-
随着人口增长和工业发展对水的需求量越来越大,水资源短缺是全球面临的最严峻的问题及挑战。污水回用、苦咸水及海水淡化是缓解水资源短缺的有效方法[1],其中的关键环节就是除盐。传统除盐方法主要包括蒸馏法、反渗透法、电渗析法、离子交换法等[2-5],但均存在能耗大、成本高、二次污染等问题[6-9]。 电吸附除盐技术是利用外接直流电源产生的电场,使在电极间流动溶液中的带电离子向带有与自身电荷相反的电极移动,从而被电极表面产生的双电层吸附达到净化原水效果[10-13]。相比于传统除盐方法,电吸附除盐主要优势为能耗小、寿命长、无二次污染和电极易再生[14-16]。
但是,电吸附除盐技术存在吸附-脱附效率不稳定,循环除盐吸附效率衰减及电极再生性差等问题,这极大影响电吸附除盐技术的应用前景。电吸附效率的衰减及电极再生性差的主要原因为电极脱附不完全、电极的炭颗粒被水流冲刷流失及电极发生电化学反应损耗等。
LIANG等[17]采用添加炭黑至流动电极中增强其导电性,发现随着电极电压增加,吸附效率有所提高,但电荷效率明显下降。杨宏艳等[18]的研究发现,当电压为1.4 V、流速为2.5 mL·min−1、进料室盐溶液流速与阴阳电极室中电极浆料流速比为1∶2∶2时,流动电极电吸附除盐率达到70.38%。莫恒亮等[19]采用流动电极与电渗析耦合实现连续脱盐,其中电渗析为间歇性工作,整套装置水效达到95%。
基于上述研究,为解决传统电吸附的吸附效率衰减及电极再生难等问题,本研究采用流动电极代替传统的固定电极,对流动电极电吸附除盐的效率及出水水质的稳定性进行了优化,分别考察了电压、流速等对除盐率的影响,并探讨了流动电极中盐分的浓缩度和电极的电吸附适用性,本研究可为流动电极电吸附技术的工程应用提供参考。
流动电极电吸附去除水中Na+、${{\rm{SO}}_4^{2 - }}$ 、Fe3+及Ca2+
Removal of Na+, ${{\bf{SO}}_4^{2 - }}$ , Fe3+ and Ca2+ from water by means of flow-electrode capacitive deionization
-
摘要: 采用流动电极代替传统的固定电极电吸附水中离子,即流动电极电吸附技术,以解决传统电吸附技术的吸附效率衰减和电极再生难等问题。结果表明:流动电极浆体的搅拌可提高电吸附出水电导率的稳定性,搅拌有助于改善流动电极浆体的均匀性及离子脱附率;电压的增加极大极高电吸附的去除率,当电压为1.5 V时,电吸附Na2SO4的去除率达到14.3%;当Na2SO4溶液流速由5 mL·min−1降为2 mL·min−1时,电吸附Na2SO4的去除率增加了11%,但流动电极的流速影响较小;流动电极中吸附的盐分浓缩度可达到11倍以上,降低了电吸附过程中浓水量,增加了得水率。相比于固定电极电吸附,流动电极电吸附在处理重金属Fe3+和结垢离子Ca2+等均可实现稳定的吸附-脱附循环。Abstract: The flow-electrode was used to replace the traditional fixed electrode for ions adsorption from water, which can solve the problems of the adsorption efficiency attenuation and difficulty for electrode regeneration of the traditional electro-adsorption. The results showed that the stirring of the flow-electrode slurry greatly increased the stability of the effluent water conductivity, and improved the uniformity of the slurry and the desorption rate of the ions. With the increase of voltage, the removal rate by the electro-adsorption was extremely enhanced. When the voltage was 1.5 V, the removal rate by the electro-adsorption of Na2SO4 solution reached 14.3%. When the flow rate of Na2SO4 solution decreased from 5 mL·min−1 to 2 mL·min−1, the removal rate by the electro-adsorption of Na2SO4 solution increased by 11%. However, the flow rate of the flow electrode had a slight effect on the removal rate of Na2SO4 solution. Over 11 times of the salt concentration adsorbed in the flow-electrode slurry occurred, the concentrated water amount decreased and the purified water yield increased. Compared with the fixed electrode, a stable adsorption-desorption cycle can be achieved when treating heavy metal of Fe3+ or scaling ion of Ca2+ using the flow-electrode capacitive deionization.
