-
挥发性有机废气(volatile organic compounds,VOCs)是形成次生污染物和光化学烟雾的主要因素[1]。工业排放的VOCs已成为我国雾霾天气产生的重要因素[2-3]。我国高度重视VOCs的治理,国家发展改革委、环境保护部印发的《“十三五”节能减排综合工作方案》将工业涂装列入“十三五”期间全国VOCs减排的重点领域[4]。
目前,各地政府主要推行的涂装废气治理技术有吸附法和直接燃烧法等[5]。活性炭吸附法具有可回收溶剂,可净化低浓度、低温的废气,无需加热的优点;其缺点是需要将漆雾、粉尘、烟等杂质做预处理,处理高温废气前需要冷却,且活性炭需定期更换。直接燃烧法具备操作简单、养护容易,无需预处理,有机物可完全燃烧,有利于净化高浓度废气等优点,燃烧热亦可作为烘干室的热源得以利用;缺点是燃烧过程成本高,存在安全隐患[6-7]。生物法净化VOCs的过程无需额外投加能源,通过微生物新陈代谢作用可使有机物矿化分解,具有工艺简单、操作方便、运行稳定、处理效果好、无二次污染,运行费用低等优点[8-9]。生物净化法在降解低浓度有机废气和恶臭气体方面效果显著,欧洲约有8 000 座废气生物净化装置投入运行,对VOCs的去除率可以达到90%以上[10]。
涂装行业废气量大、组分复杂,是产生VOCs的主要行业之一。汽车轮毂涂装车间的废气主要成分有乙酸乙酯、甲基异丁基酮、甲苯、乙酸丁酯和二甲苯等,涂装生产企业急需成本低、效果好的绿色处理技术。本课题组与浙江某轮毂生产厂家合作开展了生物净化涂装废气现场中试试验,考察绿色低成本的生物技术处理涂装废气的可行性,为实际应用提供参考。
生物净化装置现场处理汽车轮毂涂装车间的VOCs
Biological purification device on-site processing of automotive wheel coating workshop VOCs
-
摘要: 采用ϕ10 mm泡沫小球作为微生物载体的生物净化装置处理某汽车轮毂涂装现场的有机废气,以验证微生物净化涂装废气的应用可行性。结果表明:在涂装废气组分及浓度波动较为剧烈的条件下,生物净化装置能够稳定有效地净化涂装废气;对废气中不同组分的去除效果存在较大差异,对苯系物去除率大于70%,对甲基异丁基酮去除率达到61%,而对乙酸丁酯去除效果最好,去除率大于90%。以上结果表明生化法可用于净化涂装废气。Abstract: Biological purification with foam balls of 10 mm in diameter as microbial carrier is proposed for the treatment of waste gas from car wheel hub coating. Results from this work show stable and effective purification is achieved even under severe fluctuations in the composition and concentration of coating waste gas. The efficiency of waste gas removal varies with different pollutants, e.g. ≥70%, 61% and ≥90% for benzene, methyl isobutyl ketone, and butyl acetate, respecitvely. Therefore, this study demosntrates the potential of biochemical methods for the purification of waste gas in painting.
-
Key words:
- painting workshop /
- volatile organic compounds /
- bio-filter /
- removal rate /
- site disposal
-
表 1 油漆中各原料组分及其占比
Table 1. Component ratios in paint and thinner
涂料种类 热固性丙烯
酸树脂1#热固性丙烯
酸树脂2#热固性丙烯
酸树脂3#氨基树脂 环氧树脂 附着力
促进剂流平剂 消泡剂 清漆 35.0%~40.0% 17.0%~22.0% — 20.0%~25.0% — 1.0%~3.0% 0.1%~0.3% 0.1%~0.2% JS系列
铝粉漆— — 30.0%~40.0% 10.0%~15.0% 2.0%~4.0% — ≤0.2% ≤0.1% 稀释剂 — — — — — — — — 涂料种类 醋酸丁基
纤维素防沉剂1# 防沉剂2# 铝银浆 酯类溶剂 醇类溶剂 芳烃类溶剂 多官能团类
溶剂清漆 — — — — 8.0%~11.0% 4.0%~7.0% 3.0%~6.0% — JS系列
铝粉漆1.5%~3.0% 1.0%~4.0% 1.0%~3.0% 6.0%~10.0% 8.0%~15.0% 1.0%~3.0% 2.0%~5.0% — 稀释剂 — — — — 15.0%~35.0% — 45.0%~65.0% 15.0%~25.0% 注:JS系列铝漆粉中含有10.0%~20.0%的改性丙烯酸树脂。 表 2 汽车轮毂涂装废气的主要成分去除效果
Table 2. Removal rate of main components in waste gas from car wheel hub coating
序号 出峰时间/min 物质组分 去除率 1 3.05 乙酸乙酯 61.32% 2 3.27 二氯乙烷 — 3 6.02 甲基异丁基酮 61.03% 4 6.59 乙酸1-甲基丙酯 79.35% 5 6.76 甲苯 85.56% 6 8.28 乙酸丁酯 92.17% 7 9.40 乙苯 78.55% 8 9.63 对二甲苯 72.53% 9 10.17 间邻二甲苯 78.13% -
