Processing math: 100%

中压紫外/氯水处理工艺过程中氯的分解规律

田芳, 陆昱, 郭光, 贲伟伟, 丁克强, 梁正超, 郭晓正, 张蜀贵. 中压紫外/氯水处理工艺过程中氯的分解规律[J]. 环境工程学报, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059
引用本文: 田芳, 陆昱, 郭光, 贲伟伟, 丁克强, 梁正超, 郭晓正, 张蜀贵. 中压紫外/氯水处理工艺过程中氯的分解规律[J]. 环境工程学报, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059
TIAN Fang, LU Yu, GUO Guang, BEN Weiwei, DING Keqiang, LIANG Zhengchao, GUO Xiaozheng, ZHANG Shugui. Decomposition of chlorine during medium pressure UV/chlorine water treatment process[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059
Citation: TIAN Fang, LU Yu, GUO Guang, BEN Weiwei, DING Keqiang, LIANG Zhengchao, GUO Xiaozheng, ZHANG Shugui. Decomposition of chlorine during medium pressure UV/chlorine water treatment process[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059

中压紫外/氯水处理工艺过程中氯的分解规律

    作者简介: 田芳(1981—),女,博士,副教授。研究方向:水处理技术。E-mail:tianfang0305@163.com
    通讯作者: 郭光(1981—),男,博士,副教授。研究方向:水处理技术。E-mail:guoguang007007@163.com
  • 基金项目:
    国家自然科学青年基金资助项目(51608257,31600091);中国科学院饮用水科学与技术重点实验室开放基金课题(17K01KLDWST);环境模拟与污染控制国家重点联合实验室开放基金课题(18K01ESPCT);南京工程学院大学生科技创新项目(TB201912004,TB201912034, TB202012022);江苏省高等学校大学生创新创业训练计划项目(201911276146H)
  • 中图分类号: X131.2

Decomposition of chlorine during medium pressure UV/chlorine water treatment process

    Corresponding author: GUO Guang, guoguang007007@163.com
  • 摘要: 在中压紫外/氯高级氧化技术应用于去除水中微量污染物的过程中,氯的浓度会由于光解作用而降低,直接影响该技术的处理效率。为解决上述问题,通过测定不同中压紫外剂量下氯浓度的变化,研究了氯的分解规律,以及氯投加量、pH、温度、腐殖酸和常见阴离子等条件对氯分解速率的影响。结果表明,氯的分解遵循一级动力学,其分解速率常数kobs随着氯初始浓度的降低而增加,随pH、腐殖酸浓度及温度升高而增加;在一定范围内kobs与pH或腐殖酸浓度成正相关关系;温度由15 ℃升高至26 ℃也使氯的分解速率提高了1倍,主要归因于氯自身的分解随温度升高而加快,而非紫外光解速率提高导致;水中主要阴离子ClNO3HCO3SO24的存在对氯的分解速率几乎没有影响。以上研究结果可为中压紫外/氯水处理工艺设计,尤其是氯投加量和紫外剂量等工艺参数设计提供数据支持。
  • 1,4-丁炔二醇(1,4-butynediol, BYD)是一种重要的化工原料,主要用于合成1,4-丁二醇(1,4-butanediol, BDO),进而生产四氢呋喃、聚四亚甲基乙二醇醚(PTMEG)、聚对苯二甲酸丁二醇酯(PBT)和聚丁二酸丁二醇酯(PBS)等重要化工产品[1-3]。目前,我国已经是世界上最大的BDO生产国[4],BDO生产首先利用乙炔和甲醛经铜铋催化合成BYD,BYD再经过精馏提浓,提浓后BYD需要通过阴阳离子树脂脱除含有的铜离子、二氧化硅和醋酸根离子等杂质,进而再催化加氢生成BDO[5]。其中,阴阳离子树脂再生产生的脱离子废液含有高浓度BYD残留[6],废水化学需氧量(chemical oxygen demand, COD)可达到6 000~20 000 mg·L−1,是BDO生产过程产生的主要高浓度有机废水,由于部分企业使用5%的硫酸进行阳离子树脂再生,从而导致该废水中硫酸盐含量也较高(6 000~10 000 mg·L−1)。BYD脱离子废液与生活污水、冲洗废水和BDO精馏废水等低浓浓度有机废水混合后即为BDO生产废水,BYD脱离子废液水量占BDO生产废水的比例为50%~70%。 BYD脱离子废液的高效低耗处理是BDO生产废水处理的关键。

    厌氧生物处理技术因为具有能耗低、可回收甲烷气和污泥产量少等优势,广泛应用于高浓度有机废水的预处理[7]。其利用水解产酸菌、互养产氢产乙酸菌和产甲烷菌的协作实现有机物的厌氧甲烷转化[8]。当废水中含有硫酸根离子时,硫酸盐还原菌(sulfate reducing bacteria,SRB)也会参与厌氧代谢过程,在低浓度硫酸盐含量条件下,SRB可以促进难降解有机物的降解和乙酸产生,进而促进甲烷代谢[9];当硫酸盐含量过高时,硫酸盐还原产生的过多硫化氢可以抑制产甲烷古菌和SRB,进而抑制厌氧有机物代谢[10]。考虑到BYD是BDO生产脱离子废液的主要COD贡献者,阐明其在不同厌氧处理条件下的生物降解效果,对于脱离子废液及其他高含BYD废水的处理工艺设计具有重要指导意义。

    目前关于BYD可生化性的研究较少,GOTVAJN[11]和TISLER等[12]利用快速生物降解实验方法评估了BYD的好氧可生化性,发现在60 d的培养周期内BYD浓度基本没有降低,认为BYD是一种不易生物降解有机物。陈庆磊等[13]利用批次实验评估了BDO生产废水的厌氧处理效果,发现COD去除率约为56%,没有研究BYD的去除率。且BYD分子中含有内炔烃超共轭结构,化学性质十分稳定[11],明确BYD厌氧可生化性对于指导工程实践具有积极意义。

    因此,本研究联合使用批次和连续实验方法评估了BYD在厌氧生化处理过程中的生物降解效果,同时测定了COD、BYD、硫酸盐浓度变化及微生物群落的演替情况,研究结果可为含BYD工业废水的处理提供指导。

    实验所用BYD购自上海麦克林生化科技股份有限公司(纯度98%),为白色斜方结晶,用纯水配成50 000 mg·L−1储备液,4 ℃保存。厌氧生化实验的外加微量元素营养液组成为[14]:MgCl2 (30 mg·L−1)、NiCl2 (10 mg·L−1)、CoCl2 (10 mg·L−1)、FeCl2 (40 mg·L−1)、CaCl2 (20 mg·L−1)、ZnSO4 (20 mg·L−1)、MnSO4 (20 mg·L−1)。CaCl2等常规化学试剂均为分析纯,购自天津市科密欧化学试剂有限公司。

    本实验所用厌氧颗粒污泥为安徽宿州某酒精厂污水处理站的厌氧颗粒污泥,外形为规则球形,颗粒直径为0.5~4.0 mm;活性污泥采自河北石家庄市某市政污水处理厂缺氧池污泥,絮状,沉降性能优良。

