氧化淋洗联合修复氰化物污染土壤技术及工程实践

袁珊珊, 宋震宇, 巢军委, 李野, 杨伟. 氧化淋洗联合修复氰化物污染土壤技术及工程实践[J]. 环境工程学报, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003
引用本文: 袁珊珊, 宋震宇, 巢军委, 李野, 杨伟. 氧化淋洗联合修复氰化物污染土壤技术及工程实践[J]. 环境工程学报, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003
YUAN Shanshan, SONG Zhenyu, CHAO Junwei, LI Ye, YANG Wei. Process study and project practice on restoring cyanide-contaminated soil with joint techniques of oxidation and flushing[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003
Citation: YUAN Shanshan, SONG Zhenyu, CHAO Junwei, LI Ye, YANG Wei. Process study and project practice on restoring cyanide-contaminated soil with joint techniques of oxidation and flushing[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003

氧化淋洗联合修复氰化物污染土壤技术及工程实践

    作者简介: 袁珊珊(1988—),女,硕士,工程师。研究方向:污染场地修复等。E-mail:yuanshanshan@tjeco-city.com
    通讯作者: 宋震宇(1982—),男,博士,高级工程师。研究方向:污染场地修复等。E-mail:songzhenyu@tjeco-city.com
  • 中图分类号: X53

Process study and project practice on restoring cyanide-contaminated soil with joint techniques of oxidation and flushing

    Corresponding author: SONG Zhenyu, songzhenyu@tjeco-city.com
  • 摘要: 以天津某氰化物污染场地污染土壤为研究对象,采用氧化淋洗联合使用的工艺方法,研究在不同氧化剂用量和淋洗次数条件下氰化物形态转变与修复效果之间的关系。利用氰化物的还原性和较高的溶解度,通过氧化分解和溶解作用实现对土壤中氰化物的去除。结果表明:在氧化条件下,随着氧化剂用量的增加,土壤中总氰化物呈现下降的趋势,土壤中氰化物的形态从络合态向易释放态转变,土壤浸提液中总氰化物的浓度呈现先升高后降低的趋势;当氧化剂用量为5%时,总氰化物浓度从51.2 mg·kg−1降低至9.23 mg·kg−1,满足总量的修复目标;而土壤浸提液浓度从初始的1.6 mg·L−1降低至0.79 mg·L−1,未能达到修复目标;在振荡淋洗条件下对土壤淋洗5次,随着淋洗次数的增加,土壤中总氰化物呈现下降的趋势,而氰化物易释放态逐渐减少,土壤浸提液中总氰化物浓度呈现快速下降的趋势;在淋洗3次时,土壤浸提液浓度从初始的1.6 mg·L−1降低至0.04 mg·L−1,达到修复目标,而土壤总氰化物含量从51.2 mg·kg−1降低至10.2 mg·kg−1,未能达到修复目标;氧化技术和淋洗技术联合使用时,在氧化剂用量为3%,淋洗1次条件下,工程实践表明土壤氰化物可以满足总量(9.86 mg·kg−1)和浸出(0.1 mg·L−1)的双重修复目标。本研究所提出的氧化淋洗联合修复技术应用于氰化物污染土壤修复是可行的。
  • 作为对流层臭氧(O3[1]和二次有机气溶胶(secondary organic aerosol, SOA)生成的重要前体物[2-3], 挥发性有机物(volatile organic compounds, VOCs)对城市O3污染、光化学烟雾及灰霾污染有着重要影响[4-6]. 此外, 部分VOCs具有“三致(致癌、致畸、致突变)”性, 会通过皮肤和呼吸道进入人体, 直接危害人体健康[7-8]. 因此, VOCs治理已经成为许多国家和科学家研究的重点方向之一[9-10]. 研究表明, VOCs成分复杂多变且来源众多, 主要有工业源、燃煤源、机动车源、汽油和溶剂挥发源、植物排放源及生活源等[4, 11-12], 研究难度较大.

