-
厌氧甲烷氧化过程根据电子受体不同通常可分为3类:一是硫酸盐还原型厌氧甲烷氧化(sulphate-dependent anaerobic methane oxidation,SAMO)[1];二是反硝化型厌氧甲烷氧化(denitrifying anaerobic methane oxidation,DAMO)[2-4];三是金属氧化物(铁、锰依赖型)[5-6]和重金属盐类(重铬酸盐、钒酸盐型)[7-8]厌氧甲烷氧化。反硝化型厌氧甲烷氧化(DAMO)工艺是近年来发现的一种新型脱氮工艺,其以CH4为电子供体,
${\rm{NO}}_3^ - $ 或${\rm{NO}}_2^ - $ 为电子受体实现反硝化脱氮[9-11]。RAGHOEBARSING等[12]从荷兰运河沉积物中富集培养出反硝化型厌氧甲烷氧化微生物群落,检测到甲烷、亚硝酸盐和硝酸盐的同时消耗以及氮气的排放。通过进一步研究证明,所消耗的亚硝酸盐和硝酸盐与所产生的氮气量相当,首次证实厌氧甲烷氧化与反硝化作用的存在。有研究[13-14]发现,DAMO富集体系中通常包含以${\rm{NO}}_2^ - $ 为氮源的NC10门细菌和以${\rm{NO}}_3^ - $ 为氮源的DAMO古菌存在。通过DAMO古菌和DAMO细菌的配合,可实现废水中氮素的去除。由于DAMO过程不产生N2O,可以直接利用甲烷,减少温室气体的排放,且避免了反硝化过程中外加碳源引起的二次污染,同时实现废水中${\rm{NO}}_3^ - $ 和${\rm{NO}}_2^ - $ 的有效脱除等优点,近几年引起了研究者的广泛关注[15]。但DAMO微生物存在代谢活性低、倍增时间长、富集培养困难、易受环境影响等问题[16-19]。由于DAMO细菌缺少普通好氧甲烷氧化菌具有的细胞内膜,pMMO酶是好氧甲烷氧化代谢的关键酶,多存在于细胞内膜上,而DAMO细菌仅有胞质膜可供pMMO酶结合,大大限制了DAMO细菌细胞内部的甲烷氧化代谢过程,使得DAMO细菌代谢活性降低,无法更好的与DAMO古菌配合完成整个反硝化过程[20-21]。此外,由于DAMO微生物对环境要求严格,2%的氧气就会抑制DAMO过程,且甲烷作为DAMO的唯一电子供体,其在水中溶解度低,限制了甲烷传质效率,影响了DAMO的富集。LI等[22]以硝酸盐为底物进行为期600 d的DAMO培养时,测序结果显示仍没有DAMO古菌的存在。赵荣等[23]对亚硝酸盐依赖型DAMO微生物活性影响因素进行了研究,确定了最佳温度为35 ℃,最佳pH为7.5,以及最适亚硝酸盐初始浓度为2.4~3.42 mmol·L−1,但目前几乎没有针对硝酸盐依赖型DAMO微生物活性影响因素方面的研究。基于此,本研究采用不同氮源反应器进行了硝酸盐依赖型DAMO功能微生物的富集,得到DAMO功能菌;采用厌氧小瓶序批式实验,探索了其最佳运行环境,优化工艺参数;通过高通量测序手段分析了微生物群落结构的变化,探究了其反应机理,实现了DAMO功能微生物的富集与影响因素的优化。
反硝化型厌氧甲烷氧化微生物的富集与影响因素分析
Enrichment of denitrifying anaerobic methane oxidation microbial and its influence factors analysis
-
摘要: 采用含有不同氮源的SBR进行为期220 d的反硝化型厌氧甲烷氧化(DAMO)微生物富集,研究单一氮源和多氮源对DAMO富集的影响,并用高通量测序对含有不同氮源的反应器内微生物群落结构进行了分析。结果表明,单一氮源(
${\rm{NO}}_3^ - $ )和多氮源(${\rm{NO}}_3^ - $ ,${\rm{NO}}_2^ - $ ,${\rm{NH}}_4^ + $ )为进水的反应器硝氮降低速率分别为0.3 mg·(L·d)−1和2.8 mg·(L·d)−1,这说明多氮源比单一氮源更适合富集DAMO微生物。微生物群落结构分析结果表明,多氮源反应器中厌氧氨氧化细菌和DAMO古菌相对丰度(0.56%和0.03%)比单一氮源反应器中更高(0.3%和0.02%)。采用厌氧小瓶实验对工艺参数优化,结果确定DAMO反应的最适pH为6~7;最适温度为35 ℃;当甲烷分压大于75 kPa时,DAMO反应速率不再受甲烷分压的限制。-
关键词:
- 反硝化型厌氧甲烷氧化 /
- 微生物富集培养 /
- 群落结构 /
- 影响因素
Abstract: In this study, different nitrogen sources was used to enrich the denitrifying anaerobic methane oxidation (DAMO) microbial in SBR for 220 days and the influences of single nitrogen source and multiple nitrogen source on DAMO enrichment were investigated. Microbial community structure in the different SBRs was analyzed by high-throughput sequencing. The experimental results showed that the final nitrate removal rates in the SBRs with a single nitrogen source (${\rm{NO}}_3^ - $ ) and a multi-nitrogen source (${\rm{NO}}_3^ - $ ,${\rm{NO}}_2^ - $ ,${\rm{NH}}_4^ + $ ) were 0.3 mg·(L·d)−1 and 2.8 mg·(L·d)−1, respectively, indicating that multi-nitrogen source were more suitable for DAMO enrichment than single nitrogen source. High-throughput sequencing results showed that the relative abundances of anammox bacteria and DAMO archaea in the SBR with a multi-nitrogen source (0.56%, 0.03%) were higher than those in the SBR with a single nitrogen source (0.3%, 0.02%), respectively. The anaerobic vial test was used to optimize the process parameters, the optimal pH and temperatureo f DAMO reaction were 6~7 and 35 ℃, respectively. When the partial pressure of methane increased to 75 kPa, the DAMO reaction rate was no longer restricted by the partial pressure of methane. -