    厌氧批次实验在AMPTS® II自动甲烷潜力测试系统(BPC Instruments AB)中进行。为探究BYD是否可在纯厌氧产甲烷体系降解、复配活性污泥和SO42−还原是否可促进BYD厌氧降解,厌氧批次实验一共设置了3组实验,每组2个平行,同时设置没有厌氧污泥接种的空白组。实验组污泥浓度均控制在15 000 mg·L−1,pH=7.1,具体物料组成见表1,硫酸盐组控制BYD/SO42− =0.299 (对应COD/SO42− 的质量比为0.5)。各组实验均加入1 mL微量元素溶液,反应总体积均为400 mL,利用恒温水浴控制反应温度稳定在37 ℃。

    表 1  厌氧批次实验设计
    Table 1.  Design of anaerobic batch experiments mg·L−1
    实验组别 接种污泥 BYD 碱度(以CaCO3计) NH4Cl KH2PO4 K2HPO4 SO42−
    颗粒污泥组 厌氧颗粒污泥 500 1 000 140 30 30
    污泥复配组 厌氧颗粒污泥与活性污泥复配a 500 1 000 140 30 30
    外加硫酸盐组 厌氧颗粒污泥与活性污泥复配a 500 1 000 140 30 30 1 670
      注:厌氧颗粒污泥与活性污泥浓度比为2:1。
     | Show Table
    DownLoad: CSV

    厌氧连续实验在2套平行中温有效容积为6.3 L的UASB反应器进行,种泥为30%活性污泥与70%厌氧颗粒污泥复配污泥。进水水质模拟内蒙古某BDO生产企业的实际BYD脱离子废液水质配置(表2),进水COD由葡萄糖和BYD组成,氮源为氨氮,磷源为磷酸二氢钠,碱度由碳酸氢钠贡献,微量元素(Fe、Mn、Zn、Co)添加参考KONG等[10],进水pH调至7.2±0.2,进水基质桶水温由低温水浴控制在4 ℃。反应器各阶段具体运行参数见表2

    表 2  厌氧UASB反应器不同阶段的运行参数
    Table 2.  Operating parameters of anaerobic UASB reactors at different stages
    阶段 HRT(d) 有机负荷(以COD计) COD/SO42−(质量比) BYD(mg·L−1) 葡萄糖(mg·L−1) TCOD(mg·L−1) SO42−(mg·L−1)
    S1 10 0.5 4 686 5 000
    S2 10 1 2 980 4 686 10 000
    S3 10 1 10 2 980 4 686 10 000 1 000
    S4 10 1 5 2 980 4 686 10 000 2 000
    S5 10 1 1 2 980 4 686 10 000 10 000
    S6
     | Show Table
    DownLoad: CSV

    厌氧发酵气体首先通过二氧化碳吸收瓶(含有3 M的氢氧化钠),之后利用湿式气体流量计记录每日产气量。污水样品经0.22 μm滤膜过滤后,滤液用于各指标测试,其中COD和SO42−测定参照水质测定标准[15]。针对硫酸盐还原体系,滤液首先经过曝气去除溶液中的硫化物,通过硫化物测定试纸(陆恒生物)不变蓝判断硫化物被完全去除,之后再过滤测定COD。采用GC-FID (岛津GC2010 plus)测定BYD浓度,选用SH-Stabilwax-DA柱(30 m×0.25 mm×0.25 μm) 作为气相色谱柱,温度程序如下:100 ℃保留1 min,以20 ℃·min−1升温至120 ℃,保留4 min,之后以20 ℃·min−1升温至220 ℃,保留5 min。进样口和检测器温度分别为240 ℃和260 ℃。氦气作载气,初始压力为400 kPa。采用外标法测定BYD含量,每次测试新配置标准曲线。采用内标法测定挥发性脂肪酸(VFAs)含量,取1mL滤液加入1-丁醇内标(2 000 mg·L−1)后,使用GC-FID (岛津GC2010 plus)测定VFAs浓度,选用Restek Stabilwax-DA柱(30 m×0.53 mm×0.1 μm) 作为气相色谱柱,温度程序如下:70 ℃保留1 min,以20 ℃·min−1升至150 ℃,之后以4 ℃·min−1升至 160 ℃,再以20 ℃·min−1升至210 ℃,保留2 min。进样口和检测器温度分别为240 ℃和260 ℃。氦气作载气,初始压力为167.3 kPa。

    针对UASB反应器,在每个运行阶段结束时分别从2个平行反应器中收集厌氧污泥样品,使用FastDNATM SPIN Kit (MP Biomedicals, Solon, USA)试剂盒提取DNA,使用NanoDrop分光光度计(ND-2000, NanoDrop Technologies, USA)测定DNA浓度和纯度。提取后DNA使用515F (GTGCCAGCMGCCGCGG)和907R (CCGTCAATTCMTTTRAGTTT)引物扩增细菌16S rRNA基因[16],PCR扩增产物送至上海美吉生物医药科技有限公司进行NovaSeq PE250测序。测序数据存储于NCBI SRA (链接号:PRJNA1108964)。测序数据质控、OUT (operational taxonomic units)聚类、细菌菌属注释和主坐标分析(PCoA)通过美吉生物云平台(https://cloud.majorbio.com/)完成。

    图1(a)所示,空白组中BYD不会因为水解、挥发等原因而浓度下降。在单一厌氧颗粒污泥接种的实验组,BYD降解缓慢,31 d实验结束时去除率仅为40.72%,对应的降解速率为6.6 mg·(L·d)−1 (图1(b)),且COD去除与BYD降解表现出较高的一致性(相关系数R2=0.908,P<0.05)。KONG等[17]报道活性污泥与厌氧颗粒污泥的复配可以提高N-N-二甲基甲酰胺的厌氧产甲烷效果,发现N-N-二甲基甲酰胺首先被活性污泥中兼性厌氧水解微生物转化为二甲胺和一甲胺等中间体,再被产甲烷古菌直接利用,从而促进了N-N-二甲基甲酰胺的完全厌氧降解。厌氧颗粒污泥与活性污泥复配有可能也会促进BYD的厌氧降解,因此开展了2种污泥复配的BYD降解实验,结果如图1(c)所示。复配活性污泥后,BYD的降解速率加快,达到9.9 mg·(L·d)−1,在31 d实验结束时BYD的去除率达到了65.71%,较单一厌氧颗粒污泥实验组提升了25.01%。但是需要指出,实验结束时污泥复配体系的COD去除率仅为29.43%,与单一颗粒污泥体系(33.02%)基本一致。将实验结束时残留BYD浓度转化为COD理论值为281.2 mg·L−1,小于COD实测值(658.5 mg·L−1),表明虽然活性污泥接种带入的BYD兼性厌氧水解菌可以将BYD转化为未知有机中间产物,使得其母体物质浓度降低速度加快,但生成的中间产物仍难以被产甲烷古菌降解。除了产甲烷古菌,在硫酸盐含量较高的厌氧体系中,SRB可以利用乳酸、丙酸和醇类等多种有机物作为电子供体[18],SO42−为电子受体,将有机物降解并将SO42−还原成硫化氢[19]

