-
随着工农业的发展,水环境的污染状况依然严峻,而人类对环境水体及饮用水水质要求又日益提高,由紫外与氯联合组成的紫外/氯高级氧化技术能产生HO·、Cl·和O−·等强氧化性自由基[1] (式(1)),能有效降解水中药物和个人护理产品等有机污染物[2-7]及氨氮等无机污染物[8-9],已迅速发展为一种高效水处理技术,日益受到研究者的关注,具有广阔的应用前景。
在紫外/氯高级氧化过程中,氯浓度对处理效果影响很大,氯浓度越高,处理效果越好[2-8]。但氯的浓度在处理过程中可能会由于光解作用而不断降低,直接影响处理效率。已有研究发现,在采用紫外消毒的水处理工艺中,经过预氯化的水进入紫外消毒单元时,残余的氯会吸收紫外光,并在紫外处理单元发生光解,导致氯浓度明显降低[10-11],而且降低程度随水质变化较大,并对紫外剂量、消毒效果、出水水质均产生了一定的影响[11]。根据这些研究结果可推断紫外/氯高级氧化过程中氯的浓度也将随紫外剂量增加而降低,并且在不同工艺及水质条件下氯的分解程度可能具有较大差异,从而影响紫外/氯工艺的处理效果。
目前,紫外处理系统中应用最广泛的是低压汞灯(LP)和中压汞灯(MP)。前者主要发射254 nm 的单色光,而后者的发射光谱为一段连续光谱(200~600 nm)。与LPUV相比,MPUV具有波谱范围广,功率更高,在处理相同水量达到同等效果时,所需的反应器体积小,灯管数量少,占地面积省等优点。因此,在实际中使用量较LPUV 更多(约38%采用LPUV,62%采用MPUV)。本研究通过测定不同中压紫外剂量下氯浓度的变化,考察了中压紫外/氯高级氧化过程中氯的分解规律,并探讨不同水处理工艺参数及水质条件对氯分解的影响,根据所获得的数据可以估算不同条件下余氯浓度,为中压紫外/氯高级氧化技术及预氯化-中压紫外消毒过程提供基础数据和技术支持,获得最佳水处理效果。
中压紫外/氯水处理工艺过程中氯的分解规律
Decomposition of chlorine during medium pressure UV/chlorine water treatment process
-
摘要: 在中压紫外/氯高级氧化技术应用于去除水中微量污染物的过程中,氯的浓度会由于光解作用而降低,直接影响该技术的处理效率。为解决上述问题,通过测定不同中压紫外剂量下氯浓度的变化,研究了氯的分解规律,以及氯投加量、pH、温度、腐殖酸和常见阴离子等条件对氯分解速率的影响。结果表明,氯的分解遵循一级动力学,其分解速率常数kobs随着氯初始浓度的降低而增加,随pH、腐殖酸浓度及温度升高而增加;在一定范围内kobs与pH或腐殖酸浓度成正相关关系;温度由15 ℃升高至26 ℃也使氯的分解速率提高了1倍,主要归因于氯自身的分解随温度升高而加快,而非紫外光解速率提高导致;水中主要阴离子Cl−、
${\rm{NO}}_3^ - $ 、${\rm{HCO}}_3^ - $ 、${\rm{SO}}_4^{2 - }$ 的存在对氯的分解速率几乎没有影响。以上研究结果可为中压紫外/氯水处理工艺设计,尤其是氯投加量和紫外剂量等工艺参数设计提供数据支持。Abstract: Chlorine concentration will decrease with the increase of UV dose due to photolysis during the application of medium pressure UV/chlorine advanced oxidation technology to remove micro-pollutants in water, which affects the treatment efficiency of the technology. By measuring the change of chlorine concentration under different medium pressure UV doses, the decomposition laws of chlorine were studied at different chlorine dosage, pH, temperature, humic acid and common anions. The results show that the decomposition of chlorine followed the first-order kinetics, and its decomposition rate constant (kobs) increased with the decrease of initial concentration of chlorine, while it increased with the increase of pH, humic acid concentration and temperature. Within a certain range, kobs presented a linear positive correlation with pH or humic acid concentration. The kobs was doubled when the temperature increased from 15 ℃ to 26 ℃, which was mainly due to the increase of decomposition rate of chlorine itself with the increase of temperature, not due to the increase of chlorine photolysis rate by UV. The main anions Cl−,${\rm{NO}}_3^ - $ ,${\rm{HCO}}_3^ - $ ,${\rm{SO}}_4^{2 - }$ in water had little effect on the decomposition rate of chlorine. This study can provide data support and theoretical basis for the design of medium pressure ultraviolet/chlorine water treatment process, especially for the design of chlorine and ultraviolet dosages.-
Key words:
- medium pressure UV /
- water treatment /
- free chlorine /
- kinetics
-
表 1 不同浓度腐殖酸溶液的吸光度随时间的变化
Table 1. Absorbance of humic acid solutions with different concentrations at different irradiation times
腐殖酸浓度/
(mg·L−1)吸光度 0 min 1 min 2 min 3 min 5 min 0 0 0 0 0 0 5 0.017 0.015 0.013 0.012 0.008 10 0.032 0.031 0.029 0.027 0.024 20 0.068 0.066 0.064 0.062 0.060 -