表 1 DAMO影响因素实验设置
Table 1. Experimental setting of influential factors on DAMO
分组 pH 温度/℃ 甲烷分压/kPa 实验1 5.0、6.0、7.0、8.0 35 100 实验2 7.0 25、30、35、40 100 实验3 7.0 35 25、50、75、100 表 2 高通量测序选用的引物序列
Table 2. Primer sequences for high throughput sequencing
微生物 引物名称 序列(5'~3') 细菌 341b4_F CTAYGGRRBGCWGCAG 806_R GGACTACNNGGGTATCTAAT 古菌 524F10extF TGYCAGCCGCCGCGGTAA Arch958RmodR YCCGGCGTTGAVTCCAATT 表 3 SBR-1和SBR-2反应器CH4消耗
Table 3. Methane consumption in SBR-1 and SBR-2
反应器 反应时间/h 甲烷消耗量/mol ${\rm{NO}}_3^ - $ 消耗量/molCH4/ ${\rm{NO}}_3^ - $ 消耗计量比理论DAMO计量比 SBR-1 117 1.909 2×10−4 3.471 4×10−4 0.550 0.625 SBR-2 117 2.398 9×10−3 4.817 1×10−3 0.498 表 4 SBR中古菌与细菌多样性指数
Table 4. Microbial diversity index of archaea and bacteria in SBRs
菌种 shannon simpson ace chao SBR-1 反应器古菌 3.362 365 0.054 126 156.588 2 153.545 5 SBR-2 反应器古菌 3.507 883 0.046 442 190.670 8 182.636 4 SBR-1 反应器细菌 5.672 029 0.012 389 2 336.912 2 275.660 SBR-2 反应器细菌 5.581 829 0.012 899 2 400.330 2 342.836 -
[1] SARA L, CALDWELL, JAMES R, et al. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6791-6799. [2] REN Y, NGO H H, GUO W, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems[J]. Bioresource Technology, 2019, 297: 122491. [3] WANG D, WANG Y, LIU Y, et al. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment plants?[J]. Bioresource Technology, 2017, 234: 456-465. doi: 10.1016/j.biortech.2017.02.059 [4] 翟俊, 李媛媛, 何孟狄, 等. 淡水系统中甲烷厌氧氧化古菌的研究进展[J]. 环境工程学报, 2019, 13(5): 1009-1020. doi: 10.12030/j.cjee.201812098 [5] CAI C, LEU A, XIE G, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction[J]. The ISME Journal, 2018, 12(8): 1929-1939. doi: 10.1038/s41396-018-0109-x [6] LEU A, CAI C, MCILROY S, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae[J]. The ISME Journal, 2020, 14(4): 1030-1041. doi: 10.1038/s41396-020-0590-x [7] HE C, ZHANG B, YAN W, et al. Enhanced microbial chromate reduction using hydrogen and methane as joint electron donors[J]. Journal of Hazardous Materials, 2020, 395: 122684. doi: 10.1016/j.jhazmat.2020.122684 [8] ZHANG B, JIANG Y, ZUO K, et al. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater[J]. Journal of Hazardous Materials, 2020, 382: 121228. doi: 10.1016/j.jhazmat.2019.121228 [9] XIE G, CAI C, HU S, et al. Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 51(2): 819-827. [10] ALLEGUE T, ARIAS A, FERNANDEZ N, et al. Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor[J]. Chemical Engineering Journal, 2018, 347: 721-730. doi: 10.1016/j.cej.2018.04.134 [11] ETTWIG K F, BUTLER M K, LE P D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883 [12] RAGHOEBARSING A A, POL A, KT V D P S, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921. doi: 10.1038/nature04617 [13] 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 273-281. [14] 陈颖. 厌氧甲烷氧化微生物代谢分子机制及其潜在参与矿物形成机理的研究[D]. 上海: 上海交通大学, 2014. [15] 沈李东, 胡宝兰, 郑平. 