    图 1  批次实验中3种厌氧生化条件下BYD的降解情况
    Figure 1.  Degradation of BYD in three anaerobic digestion systems

    考虑到BYD分子中含有羟基,有可能作为SRB的电子供体而被降解。因此,在复配污泥作为种泥的条件下进一步加入硫酸盐,探究硫酸盐还原是否可以加速BYD的厌氧降解。结果如图1 (d)所示,加入硫酸盐后,复配污泥中BYD降解速率进一步提升至11.2 mg·(L·d)−1,在31 d实验结束后去除率达到79.46%,比单一厌氧颗粒污泥和复配污泥实验组的BYD去除率分别提高了38.74%和13.75%。同时,COD的最终去除率达到52.03%,比单一厌氧颗粒污泥和复配污泥实验组分别提高了19.01%和22.60%。混合液SO42−的质量浓度变化与BYD和COD的质量浓度变化都表现出显著的正相关关系(P<0.05) (图1 (d))。实验开始后(0~6 d),SO42−质量浓度即快速降低(图1 (d)),表明反应起始硫酸盐还原作用即占据主导,这可能与本研究中采用的低COD/SO42− (0.5)有关。HAO等[20]报道COD/SO42−低于1.5时,SRB会获得生长优势,厌氧代谢以硫酸盐还原为主。在反应结束时,SO42−去除率为57.32%,对应的单位硫酸盐去除所需的COD比例为0.5,低于与WU等之前报道的乙醇和醋酸盐合成废水单位硫酸盐去除所需的COD比例(0.6)[21]。将实验结束时混合液残留BYD的质量浓度转化为理论COD值为171.6 mg·L−1,同样小于实测COD值441 mg·L−1,说明外加硫酸盐虽然提高了BYD的降解,但是体系中仍有部分BYD的厌氧转化产物难以被SRB利用。

    1)反应器运行效果。短期批次实验可以初步评估目标污染物的厌氧降解性能,而长期连续实验可以进一步解析厌氧微生物群落经过长期驯化后对目标污染物的生物降解效果(这与实际废水处理系统运行状况更相似),2种方法的结合可以更全面地解析目标污染物的厌氧降解性能[7]。本研究中,批次实验结果表明BYD在厌氧产甲烷体系中降解较慢,厌氧颗粒污泥复配活性污泥和外加硫酸盐均可以加速BYD的厌氧降解。为此,进一步参考实际BDO生产脱离子废液水质(COD为6 000~20 000 mg·L−1,SO42−含量为6 000~10 000 mg·L−1),建立了2套平行的UASB反应器评估了长期运行情况下BYD的厌氧降解效果,结果如图2所示。UASB反应器一共运行了388 d,根据进水水质变化分为S1~S6 6个阶段(表2)。

    图 2  不同进水条件下UASB运行效果
    Figure 2.  Performance of UASBs at different stages

    UASB反应器以葡萄糖为唯一碳源启动,运行20 d之后出水COD值低于120 mg·L−1,VFAs低于30 mg·L−1 (图2(b)和图2(d)) (S1阶段),证明厌氧污泥活性优良。在第21天,反应器进水加入2 980 mg·L−1的BYD (S2阶段),此后反应器出水COD值和BYD质量浓度逐渐上升,在52 d分别稳定在约5 000 mg·L−1和2 965 mg·L−1,对应的COD和BYD去除率仅约50.33%和0.50% (图2(a)~(b)),且在此过程中CH4产率未出现下降(图2 (e)),VFAs未累积(图2(d))。在第83天,反应器出水VFAs和COD值急剧上升,在105 d VFAs达到了1 780 mg·L−1,主要由乙酸组成(图2(d)),同时出水COD也上升到了9 365 mg·L−1 (图2(b)),COD去除率下降至6.37%,UASB出现了VFAs累积现象。考虑到BYD分子中含有—C≡C—和—OH等结构,易于与金属离子络合[22],当其质量浓度过高时(如本文的2 980 mg·L−1)可络合带走过多铁、钴、镍等微量金属元素,导致可用于产甲烷古菌维持正常生命活动的微量金属元素含量降低,从而导致厌氧产甲烷微生物失活。随后在111 d将进水中微量元素质量浓度翻倍,反应器出水VFAs和COD值随即快速下降,系统产气恢复(图2 (e))。之后继续对UASB反应器进行了42 d的连续监测,系统再未出现抑制情况,但BYD去除率也没有进一步提升,表明即使经过长期驯化厌氧产甲烷微生物代谢体系中BYD降解速率仍较低。

    此后,向反应器引入硫酸盐共运行了3个阶段(S3~S5),通过提高进水硫酸盐质量浓度使各阶段COD/SO42−分别为10、5和1。在S3阶段(167~215 d),进水COD/SO42− =10的情况下,UASB反应器CH4产率从0.89 L·d−1提升至1.07 L·d−1,表明少量硫酸盐加入提高了厌氧甲烷产率。同时,该阶段COD去除率为50.56%,SO42−去除率为97.15%,出水BYD质量浓度先下降后上升,最终稳定在2 847 mg·L−1,对应去除率为3.92% (图2 (a)、(b))。

    在S4阶段(216~260 d),将COD/SO42−降低至5,CH4产率从1.07 L·d−1迅速降低至0.41 L·d−1,而VFAs未发生累积(图2(d)),BYD去除率略提升至4.83%,COD去除率为51.02%,SO42−去除率93.81%。上述结果说明此阶段厌氧生化系统仍然能保持正常运行,但硫酸盐还原作用已经显著增强,开始与产甲烷代谢共同承担对乙酸的降解。

    在S5阶段(263~369 d),进一步将进水COD/SO42−下调到1,出水BYD质量浓度明显降低,去除率从S4阶段的4.83%提高到21.92% (图2(a))。但同时,厌氧生物系统迅速受到抑制,COD去除率从51.02%下降至20.31%,SO42−去除率从93.81%下降至24.48%,并且VFAs (主要为乙酸)快速累积至2 824 mg·L−1 (图2 (d)),这可能是由于在COD/SO42− =1的条件下,硫酸盐还原已经成为主导的厌氧有机物降解途径[23],但是进水SO42−质量浓度过高,导致产生的硫化氢质量浓度超过了SRB和产甲烷古菌的耐受阈值,从而抑制了乙酸的进一步转化。O'FLAHERTY等[10]曾报道游离硫化氢对厌氧微生物的抑制阈值为38~185 mg·L−1,而本研究S5阶段UASB反应器内理论游离硫化氢质量浓度已经超过214.7 mg·L−1 (约占总硫化物8.82%)[19],厌氧微生物活性可被完全抑制。在第370天采取停止进水的方式试图恢复厌氧系统活性(S6阶段),在18 d的恢复期内,反应器内BYD、COD、SO42−和VFAs均有下降趋势,但下降趋势较慢。

    2)微生物群落演替。利用高通量测序技术分析了UASB连续实验过程中厌氧污泥细菌群落的演替情况。如图3所示,BYD的投加(S2)显著改变了污泥中厌氧微生物群落结构,硫酸盐的投加(S3~S6)进一步显著改变了UASB厌氧系统微生物群落的结构,而在S3~S6阶段COD/SO42−的改变及停止进水过程中细菌群落结构相对稳定。

