-
铝盐类混凝剂在饮用水净化过程中的残余问题一直是混凝工艺面临的技术难题,受到广泛关注。过量摄入的铝会在人体中积累残留,从而形成一些潜在的健康问题,如引发阿尔茨海默症、导致体细胞及生殖细胞发生突变等[1-3]。
在水质净化过程中,经铝盐混凝处理后水中铝的含量会明显升高[4-5]。有研究[6]发现,溶解态铝是饮用水中总残余铝的主要组成部分。混凝剂容易以溶解态的单体或小聚合体的形式与溶解性有机物(DOM)中的羧基、酚基类活性基团络合形成有机络合态的铝,不易通过沉降、过滤等后续工艺去除而残留在饮用水中,该机理被认为是溶解性残余铝的主要成因[7-9]。铁盐也是一种常用混凝剂[10],其价格便宜,矾花易沉降,对DOM也有较好的去除效果[11]。但是铁盐过量使用可能造成出水的感官污染,而且极易腐蚀设备[12]。铁-铝盐混凝剂混合投加是在保证水质的同时,减少铝盐类混凝剂投加量和残余铝的常用工艺。
混凝过程非常复杂,不同种类的混凝剂对DOM中不同组分的去除能力存在差异,影响其分子量分布及特性[10]。此外,在铁-铝盐混合投加时,Fe3+离子同样可以与DOM中的羧基、酚基络合形成有机态的铁,Fe3+、Al3之间会形成竞争作用相互影响[13-15]。由于缺乏有效的表征手段,对混凝环境条件下DOM特性的变化及其与Al3+、Fe3+之间相互作用机理认识不清,影响了工程应用。
最近的研究发现,可以用紫外-可见光谱法定量表征天然环境条件下DOM的水化学特性变化规律,结合非理想竞争吸附模型(NICA),可以从酸碱滴定过程中紫外-可见差分光谱参数(如D(lnA400))的变化获得DOM中羧基、酚基类官能团数量、化学反应平衡常数等定量信息[16-18]。
本研究通过中试实验,在考察使用聚合氯化铝(PACl)和三氯化铁(FeCl3)不同混凝剂投加方案下的水质净化效果及在铝残余量的基础上,利用紫外-可见光谱法,揭示DOM的去除特性及残余铝形成与调控机制,以期为实际工程生产中残余铝的控制提供参考。
铁-铝盐混凝剂混合投加工艺控制溶解性残余铝的机理
Mechanism of controlling dissolved residual aluminum in simultaneous addition of iron and aluminum salt coagulants
-
摘要: 铁-铝盐混凝剂混合投加是一种常用给水处理工艺。但由于缺乏有效表征手段,对上述工艺的内在机制认识不清。采用紫外-可见光谱法与非理想竞争吸附模型(NICA)相结合的方法,定量表征铁-铝盐凝剂混合投加时水体中溶解性有机物(DOM)特性。结果表明,铁盐(FeCl3)投加能在保证水处理效能的情况下,显著提高酚基类官能团的去除效率,并且通过竞争络合位点抑制络合态有机铝的生成量,使溶解性残余铝浓度显著降低。以上研究结果对优化混凝工艺控制具有指导意义。
-
关键词:
- 残余铝 /
- 溶解性有机物(DOM) /
- 混凝 /
- 紫外-可见光谱 /
- 金属络合
Abstract: The simultaneous addition of iron and aluminum salt coagulants is a common water treatment process in practice. However, due to the complexity of coagulation process and the lack of effective characterizing methods, the internal mechanism of the above process is still unclear. The combination of UV-vis spectroscopy and the non-ideal competitive adsorption model (NICA) is used to quantitatively characterize the properties of the dissolved organic matter (DOM) in the water when iron and aluminum salt coagulants were simultaneously dosed. The results show that the addition of iron salt (FeCl3) could significantly increase the removal efficiency of phenolic functional groups while ensuring the efficiency of water treatment, and could inhibit the formation of complex organic aluminum through competing the complex sites, which led to the significant decrease of the dissolved residual aluminum concentration. The results are of guiding significance for optimizing the coagulation process control.-
Key words:
- residual aluminum /
- dissolved organic matter (DOM) /
- coagulation /
- UV-vis spectroscopy /
- metal complex
-
表 1 不同混凝剂投加方案下滤池出水中DOM所含活性官能团计算结果
Table 1. NICA model parameters of filtered water at different coagulant dosing schemes
PACl/
(mmol·L−1)FeCl3/
(mmol·L−1)DOC/
(mg·L−1)D(lnALAS) D(lnAHAS) mLAS mHAS pKLAS pKHAS R2 羧基类官
能团总量酚基类官
能团总量0 0 2.66 0.562 0.549 1.972 4.998 3.503 9.500 0.995 1.492 1.463 0.04 0 2.26 0.618 0.613 2.121 3.002 3.496 9.406 0.993 1.401 1.379 0.01 1.94 0.763 0.598 1.881 2.510 3.002 9.520 0.999 1.474 1.164 0.03 1.84 0.814 0.566 2.500 2.823 3.500 9.005 0.987 1.490 1.049 0.05 1.69 0.821 0.560 1.850 3.020 3.490 9.989 0.995 1.386 0.946 0.08 0 1.97 0.705 0.695 1.647 2.987 3.505 9.310 0.998 1.399 1.359 0.01 1.87 0.767 0.602 3.003 4.596 3.992 9.906 0.984 1.440 1.141 0.03 1.69 0.937 0.573 1.950 3.200 3.455 9.620 0.991 1.589 0.963 0.05 1.60 0.887 0.549 2.203 3.709 3.997 10.000 0.995 1.419 0.880 0.12 0 1.70 0.811 0.730 1.724 3.121 3.508 9.899 0.990 1.377 1.241 0.01 1.65 0.802 0.687 1.955 4.088 3.900 9.595 0.989 1.320 1.139 0.03 1.56 0.817 0.713 1.907 3.854 3.557 9.200 0.994 1.279 1.108 0.05 1.51 0.926 0.541 2.456 2.883 3.798 9.857 0.996 1.398 0.817 注:PACl和FeCl3的投加量均为0 mmol·L−1时即原水。 -
