-
人工湿地具有处理污水效果好、运行费用低、且具有良好的景观效果等特点,因而被广泛应用于农村及小型城市中。然而,传统人工湿地在处理污水过程中由于溶解氧(DO)不足,因此易造成硝化反应不完全[1],致使系统中氮的去除效率不高,此外DO含量也决定了污水中有机物(COD)彻底分解量[2]。氧气是控制污水处理厂硝化和有机物降解的重要参数,但在传统的微生物脱氮反应中,由于微生物起主导作用,因而其脱氮效率往往受湿地碳源的限制[3]。近年来,生物炭被广泛应用于环境治理中,并取得了较好的效果。生物炭具有比表面积大、疏松多孔的特点,为微生物提供了更多的栖息地和适宜的生活环境[4],同时生物炭作为碳源也会影响微生物的生物量;生物炭还能调节系统内好氧-厌氧条件[5],并在其表面存在很强的π键,能够通过静电吸附和分子间的氢键对烃类和有机物进行吸收[6]。因此,生物炭可以有效地解决人工湿地系统中DO不足的问题,还可以作为碳源参与微生物脱氮过程。由于生物炭影响硝化-反硝化过程,进而也会影响N2O的排放,但目前关于生物炭对N2O排放的作用并未达成共识,其内在机理尚不明确,CAYUELA等[7]研究发现在土壤中添加生物炭会减少N2O的排放,但颜永毫等[8]则表明生物炭改善了通气状况后可能会增加N2O的排放。
另外,铁的添加对人工湿地中碳氮循环有很大影响,但具体作用机制尚不清楚。BEAL等[9]发现湖底沉积物中的微生物有利用Mn4+和Fe3+作为电子受体对甲烷进行厌氧氧化的现象。由于Fe涉及到2个价态的转化,在氮的转换过程中充当电子受体和供体。Fe2+作为无机电子供体,提供给
$ {\rm{NO}}_3^ - $ 电子使其转化为N2促进反硝化过程。在处理低C/N污水时,Fe价态之间的相互转化能够减少有机碳的消耗[10]。SONG等[11]向6个不同C/N进水的垂直潜流人工湿地加入Fe2+,发现当C/N为2时添加30 mg·L−1的Fe2+会使系统中的反硝化过程得到显著的改善。此外, GRANGER等[12]的研究表明,铁在反硝化途径中广泛参与,铁铜等物质对于反硝化过程中金属酶的催化还原活性具有一定的影响。与此同时,Fe3+作为电子受体,接受${\rm{NH}}_4^ + $ 的电子使其转化为$ {\rm{NO}}_2^ - $ 促进硝化过程[13]。在氮循环过程中,铁和有机碳源同样也有密切的关系,当溶液中不存在任何有机碳源时,铁对氮的去除效果并没有明显的促进作用[10]。为此,本研究通过添加生物炭、铁矿石、生物炭+铁矿石等方式构建潜流人工湿地,研究了其对污水COD去除效果、脱氮能力及其对CH4和N2O排放的影响,以期为人工湿地中污染物质的减排提供参考。
铁矿石和生物炭添加对潜流人工湿地污水处理效果及温室气体排放的影响
Effects of hematite and biochar addition on sewage treatment and greenhouse gases emissions in subsurface flow constructed wetland
-
摘要: 人工湿地是温室气体的重要排放源,为了探索减少其温室气体排放的措施,通过在温室内构建了空白-人工湿地(湿地Ⅰ)、铁矿石-人工湿地(湿地Ⅱ)、生物炭-人工湿地(湿地Ⅲ)和铁矿石+生物炭-人工湿地(湿地Ⅳ)4组湿地,研究了铁矿石和生物炭基质的添加对潜流人工湿地污水处理效果和温室气体排放的影响。结果表明,4组湿地的平均出水COD分别是(34.99±1.60)、(35.57±1.69)、(30.87±1.65)和(27.52±2.37) mg·L−1,COD去除率均达到90%以上。4组湿地系统的出水平均TN浓度分别是(24.75±0.96)、(24.99±0.72)、(15.04±0.61)和(15.63±0.61) mg·L−1,湿地Ⅲ和湿地Ⅳ的TN平均去除率分别为65.73%和64.41%,均高于湿地Ⅰ(43.61%)和湿地Ⅱ(43.08%)。和TN类似,4组湿地系统出水的
${\rm{NH}}_4^ + $ -N去除率分别是45.04%、43.92%、67.52%和65.19%。铁矿石和生物炭的添加对于系统中CH4和N2O的减排也有一定作用,以1 g·m−2 CO2的GWP为1,湿地Ⅱ和湿地Ⅲ系统排放CH4和N2O所产生的综合GWP分别是69.88和22.73,相较于湿地Ⅰ(103.36)分别减少了32.39%和78.01%。湿地Ⅳ排放CH4和N2O所产生的综合GWP与单独添加生物炭的湿地Ⅲ相似,GWP为24.62。生物炭的添加相较于铁矿石具有较好的污水处理效果,且具有较低的CH4和N2O排放量。铁矿石生物炭联合添加的湿地中生物炭起主要的污染物去除和温室气体减排作用。以上研究结果可为人工湿地的改进提供有效建议。Abstract: Constructed wetland is an important source of greenhouse gas emissions. In order to explore measures to reduce their greenhouse gases emissions, in this study, four groups of wetlands, including blank constructed wetland (wetland I), hematite constructed wetland (wetland II), biochar constructed wetland (wetland III) and hematite-biochar constructed wetland (wetland IV) were built to investigate the effect of hematite or biochar addition on the sewage treatment and greenhouse gas emissions of subsurface flow constructed wetlands. The results showed