[1] FANG J, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [2] 吴铮笛, 陈芳艳, 唐玉斌, 等. VUV/UV/Cl2工艺去除饮用水中的乐果[J]. 环境工程学报, 2020, 14(2): 305-311. doi: 10.12030/j.cjee.201904032 [3] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process[J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069 [4] WANG Z, LIN Y L, XU B, et al. Degradation of iohexol by UV/chlorine process and formation of iodinated trihalomethanes during post-chlorination[J]. Chemical Engineering Journal, 2016, 283: 1090-1096. doi: 10.1016/j.cej.2015.08.043 [5] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species[J]. Water Research, 2016, 98: 190-198. doi: 10.1016/j.watres.2016.04.015 [6] 伊学农, 方佳男, 高玉琼, 等. 紫外线-氯联合高级氧化体系降解水中的萘普生[J]. 环境工程学报, 2019, 13(5): 28-35. [7] 王婷, 吴乾元, 王文龙, 等. 紫外线/氯高级氧化降解甲基异噻唑啉酮[J]. 环境工程学报, 2017, 11(1): 21-26. doi: 10.12030/j.cjee.201509106 [8] 高泽晨, 张天阳, 黄飘怡, 等. 应用紫外/氯组合工艺去除微污染原水中氨氮的特性研究[J]. 环境科学学报, 2019, 39(10): 3427-3433. [9] 张欣然. 氯/紫外组合工艺去除水中氨氮和控制DBPs的效能与机理[D]. 哈尔滨: 哈尔滨工业大学. 2016. [10] FENG Y, SMITH D W, BOLTON J R. Photolysis of aqueous free chlorine species (HOCl and OCl−) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2007, 6(1): 179-180. [11] ÖRMECI B, DUCOSTE J J, LINDEN K G. UV disinfection of chlorinated water: Impact on chlorine concentration and UV dose delivery[J]. Journal of Water Supply: Research and Technology-AQUA, 2005, 54(3): 189-199. doi: 10.2166/aqua.2005.0018 [12] 杜斌. 紫外光降解水中磷酰基乙酸的特性研究[J]. 太原理工大学学报, 2019, 50(2): 44-49. [13] 赵锋, 罗婧, 王鸣华. 哒嗪硫磷在液相中的光化学降解[J]. 环境科学学报, 2012, 32(11): 2755-2762. [14] 彭娜, 王开峰, 刘国光, 等. 水中普萘洛尔的紫外光降解机制及其产物毒性[J]. 环境科学, 2014, 35(10): 3794-3799. [15] 王雅洁. 紫外光降解硝酸盐体系中四环素[J]. 环境工程学报, 2019, 13(6): 1329-1337. doi: 10.12030/j.cjee.201810036 [16] 贾娜, 施海燕, 王鸣华. 2, 4-D丁酯的水解与光解特性研究[J]. 农业环境科学学报, 2011, 30(6): 1082-1086. [17] OLIVER B G, CAREY J H. Photochemical production of chlorinated organics in aqueous solutions containing chlorine[J]. Environmental Science & Technology, 1977, 11(9): 893-895. [18] BUXTON G V, SUBHANI M S. Radiation-chemistry and photochemistry of oxychlorine ions. Part 1. Radiolysis of aqueous solutions of hypochlorite and chlorite ions[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1972, 68: 947-957. [19] NOWELL L H, HOIGNÉ J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths: I. Degradation rates[J]. Water Research, 1992, 26(5): 593-598. doi: 10.1016/0043-1354(92)90232-S [20] 李明, 曾光明, 张盼月, 等. 强化混凝去除水源水中天然有机物的研究进展[J]. 环境科学与技术, 2006, 29(2): 109-111. doi: 10.3969/j.issn.1003-6504.2006.02.044 [21] 张永吉, 胡领文, 叶河秀, 等. 紫外线消毒对水中余氯衰减规律的影响研究[J]. 给水排水, 2011, 37(8): 22-25. doi: 10.3969/j.issn.1002-8471.2011.08.004 [22] 周建华, 赵洪宾, 薛罡. 配水管网中与有机物反应的余氯衰减动力学模型[J]. 环境科学, 2003, 24(3): 45-49. doi: 10.3321/j.issn:0250-3301.2003.03.009 [23] 吴敦虎, 任淑芬, 盛晓梅. 紫外光照射水中腐殖酸分解的研究[J]. 环境化学, 1985, 5(3): 58-62. [24] 张文兵, 肖贤明, 傅家谟, 等. 溶液中阴离子对UV/H2O2降解4-硝基酚的影响[J]. 中国环境科学, 2002, 22(4): 301-304. doi: 10.3321/j.issn:1000-6923.2002.04.004 [25] 张维玮. 水中土霉素的检测及光解作用研究[D]. 上海: 华东理工大学, 2018. [26] 万巧玲, 王良超. 自来水中氯消毒能力在不同温度下的变化规律研究[J]. 环境科学与管理, 2016, 41(8): 60-62. doi: 10.3969/j.issn.1673-1212.2016.08.015