-
Key words:
- flow-electrode /
- electro-adsorption /
- desalting /
- stirring /
- concentration degree
-
-
[1] ZOU L D, MORRI G, QI D D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination, 2008, 225: 329-340. doi: 10.1016/j.desal.2007.07.014 [2] ANDERSON M A, CUDERO A L, PALMA J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?[J] Electrochimica Acta, 2010, 55(12): 3845-3856. [3] BORSANI R, REBAGLIATI S. Fundamentals and costing of msf desalination plants and comparison with other technologies[J]. Desalination, 2005, 182(1/2/3): 29-37. [4] XU T, HUANG C. Electrodialysis-based separation technologies: A critical review[J]. Aiche Journal, 2010, 54(12): 3147-3159. [5] 梁宏旭, 赵新坤, 宋彬, 等. 改性活性碳毡电吸附污水中的Zn2+[J]. 中国环境科学, 2018, 38(4): 1336-1345. [6] 范力, 张建强, 程新, 等. 离子交换法及吸附法处理含铬废水的研究进展[J]. 水处理技术, 2009, 35(1): 30-33. [7] LEE H J, SARFERT F, STRATHMANN H, et al. Designing of an electrodialysis desalination plant[J]. Desalination, 2002, 142(3): 267-286. doi: 10.1016/S0011-9164(02)00208-4 [8] 施周, 杨文浩, 杨灵芳, 等. 等离子改性CNT/TiO2电极吸附去除水中苯酚的研究[J]. 中国环境科学, 2015, 35(9): 2664-2669. doi: 10.3969/j.issn.1000-6923.2015.09.015 [9] VILLAR I, ROLDAN S, RUIZ V, et al. Capacitive deionization of NaCl solutions with modified activated carbon electrodes[J]. Energy & Fuels, 2010, 24(6): 3329-3333. [10] 毕慧芝, 田秉晖. 电吸附活性炭电极制备及电吸附特性[J]. 环境工程学报, 2015, 9(4): 1606-1612. doi: 10.12030/j.cjee.20150414 [11] NADAKATTI S, TENDULKAR M, KADAM M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology[J]. Desalination, 2011, 268(1/2/3): 182-188. [12] 孙晓慰, 朱国富. 电吸附水处理技术(EST)的原理及构成[J]. 工业用水与废水, 2002, 33(4): 18-20. doi: 10.3969/j.issn.1009-2455.2002.04.006 [13] 骆青虎, 武福平, 李锡锋, 等. 碱改性活性炭纤维电吸附处理RO浓水效果及除盐动力学特性[J]. 环境工程学报, 2019, 13(11): 2545-2552. doi: 10.12030/j.cjee.201812076 [14] FARMER J C, FIX D V, MACK G V, et al. Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes[J]. Journal of Applied Electrochemistry, 1996, 26(10): 1007-1018. [15] HOU C H, HUANG J F, LIN H R, et al. Preparation of activated carbon sheet electrode assisted electrosorption process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(3): 473-479. doi: 10.1016/j.jtice.2011.12.003 [16] PARK K K, LEE J B, PARK P Y, et al. Development of a carbon sheet electrode for electrosorption desalination[J]. Desalination, 2007, 206: 86-91. doi: 10.1016/j.desal.2006.04.051 [17] LIANG P, SUN X, BIAN Y, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. doi: 10.1016/j.desal.2017.05.023 [18] 杨宏艳, 张卫珂, 葛坤, 等. 流动性电极电容去离子技术的脱盐性能研究[J]. 环境污染与防治, 2017, 39(8): 911-915. [19] 莫恒亮, 唐阳, 陈咏梅, 等. 流动电极电吸附(FCDI)与电渗析(ED)耦合实现连续脱盐技术研究[J]. 现代化工, 2019, 39(5): 91-95. [20] GAO X Y, WU L, XU Q, et al. Adsorption kinetics and mechanisms of copper ions on activated carbons derived from pinewood sawdust by fast H3PO4 activation[J]. Environmental Science and Pollution Research, 2018, 25(8): 7907-7915. doi: 10.1007/s11356-017-1079-7 [21] WU L, WAN W J, SHANG Z S, et al. Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions[J]. Separation and Purification Technology, 2018, 197: 156-169. doi: 10.1016/j.seppur.2018.01.007 [22] TERZYK A P. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177(1): 23-45. [23] MACIAS-GARCIA A, GOMEZ C M, ALFARO D M, et al. Study of the adsorption and electroadsorption process of Cu(II) ions within thermally and chemically modified activated carbon[J]. Journal of Hazardous Materials, 2017, 328: 46-55. doi: 10.1016/j.jhazmat.2016.11.036 [24] PUZIY A M, PODDUBNAYA O I, ZIATDINOV A M. On the chemical structure of phosphorus compounds in phosphoric acid-activated carbon[J]. Applied Surface Science, 2006, 252(23): 8036-8038. doi: 10.1016/j.apsusc.2005.10.044 [25] ZHANG B, XU P, QIU Y, et al. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases[J]. Chemical Engineering Journal, 2015, 263: 1-8. doi: 10.1016/j.cej.2014.10.090 [26] PUZIY A M, PODDUBNAYA O I, MARTNEZ-ALONSO A, et al. Synthetic carbons activated with phosphoric-acid I. Surface chemistry and ion binding properties[J]. Carbon, 2002, 40(9): 1493-1505. doi: 10.1016/S0008-6223(01)00317-7 [27] 高新源, 刘佩春, 李爱民, 等. 电吸附技术去除水中磷酸盐离子的研究[J]. 环境科学学报, 2020, 40(1): 155-160. [28] 李桂菊, 王刚, 何威, 等. 中孔炭电极在电吸附除盐中的应用研究[J]. 天津科技大学学报, 2016, 31(6): 39-43.