    图 3  UASB反应器不同阶段下细菌群落结构的β多样性分析(PCoA分析,OTU水平)
    Figure 3.  PCoA analysis of bacterial communities at OUT level in UASBs at different stages

    门水平下细菌群落变化如图4所示,种泥(S1阶段)细菌以绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、热孢菌门(Thermotogae)、互养菌门(Synergistota)和螺旋体门(Spirochaetota)为主,其中部分Proteobacteria和Spirochaetota细菌具有硫酸盐还原功能[24]。投加BYD后(S2阶段),Firmicutes、Proteobacteria和Spirochaetota相对丰度分别从18.13%、9.17%和0.71%增加到32.68%、15.53%和5.67%,而Chloroflexi门丰度从21.63%减少至7.44%。进水增加硫酸盐后,在S3阶段脱硫杆菌门(Desulfobacterota)、Spirochaetota和Cloacimonadota门细菌相对丰度分别由1.09%、5.67%和0.27%增加至4.53%、14.98%和11.35%,其中Cloacimonadota门细菌通常存在于厌氧发酵系统中,宏基因组组装基因组分析揭示其是一种潜在的乙酸产生菌[25],而多种Desulfobacterota门细菌(如Syntrophobacter、Desulfoglaeba和Desulfovibrio)同时是丙酸氧化产乙酸菌和SRB,在高COD/SO42−条件下可获得更大的生存优势,成为产甲烷古菌的主要互养微生物[20, 26-28]。随着COD/SO42−降低至5(S4阶段),厌氧系统硫酸盐还原作用被进一步加强(图2 (e)),Desulfobacterota和Proteobacteria相对丰度分别从4.53%和6.45%上升到12.64%和9.75%,而Cloacimonadota和Spirochaetota相对丰度略有降低。在S5与S6阶段,Firmicutes与Chloroflexi相对丰度分别从29.08%和7.33%减少至16.04%和2.18%,Bacteroidota和Synergistota相对丰度分别从8.30%和5.07%提升至16.88%和10.49%,而Desulfobacterota和Proteobacteria丰度基本不变(图4)。

    图 4  不同运行阶段UASB污泥细菌群落组成(门水平)
    Figure 4.  Changes in bacterial communities at phylum level in UASB at different stages

    考虑到硫酸盐还原作用可以增强BYD的厌氧降解,进一步在属水平上分析了实验过程中UASB内SRB的变化(图5)。本研究共检出属于5个门64个属的SRB,其中丰度较高的22个SRB在种泥中的总丰度为2.76%,优势SRB菌为互营杆菌属(Syntrophobacter) (0.76%)、史密斯氏菌属(Smithella) (0.60%)和脱硫弧菌属(Desulfovibrio) (0.41%)。S2阶段引入BYD后,厌氧污泥中SRB种类未变,但总丰度明显减少(1.17%) (图5)。进入S3阶段(进水COD/SO42− =10),DesulfovibrioSyntrophobacterSmithella快速生长,相对丰度分别从0.05%、0.11%和0.22%增加至1.46%、0.86%和1.42%。这3个菌属均属于Desulfobacterota[28],其中SyntrophobacterSmithella为互养产乙酸菌,其可利用硫酸盐作为电子受体氧化丙酸等多种有机物,生成乙酸和二氧化碳[29],从而为产甲烷古菌提供更多的甲烷前驱物,促进甲烷代谢。而Desulfovibrio为不完全氧化型SRB[30],在COD/SO42−≥10的条件下,同样可利用硫酸盐作为电子受体氧化乳酸、丙酸等有机物生成乙酸,从而提高了乙酸产量,促进甲烷代谢[21, 29]

    图 5  不同运行阶段UASB污泥中硫酸盐还原菌在属水平上的丰度变化
    Figure 5.  Change in the abundances of sulfate reducing bacteria at Genus level in bacterial communities at different stages of UASBs

    上述3个菌属的富集可能是S3阶段观测到甲烷产率提升的原因(图2(e))。在S4阶段COD/SO42−进一步降低到5后,SRB总丰度增加至12.6%,DesulforhabdusDesulfovibrio取代SyntrophobacterSmithella成为优势SRB。其中,Desulforhabdus丰度由S3阶段的0.04%显著提升至4.42%,其是一种完全氧化型SRB,可利用硫酸盐作为电子受体完全氧化乙酸等有机物生成二氧化碳和硫化物[29, 31-32],进而减少了可用于甲烷代谢的乙酸量。因此,完全氧化型SRB与产甲烷古菌对乙酸的竞争应该是S4阶段UASB反应器甲烷产率明显下降(图2(e))的主要原因。

    进入S5阶段,虽然SRB总丰度有所降低,但是Desulforhabdus的相对丰度进一步增加至5.19%,说明在低COD/SO42−条件下完全氧化型SRB会获得生存优势。Desulforhabdus的进一步富集,一方面会使更多的乙酸用于硫酸盐还原,从而进一步减少甲烷产生;另一方面,在高硫酸盐存在下,完全氧化型硫酸盐还原产生的过多硫化氢会同时抑制产甲烷古菌和SRB(包括Desulforhabdus)[10],这就导致了在S5阶段基本无甲烷产生(图2(e)),VFAs (特别是乙酸)显著累积(图2(d)),同时硫酸盐去除有限(图2(c))。需要指出,尽管S5阶段硫酸盐还原作用被显著抑制,BYD的降解仍得到显著提升(图2(a)),同时BYD的降解效率提升与Desulforhabdus丰度增加有一定相关性(图2(a)和图5),说明完全氧化型SRB (Desulforhabdus)可能是BYD的潜在降解菌。MOTTERAN等[33]曾报道Desulforhabdus参与了直链烷基苯磺酸盐这类难降解有机物的厌氧降解,且硫酸盐浓度会影响其降解效果。除Desulforhabdus外,部分水解产酸菌(如Caldicoprobacter, Anaerofustis, Lachnoclostridium, Thiobacillus)和互养产酸菌(Thermovirga)的丰度变化与BYD的降解效果同样表现出显著正相关性(Spearman相关,P<0.05)。后续研究需结合纯菌筛选和降解实验以进一步确认BYD的厌氧降解菌。

    在S6阶段,另一种不完全氧化型SRB (Desulfocurvus)[34-35]丰度显著增加(图5)。COLIN等[36]同样在含高浓度乙酸盐的河口沉积物(厌氧环境)中检测到高丰度的Desulfocurvus。这可能是因为虽然Desulfocurvus主要利用硫酸盐作为电子受体氧化乳酸或丙酮酸等有机物生成乙酸,但是在H2含量高的厌氧环境其可以利用乙酸作为碳源生长[34],而S6阶段高浓度乙酸残留(图2 (d))和相对高H2含量(DesulfovibrioSyntrophobacterSmithella等SRB的代谢产氢)的环境有利于其增殖。