[1] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408 [2] MONTERO M R, LOPEZ V R, ARELLANO A O. Volatile organic compounds in air: Sources, distribution, exposure and associated illnesses in children[J]. Annals of Global Health, 2018, 84(2): 225-238. doi: 10.29024/aogh.910 [3] KURABCGIE F A, ANGNUNAVURI P N, ATTIOGBE F, et al. Occupational exposure of benzene, toluene, ethylbenzene and xylene (BTEX) to pump attendants in Ghana: Implications for policy guidance[J]. Cogent Environmental Science, 2019, 5(1): 1603418. doi: 10.1080/23311843.2019.1603418 [4] 环境保护部办公厅. 关于印发《“十三五”挥发性有机物污染防治工作方案》的通知[A/OL]. (2017-09-14) [2020-03-22]. http://www.mee.gov.cn/gkml/hbb/bwj/201709/W020170919373521878296.pdf, 2017. [5] EUISOON J, MITSUYO H, MAKOTO S. Removal of o-xylene using biofilter inoculated with Rhodococcus sp. BTO62[J]. Journal of Hazardous Materials, 2008, 152(1): 140-147. doi: 10.1016/j.jhazmat.2007.06.078 [6] 周毓婷, 赖晨光. 汽车涂装工艺对环境的污染及其治理措施[J]. 广州化工, 2014, 42(7): 116-118. doi: 10.3969/j.issn.1001-9677.2014.07.044 [7] GHOSHAL A K, MANJARE S D. Selection of appropriate adsorption technique for recovery of VOCs: an analysis[J]. Journal of Loss Prevention in the Process Industries, 2002, 15(6): 413-421. doi: 10.1016/S0950-4230(02)00042-6 [8] 吕阳, 刘京, 吕炳南, 等. 生物法处理苯、甲苯废气的工艺性能及动力学研究[J]. 化学工程, 2008, 3(7): 55-57. doi: 10.3969/j.issn.1005-9954.2008.07.015 [9] 朱国营, 刘俊新. 真菌降解挥发性有机物动力学模型研究[J]. 环境科学学报, 2005, 25(10): 1320-1324. doi: 10.3321/j.issn:0253-2468.2005.10.005 [10] 国家发展和改革委员会高技术产业司, 中国生物工程学会. 中国生物产业发展报告[M]. 北京: 化学工业出版社, 2010. [11] 代可, 李保亮, 陈一. 汽车涂装车间VOCs废气治理形势与技术运用[J]. 电镀与涂饰, 2019, 38(22): 1236-1241. [12] WANG J D, CHEN J M. Removal of dichloromethane from waste gases with a bio-contactoxidationreactor[J]. Chemical Engineering Journal, 2006, 123(3): 103-107. doi: 10.1016/j.cej.2006.06.023 [13] 孙珮石, 杨显万, 谢蕴国. 生物法净化低浓度挥发性有机废气的动力学模式研究[J]. 上海环境科学, 1997, 16(8): 13-17. [14] 李明雪. 降解二甲苯废气的微生物群落及其动力学研宄[D]. 天津: 天津科技大学, 2019. [15] 陈建孟, 王家德. 生物技术在有机废气处理中的研究进展[J]. 环境科学进展, 1998, 6(3): 30-36. [16] OLIVER J P, SCHILLING J S. Capture of methane by fungi: Evidence from laboratory-scale biofilter and chromatographic isotherm studies[J]. Transactions of the Asae American Society of Agricultural Engineers, 2018, 59(6): 1791-1801. [17] FURUNO S, REMER R, CHATZINOTAS A, et al. Use of mycelia as paths forthe isolation of contaminant-degrading bacteria from soil[J]. Microbial Biotechnology, 2012, 5(1): 142-148. doi: 10.1111/j.1751-7915.2011.00309.x