that the average effluent COD concentrations of the four wetlands were (34.99±1.60), (35.57±1.69), (30.87±1.65) and (27.52±2.37) mg·L−1, respectively, and all the COD removal rates reached higher than 90%. The average TN concentrations of the four wetland systems were (24.75±0.96), (24.99±0.72), (15.04±0.61) and (15.63±0.61) mg·L−1, respectively, and the average TN removal rates of wetland III and wetland IV were 65.73% and 64.41%, respectively, both of them were higher than those of wetland I (43.61%) and wetland II (43.08%). Similar to TN, the${\rm{NH}}_4^ + $ -N removal rates of the four wetland systems were 45.04%, 43.92%, 67.52% and 65.19%, respectively. The addition of hematite-biochar also had a certain effect on the reduction of CH4 and N2O emissions in the system. With a GWP of 1 g·m−2 CO2 as 1, the average integrated global warming potential (GWP) values of the wetland Ⅱ and wetland Ⅲ systems were 69.88 and 22.73, respectively, and they decreased by 32.39% and 78.01% compared with wetland (103.36), respectively. The GWP value of the CH4 and N2O emissions of wetland IV was similar to that of wetland III with the addition of biochar alone, which was 24.62. Compared with hematite, the addition of biochar caused better sewage treatment effect and lower CH4 and N2O emissions. The biochar in the hematite-biochar wetland plays a major role in removing pollutants and reducing greenhouse gas emissions. This study can provide effective suggestions for the improvement of constructed wetlands.-
Key words:
- subsurface constructed wetlands /
- hematite /
- biochar /
- pollutant removal /
- greenhouse gases
-
表 1 出水水质基本指标
Table 1. Basic indicators of effluent quality
mg·L−1 处理 COD TN ${\rm{NH}}_4^ + $ -N$ {\rm{NO}}_3^ - $ -N湿地Ⅰ 34.99±1.60 24.75±0.96 23.15±0.43 0.27±0.041 湿地Ⅱ 35.57±1.69 24.99±0.72 23.62±0.38 0.20±0.060 湿地Ⅲ 30.87±1.65 15.04±0.61 13.68±0.26 0.15±0.037 湿地Ⅳ 27.52±2.37 15.63±0.61 14.66±0.65 0.30±0.16 表 2 各系统CH4和N2O的排放通量、典型周期内的排放量及综合GWP
Table 2. CH4 and N2O emissions and integrated GWP during typical cycles of each system
处理 CH4 N2O (N2O+CH4)综合GWP 排放通量/(mg·(m2·h−1)) 排放量/(g·m−2) 排放通量/(μg·(m2·h)−1) 排放量/(mg·m−2) 湿地Ⅰ 34.18±6.38 3.28±0.61 451.88±61.92 43.38±5.94 103.36±17.01 湿地Ⅱ 22.80±3.90 2.19±0.37 338.00±36.67 32.45±3.52 69.88±10.42 湿地Ⅲ 5.50±0.89 0.53±0.09 312.67±36.64 30.02±3.52 22.73±2.43 湿地Ⅳ 5.89±1.20 0.57±0.12 345.70±34.27 33.19±3.29 24.62±3.23 -