    本研究表明对于含BYD的废水采用厌氧UASB处理时,厌氧接种污泥最好采用复配污泥;对于含有BYD同时COD和SO42−含量较高的废水(例如BDO生产过程产生的脱离子废液),厌氧UASB工艺可考虑利用硫酸盐还原提升废水的有机质去除效果,但是需要考虑游离硫化氢抑制问题:高强度硫酸盐还原,会产生大量硫化物,同时生成大量游离硫化氢,其会进入细胞,对产甲烷古菌和SRB产生抑制[23, 37],从而导致厌氧有机物去除效率下降(图2)。为了防止游离硫化氢的抑制,一方面可以通过稀释,降低进水硫酸盐质量浓度,比如HU等[23]研究发现在COD/SO42− =1的情况下,降低进水SO42−质量浓度至3 000 mg·L−1,可以保证80%的SO42−被还原去除;另一方面李健等[38]针对UASB反应器,设计出水循环系统和硫化物吹脱塔,即厌氧出水通过泵打入吹脱塔,吹脱塔中布置曝气装置,利用空气曝气将废水中硫化物氧化为硫单质从而降低废水中游离硫化氢含量,吹脱后液体通过泵打回到进水端,与进水混合后进入厌氧塔,从而缓解塔内游离硫化氢的抑制。利用上述措施,李健等[38]实现了高有机硫、高COD制药废水的稳定厌氧处理。最后,高质量浓度BYD本身可以络合金属离子,硫酸盐还原产生的硫化物也可以沉淀金属离子,因此通过硫酸盐还原处理高含BYD废水时,需要注意补加更多的微量元素。

    1)单纯的厌氧产甲烷体系中BYD的降解较慢,活性污泥和厌氧颗粒污泥复配及添加SO42−均可以提升厌氧生化对BYD的降解速率。

    2)高质量浓度BYD会络合过多铁、钴、镍等微量金属元素,导致产甲烷古菌被抑制,厌氧系统VFAs显著累积,通过补加微量元素的方式可以解除抑制。

    3)随着进水COD/SO42−降低,硫酸盐还原逐渐替代甲烷代谢成为主要的厌氧代谢途径,同时BYD的厌氧降解率也逐渐升高;在进水COD/SO42−为1时BYD的降解率达到21.92%,完全氧化型硫酸盐还原菌Desulforhabdus成为优势菌属,但此时因为游离硫化氢大量产生,同时抑制了产甲烷古菌和硫酸盐还原菌,使得厌氧体系乙酸大量累积,即使停止进水厌氧系统在短时间内也很难恢复。

    4)后续研究需要进一步考察不同质量浓度BYD对厌氧微生物群落的影响,并设计实验评估低COD/SO42−情况下,进水硫酸盐质量浓度对硫酸盐还原降解BYD的影响。此外,还需考察非生物转化途径(如吸附作用)对BYD在厌氧生化系统去除的贡献。

  • 图 1  不同浓度自由氯在中压紫外线下的分解动力学

    Figure 1.  Decomposition of free chlorine with different concentrations under MPUV irradiation

    图 2  不同pH条件下氯的分解动力学

    Figure 2.  Decomposition of free chlorine at different pH

    图 3  不同pH条件下自由氯的光谱扫描图

    Figure 3.  UV spectrometry of free chlorine under different pH conditions

    图 4  不同pH条件下自由氯的分解速率常数

    Figure 4.  Decomposition rate constants of free chlorine under different pH conditions

    图 5  腐殖酸浓度对自由氯分解的影响

    Figure 5.  Effect of humic acid content on the decomposition rate of free chlorine

    图 6  分解速率常数随腐殖酸浓度变化曲线

    Figure 6.  Change in kobs of chlorine decomposition with humic acid concentration

    图 7  水体中主要阴离子对自由氯分解速率的影响

    Figure 7.  Effect of anions on the rate constant of free chlorine decomposition

    图 8  不同温度下自由氯在中压紫外线下的分解动力学

    Figure 8.  Decomposition of free chlorine under MPUV irradiation at different temperatures

    表 1  不同浓度腐殖酸溶液的吸光度随时间的变化

    Table 1.  Absorbance of humic acid solutions with different concentrations at different irradiation times