[1] FLATEN T P. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water[J]. Brain Research Bulletin, 2001, 55(2): 187-196. doi: 10.1016/S0361-9230(01)00459-2 [2] MCLACHLAN D R C, BERGERON M D, SMITH J E, et al. Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories[J]. Neurology, 1996, 46(2): 401-405. doi: 10.1212/WNL.46.2.401 [3] 刁晓霞. 水中微量铝的分析[J]. 环境与健康杂志, 2007, 24(12): 1016-1018. doi: 10.3969/j.issn.1001-5914.2007.12.035 [4] BENSON R L, WORSFOLD P J, SWEETING F W. On-line determination of residual aluminium in potable and treated waters by flow-injection analysis[J]. Analytica Chimica Acta, 1990, 238: 177-182. doi: 10.1016/S0003-2670(00)80535-8 [5] MA M, GU J N, LI Y X, et al. Residual aluminum control for source water with high risk of overproof coagulant residue: A novel application of principal component analysis[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2605-2610. doi: 10.1016/j.jece.2017.05.008 [6] YANG Z L, GAO B Y, YUE Q Y, et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 596-603. [7] YAN M Q, HAN X Z, ZHANG C Y. Investigating the features in differential absorbance spectra of NOM associated with metal ion binding: A comparison of experimental data and TD-DFT calculations for model compounds[J]. Water Research, 2017, 124: 496-503. doi: 10.1016/j.watres.2017.08.004 [8] YAN M Q, WANG D S, QU J H, et al. Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: A case study with the typical micro-polluted source waters[J]. Journal of Colloid and Interface Science, 2007, 316(2): 482-489. doi: 10.1016/j.jcis.2007.08.036 [9] YAN M Q, WANG D S, NI J R, et al. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42(13): 3361-3370. doi: 10.1016/j.watres.2008.04.017 [10] 周玲玲, 张永吉, 孙丽华, 等. 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5): 1187-1197. doi: 10.3321/j.issn:0250-3301.2008.05.006 [11] 李敏, 肖晋宜, 丁德才. 无机混凝剂发展概述及铁盐的应用[C]//中国化学会. 2014年第12届全国水处理化学大会暨学术研讨会论文摘要集. 广州, 2014: 97-98. [12] BENSCHOTEN J E V, EDZWALD J K. Chemical aspects of coagulation using aluminum salts: I. Hydrolytic reactions of alum and polyaluminum chloride[J]. Water Research, 1990, 24(12): 1519-1526. doi: 10.1016/0043-1354(90)90086-L [13] YANG R J, BERG C M G V D. Metal complexation by humic substances in seawater[J]. Environmental Science & Technology, 2009, 43(19): 7192-7197. [14] LEENHEER J A, CROUÉ J P. Peer reviewed: Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1): 18-26. [15] BENEDETTI M F, MILNE C J, KINNIBURGH D G, et al. Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model[J]. Environmental Science & Technology, 1995, 29(2): 446-457. [16] YAN M Q, DRYER D, KORSHIN G V. Spectroscopic characterization of changes of DOM deprotonation-protonation properties in water treatment processes[J]. Chemosphere, 2016, 148: 426-435. doi: 10.1016/j.chemosphere.2016.01.055 [17] ZHOU Y X, XIE Y P, WANG M, et al. In-situ characterization of dissolved organic matter removal by coagulation using differential UV-visible absorbance spectroscopy[J]. Chemosphere, 2020, 242: 125062. doi: 10.1016/j.chemosphere.2019.125062 [18] YAN M Q, MA J, ZHANG C Y, et al. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China[J]. Chemosphere, 2017, 188: 502-509. doi: 10.1016/j.chemosphere.2017.09.001 [19] YAN M Q, KORSHIN G V, CLARET F, et al. Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin[J]. Water Research, 2014, 59: 154-164. doi: 10.1016/j.watres.2014.03.044 [20] 赵雪涛, 郜洪文. NICA-Donnan模型对重金属吸附的应用进展[J]. 离子交换与吸附, 2009, 25(2): 185-192.