[1] 赵联芳, 梅才华, 丁小燕, 等. 人工湿地污水脱氮中N2O的产生机理和影响因素[J]. 科学技术与工程, 2013, 13(29): 8705-8714. [2] ZHENG X H, ZHUANG L L, ZHANG J, et al. Advanced oxygenation efficiency and purification of wastewater using a constant partially unsaturated scheme in column experiments simulating vertical subsurface flow constructed wetlands[J]. Science of the Total Environment, 2020, 703: 1-9. [3] SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J]. Environmental Management, 2012, 112: 429-448. [4] PIETIKÄINEN J, KIIKKILÄ O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89: 231-242. doi: 10.1034/j.1600-0706.2000.890203.x [5] HUANG L, CHEN Y C, LIU G, et al. Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis[J]. Energy, 2015, 87: 31-40. doi: 10.1016/j.energy.2015.04.089 [6] GUPTA P, ANN T W, LEE S M. Use of biochar to enhance constructed wetland performance in wastewater reclamation[J]. Environmental Engineering Science, 2015, 21: 36-44. [7] CAYUELA M L, SANCHEZ-MONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013, 3(1): 1732-1739. doi: 10.1038/srep01732 [8] 颜永毫, 王丹丹, 郑纪勇. 生物炭对土壤N2O和CH4排放影响的研究进展[J]. 中国农学通报, 2013, 29(8): 140-146. doi: 10.3969/j.issn.1000-6850.2013.08.027 [9] BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984 [10] ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. doi: 10.1016/j.biortech.2014.12.036 [11] SONG X, WANG S, WANG Y, et al. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands[J]. Ecological Engineering, 2016, 91: 487-494. doi: 10.1016/j.ecoleng.2016.03.013 [12] GRANGER J, WARD B B. Accumulation of nitrogen oxides in copper limited cultures of denitrifying bacteria[J]. Limnol Oceanogr, 2003, 48: 313-318. doi: 10.4319/lo.2003.48.1.0313 [13] WU S B, VYMAZAL J, BRIX H. Critical review: Biogeochemical networking of iron in constructed wetlands for wastewater treatment[J]. Environmental Science & Technology, 2019, 53(14): 7930-7944. [14] 周旭. 生物炭联合曝气强化人工湿地处理低碳氮比污水的效能及其过程研究[D]. 杨凌: 西北农林科技大学, 2018. [15] 邓朝仁, 梁银坤, 黄磊, 等. 生物炭对潜流人工湿地污染物去除及N2O排放影响[J]. 环境科学, 2019, 40(6): 2840-2846. [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [17] WHITING G J, CHANTON J P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration[J]. Tellus B, 2001, 53(5): 521-528. [18] IPCC. Special Report on Emissions Scenarios, Working Group Ⅲ, Intergovernmental Panel on Climate[M]. Cambridge: Cambridge University Press, 2013. [19] NIKOLAUSZ M, KAPPELMEYER U, SZEKELY A, et al. Diurnal redox fluctuation and microbial activity in the rhizosphere of wetland plants[J]. European Journal of Soil Biology, 2008, 44(3): 324-333. doi: 10.1016/j.ejsobi.2008.01.003 [20] LIU H Q, HU Z, ZHANG J, et al. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review[J]. Bioresource Technology, 2016, 214: 797-805. doi: 10.1016/j.biortech.2016.05.003 [21] 贾文林, 吴娟, 武爱国, 等. 