甲烷厌氧氧化微生物的研究进展[J]. 土壤学报, 2011, 48(3): 619-628. doi: 10.11766/trxb201004050120 [16] HU B, SHEN L, ZHENG P, et al. Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River[J]. Environmental Microbiology Reports, 2012, 4(5): 540-547. doi: 10.1111/j.1758-2229.2012.00360.x [17] HU B, SHEN L, LIAN X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4495-4500. doi: 10.1073/pnas.1318393111 [18] SHEN L, WU H, GAO Z, et al. Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils[J]. Journal of Applied Microbiology, 2016, 120(6): 1552-1560. doi: 10.1111/jam.13119 [19] SHEN L, WU H, LIU X, et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123: 162-172. doi: 10.1016/j.watres.2017.06.075 [20] WU M, VAN A, VAN D, et al. Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph ‘Candidatus Methylomirabilis oxyfera’[J]. FEMS Microbiology Letters, 2012, 334(1): 49-56. doi: 10.1111/j.1574-6968.2012.02615.x [21] WU M, VAN T, WILLEMS M J R, et al. Ultrastructure of the denitrifying methanotroph “Candidatus methylomirabilis oxyfera,” a novel polygon-shaped bacterium[J]. Journal of Bacteriology, 2012, 194(2): 284-291. doi: 10.1128/JB.05816-11 [22] LI W, LU P, CHAI F, et al. Long-term nitrate removal through methane-dependent denitrification microorganisms in sequencing batch reactors fed with only nitrate and methane[J]. AMB Express, 2018, 8: 108. doi: 10.1186/s13568-018-0637-9 [23] 赵荣, 朱雷, 吴箐, 等. 亚硝酸盐型甲烷厌氧氧化过程影响因素研究[J]. 环境科学学报, 2017, 37(1): 178-184. [24] DING J, FU L, DING Z, et al. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 439-446. doi: 10.1007/s00253-015-6986-2 [25] ETTWIG K F, VAN A T A, DE P K V, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied and Environmental Microbiology, 2009, 75(11): 3656-3662. doi: 10.1128/AEM.00067-09 [26] FU L, DING J, LU Y, et al. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3895-3906. doi: 10.1007/s00253-017-8163-2 [27] HU S, ZENG R J, BUROW L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms[J]. Environmental Microbiology Reports, 2009, 1(5): 377-384. doi: 10.1111/j.1758-2229.2009.00083.x [28] 耿莎. 亚硝酸盐型甲烷厌氧氧化菌富集培养及优化研究[D]. 杭州: 浙江大学, 2015. [29] 薛怡亭. MBR深度处理垃圾焚烧渗沥液的效能与膜污染控制研究[D]. 北京: 北京林业大学, 2015. [30] 吴箐. 反硝化型甲烷厌氧氧化的功能菌群富集及过程强化研究[D]. 北京: 清华大学, 2018. [31] ZHU G, ZHOU L, WANG Y, et al. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems[J]. Environmental Microbiology Reports, 2015, 7(1): 128-138. doi: 10.1111/1758-2229.12214 [32] ZHU B, DIJK G, FRITZ C, et al. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied & Environmental Microbiology, 2012, 78(24): 8657-8665. [33] HE Z, GENG S, PAN Y, et al. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference[J]. Water Research, 2015, 85(15): 235-243. [34] 何崭飞. 亚硝酸盐型甲烷厌氧氧化细菌培养条件优化及其生态功能[D]. 杭州: 浙江大学, 2016. [35] LIU T, LIM Z, CHEN H, et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2020, 54(5): 3012-3021. [36] 何崭飞, 蔡琛, 沈李东, 等. DAMO过程中甲烷传质模型的建立与验证[J]. 化工学报, 2012, 63(6): 1836-1841. doi: 10.3969/j.issn.0438-1157.2012.06.026