [15] 蔡春芳. 超声波技术在降解水体污染物中的应用研究[J]. 环境科学与管理, 2018, 43(5): 64-68. doi: 10.3969/j.issn.1673-1212.2018.05.017 [16] CHU K H, AL-HAMADANI Y A J, PARK C M, et al. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review[J]. Chemical Engineering Journal, 2017, 327: 629-647. doi: 10.1016/j.cej.2017.06.137 [17] JONGHUN H, BYUNG-MOON J, JIYONG H, et al. Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109396.1-109396.9. [18] LEE M, OH J. Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution[J]. Ultrasonics Sonochemistry, 2010, 17(1): 207-212. doi: 10.1016/j.ultsonch.2009.06.018 [19] NILSUN H I, GÖKÇE T. Reactive dyestuff degradation by combined sonolysis and ozonation[J]. Dyes and Pigments, 2001, 16(49): 149-153. [20] ORR P T, JONES G J, HAMILTON G R. Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide: Implications for compliance with the Australian drinking water guidelines[J]. Water Research, 2004, 38(20): 4455-4461. doi: 10.1016/j.watres.2004.08.024 [21] 岳冬梅, 杜霞, 李娟. 超声波结合膨胀石墨及类芬顿试剂降解偶氮染料[J]. 化工管理, 2020(4): 21-22. doi: 10.3969/j.issn.1008-4800.2020.04.015 [22] 傅敏, 蒋永生, 周莉, 等. 超声合成二苯基羟乙酮的研究[J]. 包装工程, 2004, 25(6): 66-67. doi: 10.3969/j.issn.1001-3563.2004.06.025 [23] REZA R, AFSHIN M, ALI J, et al. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process[J]. Journal of Environmental Health Science & Engineering, 2014, 12(1): 67. [24] DÜKKANCI M, GÜNDÜZ G. Ultrasonic degradation of oxalic acid in aqueous solutions[J]. Ultrasonics Sonochemistry, 2006, 13(6): 517-522. doi: 10.1016/j.ultsonch.2005.10.005 [25] ZHANG Y, XIAO Z, CHEN F, et al. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment[J]. Ultrasonics Sonochemistry, 2010, 17: 72-77. doi: 10.1016/j.ultsonch.2009.06.003 [26] GOGATE P R, PANDIT A B. Engineering designmethods for cavitation reactorsⅡhydrodynamic cavitation reactors[J]. AIChE Journal, 2000, 46(8): 1641-1654. doi: 10.1002/aic.690460815 [27] FINDIK S, GÜNDÜZ G. Sonolytic degradation of acetic acid in aqueous solutions[J]. Ultrasonics Sonochemistry, 2007, 14(2): 157-162. doi: 10.1016/j.ultsonch.2006.03.009 [28] 郑怀礼, 张占梅. 低频超声协同Fe-Ni-Mn/Al2O3催化降解酸性绿B的研究[J]. 环境工程学报, 2009, 3(2): 193-198. [29] 马艳, 高乃云, 姚娟娟, 等. 水中盐酸四环素的超声辐照降解[J]. 华南理工大学学报(自然科学版), 2010, 38(8): 147-152. [30] QIANG Z, ADAMS C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12): 2874-2890. doi: 10.1016/j.watres.2004.03.017 [31] KHAN M H, BAE H, JUNG J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway[J]. Journal of Hazardous Materials, 2010, 181(1): 659-665. [32] SONG C, LIU H Y, GUO S, et al. Photolysis mechanisms of tetracycline under UV irradiation in simulated aquatic environment surrounding limestone[J]. Chemosphere, 2020, 244: 1255-1282.