    腐殖酸浓度/(mg·L−1)吸光度
    0 min1 min2 min3 min5 min
    000000
    50.0170.0150.0130.0120.008
    100.0320.0310.0290.0270.024
    200.0680.0660.0640.0620.060
    腐殖酸浓度/(mg·L−1)吸光度
    0 min1 min2 min3 min5 min
    000000
    50.0170.0150.0130.0120.008
    100.0320.0310.0290.0270.024
    200.0680.0660.0640.0620.060
    下载: 导出CSV
  • [1] FANG J, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
    [2] 吴铮笛, 陈芳艳, 唐玉斌, 等. VUV/UV/Cl2工艺去除饮用水中的乐果[J]. 环境工程学报, 2020, 14(2): 305-311. doi: 10.12030/j.cjee.201904032
    [3] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process[J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069
    [4] WANG Z, LIN Y L, XU B, et al. Degradation of iohexol by UV/chlorine process and formation of iodinated trihalomethanes during post-chlorination[J]. Chemical Engineering Journal, 2016, 283: 1090-1096. doi: 10.1016/j.cej.2015.08.043
    [5] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species[J]. Water Research, 2016, 98: 190-198. doi: 10.1016/j.watres.2016.04.015
    [6] 伊学农, 方佳男, 高玉琼, 等. 紫外线-氯联合高级氧化体系降解水中的萘普生[J]. 环境工程学报, 2019, 13(5): 28-35.
    [7] 王婷, 吴乾元, 王文龙, 等. 紫外线/氯高级氧化降解甲基异噻唑啉酮[J]. 环境工程学报, 2017, 11(1): 21-26. doi: 10.12030/j.cjee.201509106
    [8] 高泽晨, 张天阳, 黄飘怡, 等. 应用紫外/氯组合工艺去除微污染原水中氨氮的特性研究[J]. 环境科学学报, 2019, 39(10): 3427-3433.
    [9] 张欣然. 氯/紫外组合工艺去除水中氨氮和控制DBPs的效能与机理[D]. 哈尔滨: 哈尔滨工业大学. 2016.
    [10] FENG Y, SMITH D W, BOLTON J R. Photolysis of aqueous free chlorine species (HOCl and OCl) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2007, 6(1): 179-180.
    [11] ÖRMECI B, DUCOSTE J J, LINDEN K G. UV disinfection of chlorinated water: Impact on chlorine concentration and UV dose delivery[J]. Journal of Water Supply: Research and Technology-AQUA, 2005, 54(3): 189-199. doi: 10.2166/aqua.2005.0018
    [12] 杜斌. 紫外光降解水中磷酰基乙酸的特性研究[J]. 太原理工大学学报, 2019, 50(2): 44-49.
    [13] 赵锋, 罗婧, 王鸣华. 哒嗪硫磷在液相中的光化学降解[J]. 环境科学学报, 2012, 32(11): 2755-2762.
    [14] 彭娜, 王开峰, 刘国光, 等. 水中普萘洛尔的紫外光降解机制及其产物毒性[J]. 环境科学, 2014, 35(10): 3794-3799.
    [15] 王雅洁. 紫外光降解硝酸盐体系中四环素[J]. 环境工程学报, 2019, 13(6): 1329-1337. doi: 10.12030/j.cjee.201810036
    [16] 贾娜, 施海燕, 王鸣华. 2, 4-D丁酯的水解与光解特性研究[J]. 农业环境科学学报, 2011, 30(6): 1082-1086.
    [17] OLIVER B G, CAREY J H. Photochemical production of chlorinated organics in aqueous solutions containing chlorine[J]. Environmental Science & Technology, 1977, 11(9): 893-895.
    [18] BUXTON G V, SUBHANI M S. Radiation-chemistry and photochemistry of oxychlorine ions. Part 1. Radiolysis of aqueous solutions of hypochlorite and chlorite ions[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1972, 68: 947-957.
    [19] NOWELL L H, HOIGNÉ J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths: I. Degradation rates[J]. Water Research, 1992, 26(5): 593-598. doi: 10.1016/0043-1354(92)90232-S
    [20] 李明, 曾光明, 张盼月, 等. 强化混凝去除水源水中天然有机物的研究进展[J]. 环境科学与技术, 2006, 29(2): 109-111. doi: 10.3969/j.issn.1003-6504.2006.02.044
    [21] 张永吉, 胡领文, 叶河秀, 等. 紫外线消毒对水中余氯衰减规律的影响研究[J]. 给水排水, 2011, 37(8): 22-25. doi: 10.3969/j.issn.1002-8471.2011.08.004
    [22] 周建华, 赵洪宾, 薛罡. 配水管网中与有机物反应的余氯衰减动力学模型[J]. 环境科学, 2003, 24(3): 45-49. doi: 10.3321/j.issn:0250-3301.2003.03.009
    [23] 吴敦虎, 任淑芬, 盛晓梅. 紫外光照射水中腐殖酸分解的研究[J]. 环境化学, 1985, 5(3): 58-62.
    [24] 张文兵, 肖贤明, 傅家谟, 等. 溶液中阴离子对UV/H2O2降解4-硝基酚的影响[J]. 中国环境科学, 2002, 22(4): 301-304. doi: 10.3321/j.issn:1000-6923.2002.04.004
    [25] 张维玮. 水中土霉素的检测及光解作用研究[D]. 上海: 华东理工大学, 2018.
    [26] 万巧玲, 王良超. 自来水中氯消毒能力在不同温度下的变化规律研究[J]. 环境科学与管理, 2016, 41(8): 60-62. doi: 10.3969/j.issn.1673-1212.2016.08.015
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 10.5 %DOWNLOAD: 10.5 %HTML全文: 83.5 %HTML全文: 83.5 %摘要: 6.0 %摘要: 6.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %XX: 0.4 %XX: 0.4 %其他XXHighcharts.com
图( 8) 表( 1)
计量
  • 文章访问数:  6465
  • HTML全文浏览数:  6465
  • PDF下载数:  74
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-12
  • 录用日期:  2020-07-15
  • 刊出日期:  2021-02-10
田芳, 陆昱, 郭光, 贲伟伟, 丁克强, 梁正超, 郭晓正, 张蜀贵. 中压紫外/氯水处理工艺过程中氯的分解规律[J]. 环境工程学报, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059
引用本文: 田芳, 陆昱, 郭光, 贲伟伟, 丁克强, 梁正超, 郭晓正, 张蜀贵. 中压紫外/氯水处理工艺过程中氯的分解规律[J]. 环境工程学报, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059
TIAN Fang, LU Yu, GUO Guang, BEN Weiwei, DING Keqiang, LIANG Zhengchao, GUO Xiaozheng, ZHANG Shugui. Decomposition of chlorine during medium pressure UV/chlorine water treatment process[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059
Citation: TIAN Fang, LU Yu, GUO Guang, BEN Weiwei, DING Keqiang, LIANG Zhengchao, GUO Xiaozheng, ZHANG Shugui. Decomposition of chlorine during medium pressure UV/chlorine water treatment process[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 572-579. doi: 10.12030/j.cjee.202005059

中压紫外/氯水处理工艺过程中氯的分解规律

    通讯作者: 郭光(1981—),男,博士,副教授。研究方向:水处理技术。E-mail:guoguang007007@163.com
    作者简介: 田芳(1981—),女,博士,副教授。研究方向:水处理技术。E-mail:tianfang0305@163.com
  • 1. 南京工程学院环境工程学院,南京 211167
  • 2. 中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
基金项目:
国家自然科学青年基金资助项目(51608257,31600091);中国科学院饮用水科学与技术重点实验室开放基金课题(17K01KLDWST);环境模拟与污染控制国家重点联合实验室开放基金课题(18K01ESPCT);南京工程学院大学生科技创新项目(TB201912004,TB201912034, TB202012022);江苏省高等学校大学生创新创业训练计划项目(201911276146H)

摘要: 在中压紫外/氯高级氧化技术应用于去除水中微量污染物的过程中,氯的浓度会由于光解作用而降低,直接影响该技术的处理效率。为解决上述问题,通过测定不同中压紫外剂量下氯浓度的变化,研究了氯的分解规律,以及氯投加量、pH、温度、腐殖酸和常见阴离子等条件对氯分解速率的影响。结果表明,氯的分解遵循一级动力学,其分解速率常数kobs随着氯初始浓度的降低而增加,随pH、腐殖酸浓度及温度升高而增加;在一定范围内kobs与pH或腐殖酸浓度成正相关关系;温度由15 ℃升高至26 ℃也使氯的分解速率提高了1倍,主要归因于氯自身的分解随温度升高而加快,而非紫外光解速率提高导致;水中主要阴离子ClNO3HCO3SO24的存在对氯的分解速率几乎没有影响。以上研究结果可为中压紫外/氯水处理工艺设计,尤其是氯投加量和紫外剂量等工艺参数设计提供数据支持。

English Abstract

  • 随着工农业的发展,水环境的污染状况依然严峻,而人类对环境水体及饮用水水质要求又日益提高,由紫外与氯联合组成的紫外/氯高级氧化技术能产生HO·、Cl·和O·等强氧化性自由基[1] (式(1)),能有效降解水中药物和个人护理产品等有机污染物[2-7]及氨氮等无机污染物[8-9],已迅速发展为一种高效水处理技术,日益受到研究者的关注,具有广阔的应用前景。

    在紫外/氯高级氧化过程中,氯浓度对处理效果影响很大,氯浓度越高,处理效果越好[2-8]。但氯的浓度在处理过程中可能会由于光解作用而不断降低,直接影响处理效率。已有研究发现,在采用紫外消毒的水处理工艺中,经过预氯化的水进入紫外消毒单元时,残余的氯会吸收紫外光,并在紫外处理单元发生光解,导致氯浓度明显降低[10-11],而且降低程度随水质变化较大,并对紫外剂量、消毒效果、出水水质均产生了一定的影响[11]。根据这些研究结果可推断紫外/氯高级氧化过程中氯的浓度也将随紫外剂量增加而降低,并且在不同工艺及水质条件下氯的分解程度可能具有较大差异,从而影响紫外/氯工艺的处理效果。