碳氮比对人工湿地污水处理效果的影响[J]. 环境工程学报, 2010, 4(4): 767-770. [22] SAEED T, SUN G. A comparative study on the removal of nutrients and organic matter in wetland reactors employing organic media[J]. Chemical Engineering Journal, 2011, 171(2): 439-447. doi: 10.1016/j.cej.2011.03.101 [23] VERHAMME D T, PROSSER J I, NICOL G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5(6): 1067-1071. doi: 10.1038/ismej.2010.191 [24] SHUAI W, JAFFÉ P R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648: 984-992. doi: 10.1016/j.scitotenv.2018.08.189 [25] 刘冬, 张慧泽, 徐梦佳. 我国人工湿地污水处理系统的现状探析及展望[J]. 环境保护, 2017, 5(4): 25-28. [26] ZHOU X, LIANG C L, JIA L X, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850. doi: 10.1016/j.biortech.2017.09.044 [27] COBY A J, PICARDAL F W. Inhibition of $ {\rm{NO}}_3^ - $ and$ {\rm{NO}}_2^ - $ reduction by microbial Fe(III) reduction: Evidence of a reaction between$ {\rm{NO}}_2^ - $ and cell surface-bound Fe2+[J]. Applied and Environmental Microbiology, 2005, 71(9): 5267-5274. doi: 10.1128/AEM.71.9.5267-5274.2005[28] LIU Y, YANG M, WU Y, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6): 930-939. doi: 10.1007/s11368-011-0376-x [29] THAUER R K. Functionalization of methane in anaerobic microorganisms[J]. Angewandte Chemie International Edition, 2010, 49(38): 6712-6713. doi: 10.1002/anie.201002967 [30] 蔡祖聪, 沈光裕, 颜晓元, 等. 土壤质地、温度和Eh对稻田甲烷排放的影响[J]. 土壤学报, 1998(2): 145-154. doi: 10.3321/j.issn:0564-3929.1998.02.001 [31] 潘涛. 人工湿地减排温室气体估算研究[M]. 南京: 南京大学, 2011. [32] HU Z, ZHANG J, XIE H J, et al. Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature[J]. Bioresource Technology, 2011, 102: 5486-5491. doi: 10.1016/j.biortech.2010.10.037 [33] 赵天涛, 阎宁, 赵由才. 环境工程领域温室气体减排与控制技术[M]. 北京: 化学工业出版社, 2009. [34] 郝晓地, 孟祥挺, 胡沅胜. 人工湿地温室气体释放、影响及其控制[J]. 中国给水排水, 2016, 32(22): 39-47. [35] 王庆, 杨会翠, 王玲, 等. 添加水铁矿对水稻土N2O释放及反硝化微生物的影响[J]. 土壤学报, 2016, 53(5): 1306-1315. [36] SUN Y, QI S, ZHANG F, et al. Organics removal, nitrogen removal and N2O emission subsurface wastewater infiltration systems amended with/without biochar and sludge[J]. Bioresource Technology, 2017, 249: 57-61. [37] YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: Main sources and control method[J]. Environmental Science and Technology, 2009, 43(24): 9400-9406. doi: 10.1021/es9019113 [38] LEMAIRE R, MEYER R, TASKE A, et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Biotechnology, 2006, 122(1): 62-72. doi: 10.1016/j.jbiotec.2005.08.024 [39] 郑循华, 王明星, 王跃思, 等. 温度对农田N2O产生与排放的影响[J]. 环境科学, 1997, 18(5): 1-5. doi: 10.3321/j.issn:0250-3301.1997.05.001