    目前,紫外处理系统中应用最广泛的是低压汞灯(LP)和中压汞灯(MP)。前者主要发射254 nm 的单色光,而后者的发射光谱为一段连续光谱(200~600 nm)。与LPUV相比,MPUV具有波谱范围广,功率更高,在处理相同水量达到同等效果时,所需的反应器体积小,灯管数量少,占地面积省等优点。因此,在实际中使用量较LPUV 更多(约38%采用LPUV,62%采用MPUV)。本研究通过测定不同中压紫外剂量下氯浓度的变化,考察了中压紫外/氯高级氧化过程中氯的分解规律,并探讨不同水处理工艺参数及水质条件对氯分解的影响,根据所获得的数据可以估算不同条件下余氯浓度,为中压紫外/氯高级氧化技术及预氯化-中压紫外消毒过程提供基础数据和技术支持,获得最佳水处理效果。

  • 中压紫外/氯高级氧化光照实验采用紫外平行光束仪进行,光源为贺利氏中压紫外灯(DQ3024,3.5 kW,功率可调节),反应器为6 cm培养皿,放置于平行光束正下方的磁力搅拌器上,搅拌器下设升降台,用于调节高度。实验开始前对紫外平行光束仪进行预热,待发射光强稳定后开始实验。取配制好的反应液20 mL于培养皿中,打开紫外光路的同时按照所需浓度投加次氯酸钠溶液开始反应,照射一定时间后,移出一定量水样立即测量其吸光度值,计算氯的浓度。整个实验过程用磁力搅拌使反应液呈完全混合状态,但又不至于引起明显的液面变化。

  • 反应液用2 mmol·L−1磷酸二氢钠配制(无机离子的影响实验中为10 mmol·L−1),并用氢氧化钠调节pH至预定值。实验中所用氯、磷酸二氢钠、氢氧化钠、腐殖酸、氯化钠、硝酸钠、碳酸氢钠及硫酸钠等药品均为分析纯及以上。

    紫外光剂量采用International Light ILT1700辐照计测定光强后,根据国际紫外线协会提供的计算表格进行计算。pH用FE28-S型 pH计(梅特勒托利多公司)测定,使用前用标准缓冲液标定。氯的浓度使用北京普析通用公司的T6新世纪紫外可见分光光度计参照中华人民共和国国家环境保护标准HJ 586-2010 DPD分光光度法测定。

  • 用一级反应动力学方程(式(2))拟合氯的分解速率。

    式中:C0Ct分别为初始及反应t时间的氯浓度,mg·L−1kobs为一级表观速率常数,cm2·mJ−1F为中压紫外剂量,mJ·cm−2

  • 在紫外/氯高级氧化技术使用中,投氯量都是影响消毒效果的重要因素之一。因此,在pH = 7.25、温度为14 ℃条件下,考察了不同浓度自由氯在中压紫外下的分解规律,结果如图1所示。由图1可以看出,自由氯在不同浓度条件下的分解均遵循一级动力学,随着氯浓度的升高,自由氯的分解速率常数kobs降低。当氯初始浓度为1.08 mg·L−1时,kobs为0.014 8 cm2·mJ−1;氯浓度升高到10.53 mg·L−1时,kobs下降到0.004 3 cm2·mJ−1,分解速率常数降低了71%,之后氯浓度的增加导致kobs降低的程度有所减缓。其他类物质,如磷酰基乙酸、哒嗪硫磷、普萘洛尔、四环素及2, 4-D 丁酯等[12-16]在紫外光下的降解也具有相同的规律。这可能是由于在光降解过程中,单位时间单位光照面积内,光强一定时,进入反应体系的光子数相同,氯浓度越大,吸收了光子能量的氯占氯总浓度比例越小,导致光解速率常数降低。通过测定不同浓度的氯在中压紫外波长范围内的吸光度发现,吸收了光子能量的氯(以吸光度表征,吸光度越大吸收了光子能量的氯分子越多)占氯总浓度比例确实随氯总浓度增大而减小,以反应液在293 nm (OCl的最大吸收波长) 处的吸光度为代表,当氯浓度从1.08 mg·L−1升高到51.31 mg·L−1,该比例从0.002 778降低为0.001 325。该结果与上述推测一致。

  • pH一直被认为是水处理中最重要的指标之一,一般水体pH为6~9。在常规水处理条件下,自由氯的存在形态以HOCl和OCl为主,其相对浓度强烈依赖于pH。由于不同种类的自由氯的吸收光谱和摩尔吸收系数不同,可能导致不同pH条件下,氯的中压紫外光解速率不同。已有研究[17]发现,在低压紫外下pH对氯的光解几乎没有影响,但在太阳光下氯的光解速率受pH影响较大,说明不同光源对氯的光解规律不同。因此,在氯初始浓度为20 mg·L−1,温度为16 ℃条件下,考察了不同pH条件下自由氯在中压紫外线下的分解规律,结果如图2所示。

    图2可以看出,当pH低于6时,分解速率变化较小,之后随着pH升高,自由氯的分解速率明显升高。当pH=6时,氯分解的一级动力学速率常数kobs为0.003 cm2·mJ−1,氯分解一半的紫外剂量为231 mJ·cm−2;pH升高到9时,kobs升高为0.007 2 cm2·mJ−1,分解一半所需的剂量降低为96 mJ·cm−2,分解速率提高了1.4倍。自由氯在pH较低时,主要以HOCl的形式存在;而高pH条件下则主要以OCl的形式存在,说明OCl更容易被中压紫外光解。该结果与氯在太阳光下的光解规律[17]相同。

    为进一步分析其机理,本研究测定了不同pH条件下相同浓度自由氯溶液的光谱扫描图(图3),可以看出OCl的吸收峰为292 nm,且吸收峰较宽,峰值随pH的增大而升高;而HClO的吸收峰为236 nm,其峰值随pH降低而升高,并且OCl的摩尔吸光系数(365±8) L·(mol·cm)−1,要远大于HOCl (101±2) L·(mol·cm)−1[10]。而中压紫外灯在292 nm附近的辐照强度要明显大于236 nm附近的辐照强度。水中物质通常对其最大吸收波长的光吸收最强,也就是说OCl可吸收的紫外剂量也相应更大。因此,pH越大,OCl的浓度比例越大,能够吸收和可供吸收的光能量都要大于HOCl,导致其光解速率明显快于HOCl。

    此外,有研究结果[1]表明,氯在紫外照射下产生的HO·和Cl·会与HOCl和ClO发生反应,且与ClO反应的速率常数更大,反应如式(3)~式(6)所示。另有研究[18-19]发现,HOCl的紫外光解过程是可逆自由基反应,而ClO的紫外光解过程不可逆,不会生成HClO或者ClO,这些因素都会导致HOCl比ClO的总体降解速率低。

    中压紫外/氯高级氧化技术在降解水中有机物时,通常在低pH条件下处理效果较好[3-7],一般认为是产生的自由基种类不同导致的,根据本实验结果表明氯浓度的大小可能也是影响因素之一,即:低pH条件下氯的分解量少,能保持较高的自由基浓度,从而保持对有机物的高效降解。为保证中压紫外/氯高级氧化技术的高效率,需保持一定的氯浓度,根据氯分解速率常数kobs可以估算各紫外剂量下(或反应时间)的氯浓度。将pH在6~10内的kobs与pH作图(图4),发现该范围内pH与kobs成线性关系,根据此线性方程可以推算在此范围内任意pH对应的氯分解速率,进而计算水中余氯,从而为氯投加量提供数据支持。

  • 腐殖酸物质在自然界中广泛存在,腐殖质是天然水体中有机物的主要组成部分,约占水中总有机物的50%~80%[20]。已有研究发现在低压紫外下腐殖酸会作为一种内部过滤器抑制氯的分解[1],而在没有紫外光条件下腐殖酸的存在又会加快氯的衰减[21-22]。另外腐殖酸也是一种光敏化剂,并且在很宽的波谱范围内具有较强的吸收能力,而中压紫外发射的光谱更广,腐殖酸能吸收到更多的光能量,因此,腐殖酸的存在也可能会对氯在中压紫外下的分解具有较大影响。在pH为7.25,温度为25.9 ℃,氯浓度为4.6 mg·L−1条件下,给水样中投加不同浓度的腐殖酸,分别测定氯在不同中压紫外剂量下的余量,以明确具体影响规律。

    由于腐殖酸在测定氯浓度采用的515 nm波长处有吸收,而且会被紫外光分解[23],因此,腐殖酸的存在可能对氯浓度的测定产生影响,为排除该影响。测定了不同照射时间时,水样(即其中的腐殖酸)在515 nm处的吸光度值,结果如表1所示。

    表1可知,在本实验条件下,腐殖酸在515 nm处的吸光度随照射时间增加而降低,说明腐殖酸在中压紫外下发生明显降解,直接测定的氯浓度获得的氯分解速率包含了腐殖酸的降解,因此,在氯浓度计算中将腐殖酸在此处的吸光度值扣除,获得氯的真实浓度及分解速率,结果如图5所示。由图5可看出,腐殖酸浓度越高,自由氯的分解速率越大,腐殖酸的存在明显促进了氯的分解。当溶液中不含腐殖酸时,自由氯的分解速率常数kobs为0.013 1 cm2·mJ−1。当腐殖酸浓度升高至20 mg·L−1时,kobs升高至0.060 9 cm2·mJ−1,分解速率提高了3.6倍。该结果与在低压紫外下腐殖酸作为一种内部过滤器抑制氯的分解不同[1],说明物质在中压紫外光下的降解规律并不会与低压紫外光完全一致。腐殖酸能促进氯在中压紫外下的分解可能有2方面因素:一方面腐殖酸本身与氯会发生反应[21-22],导致氯的衰减,并且腐殖酸浓度越大氯的衰减越快;另一方面腐殖酸的吸收光谱范围更广,中压紫外灯的发射光谱也更宽,因此腐殖酸能够为反应体系吸收更多的光能量,从而促进氯的光解。腐殖酸浓度为5 mg·L−1时,紫外剂量仅为34 mJ·cm−2时,50%的氯就会被分解,因此当水中腐殖酸浓度较高时要保持一定的氯浓度,需要提高氯投加量。

    将氯在不同浓度腐殖酸条件下的分解速率常数kobs与腐殖酸浓度作图(图6)发现,kobs与腐殖酸浓度呈线性关系,可决系数达0.990 0,根据该线性关系可近似计算其他腐殖酸浓度条件下氯的分解速率常数。

  • 实际水体中最主要的几种阴离子包括HCO3、ClSO24NO3,其中HCO3是一种常见的自由基淬灭剂,NO3是一种光敏物质,它们的存在可能对氯的光解产生影响,ClSO24也被发现会对紫外光降解系统产生影响[24]。为研究清楚这些离子对氯在中压紫外下分解的影响,在pH为7,温度为18 ℃,氯浓度为4.5 mg·L−1,硫酸根离子、氯离子和碳酸氢根离子为10 mmol·L−1,硝酸根离子为10 mg·L−1条件下,考察了这些离子以较高浓度分别存在时氯的分解规律,结果如图7所示。由图7可知,水中不存在任何离子时,氯的分解速率常数kobs为0.009 cm2·mJ−1,当氯离子存在时,kobs上升为0.009 3 cm2·mJ−1,升高仅为3.3%。当碳酸氢盐或硝酸根存在时,kobs下降为0.008 5 cm2·mJ−1,下降了5.6%,当硫酸根存在时,kobs为0.008 9 cm2·mJ−1,下降仅为1.1 %。以上结果表明,水体中的这几种主要阴离子对氯的分解速率几乎没有影响。由于这些离子本身在中压紫外/氯下可能产生活性大小不同的自由基,因此,虽然这些离子的存在对氯浓度变化的影响较小,但是对不同污染物质在中压紫外/氯下的降解规律可能不同[6,9]

  • 在实际水处理过程中,不同季节水温会发生较大变化,一般温度对紫外光降解效率影响较小,但是也有研究[25]发现,土霉素在紫外光下的降解会受到温度的影响。因此,在pH为7.25,氯浓度为4.94 mg·L−1条件下,研究了不同温度下自由氯的分解作用,结果如图8所示。由图8可以看出,温度越高,自由氯的分解速率越快。当水温为15.1 ℃时,分解速率常数kobs为0.006 7 cm2·mJ−1;温度升高到25.8 ℃,kobs升高到0.013 1 cm2·mJ−1,分解速率提高了1倍。根据万巧玲等[26]的研究结果,当温度从15 ℃升高到24 ℃时,氯本身的衰减速率常数提高了1.3倍,该变化规律与本实验结果近似,由此可推断,温度升高引起氯在中压紫外下的分解速率加快,这主要是由于氯本身的衰减速率随温度升高加快导致,而中压紫外光对氯的光解速率可能受温度的影响较小。由此可推测,当中压紫外/氯工艺用于处理水中污染物时,温度对处理效果的影响可能主要是由于氯浓度发生了变化,进而引起产生的自由基浓度变化导致,而不是紫外光降解效率受温度影响。由于温度引起氯的分解速率变快,在夏季水温较高时,要保持相同的余氯量需适当提高氯的投加量。

  • 1)氯在中压紫外/氯工艺过程中的分解遵循一级动力学,且分解速率常数随其浓度升高而降低,浓度超过10 mg·L−1以后,分解速率常数降低的趋势变缓。

    2)氯的分解速率常数随pH升高而增大,且在pH 6~10内与pH成线性关系,ClO的分解速率要明显快于HOCl。

    3)腐殖酸的存在会大大加快自由氯的分解,且氯的分解速率常数与腐殖酸的浓度成正相关关系,当原水中腐殖酸浓度较高时,要适当提高氯投加量。

    4)实际水体中存在的主要离子(HCO3SO24NO3和Cl)对氯的分解速率影响非常小。

    5) 氯的分解速率常数随其温度升高而增大,夏季温度较高时保持相同余氯量需适当提高氯投加量。

参考文献 (26)

返回顶部

目录

/

返回文章
返回