    随着我国城市化进程的不断发展, 机动车保有量大幅上升, 2021年北京、成都、重庆3个城市的汽车保有量均超过500万辆, 另有17个城市保有量超过300万辆[13]. 研究显示, 机动车尾气已经成为北京[14]、成都[15]、郑州[16]等城市大气VOCs的最大来源, 贡献分别达到35.08%、34.00%、30.50%. 作为机动车大量停放和频繁出入的半封闭场所, 地下停车场内高浓度的VOCs不仅会对人体健康产生危害, 同时也会持续不断向室外传输VOCs, 参与大气光化学反应, 对城市空气质量产生重要影响[17-18]. 目前, 国内外已经针对地下停车场内VOCs展开了相关研究. Castro等[19]对巴西里约热内卢封闭停车场的研究表明, 甲苯是浓度最高的芳香烃化合物; 刘妍等[20]对天津某地下停车场的研究显示, 车辆进出次数和冷启动会显著影响VOCs浓度水平和分类特征; Mariusz等[21]对波兰地下停车场的研究显示, 停车场内空气流通较少会导致有机物浓度较高; Yan等[22]研究了广东地下停车场内VOCs的来源, 结果显示发动机排放和汽油挥发是停车场内芳香烃的主要来源; 张猛[23]对大连市某大型商场地下停车场的研究表明, 苯对停车场内人员构成潜在致癌风险.

    总体而言, 目前国内针对地下停车场的调查有限, 基础研究还比较薄弱, 尚未定量解析停车场内VOCs的来源. 因此, 开展地下停车场内VOCs的研究, 定量识别不同排放源对地下停车场VOCs的贡献, 对进一步认识机动车排放对VOCs以及人体健康风险的影响具有重要意义. 本研究选取北京市某一地下停车场作为研究对象, 对停车场内环境空气进行采样, 研究停车场内VOCs浓度及组分特征, 使用正定矩阵因子分析模型(positive matrix factorization, PMF模型)精细化解析VOCs来源, 同时评估不同时段停车场内VOCs对人体健康的影响, 旨在定量解析地下停车场VOCs的来源, 为停车场内人员健康风险的防控提供有效支撑.

    本研究选取北京市某一办公楼地下负2层停车场作为采样地点(图1), 该停车场面积约为1278.4 m2, 共计48个停车位, 与楼体有3处电梯口相连, 与室外仅有1个出入口相通. 实验期间, 停车场内人工通风系统停止工作, 电梯口处于常闭状态, 仅门禁出入口与室外有气体交换. 本研究于2021年5月31日—6月6日对停车场进行7 d连续采样, 采样时间为06:00—22:00, 每个样品进行2 h连续积分采样, 避免了车辆瞬时排放对采样结果的影响, 采样口距离地面约1.2—1.5 m, 基本处于人体呼吸带高度. 采样时使用阻尼采样器将空气样品采集到3.2 L苏玛罐( SUMMA canister)中, 采样后的苏玛罐在避光室温下保存, 且确保采样后1周之内进行分析. 采样期间, 同时记录停车场内温度、湿度及进出车辆数等信息. 停车场内的车辆均为汽油车和电动汽车, 其中电动汽车4辆, 在研究中已扣除. 采样7 d停车场车辆正常来往, 日出入车次最多为107次, 最少为36次, 日均出入车次为78次, 工作日早晚高峰期间基本均可停满. 实验温差为室内温度-室外温度, 室内温度使用温度计手动记录, 室外温度来源为慧聚数据网站昌平区站点数据(http://www.hjhj-e.com).

    图 1  车场及采样点位示意图
    Figure 1.  Schematic diagram of the park and sampling site

    本研究使用三级预浓缩仪(7200A, Entech Inc., USA)对气体样品进行预处理, 随后通过气相色谱-质谱/火焰离子化检测器(7890B GC/5977B MSD/FID, Agilent Inc., USA)对VOCs物种进行检测分析. 先从苏玛罐中抽出400 mL样品, 将其收集到一级冷阱中, 样品在−160 ℃冷却并在10 ℃下解吸, 然后使用纯氦和Tenax-TA(吸附剂)将来自一级冷阱的样品在−40℃的二级冷阱中浓缩两次并于180 ℃下解吸, 之后VOCs样品被转移到−190 °C的三级阱进行冷冻聚焦. 随后, 样品在高于60 °C的条件下解吸, 并以高纯度氦气(99.99%)作为载气, 经分流平板部分送至HP-PLOT/Q色谱柱(30 m×0.53 mm×40 μm, Agilent Inc., USA)分离后使用FID对C2-C3化合物检测, 其余化合物经DB-1色谱柱(60 m×0.25 mm×0.25 μm, Agilent Inc., USA)进行分离后由MSD检测. 本文共研究地下停车场内89种VOCs物种, 包括29种烷烃、23种芳香烃、10种烯烃、1种炔烃、14种卤代烃和12种含氧/含硫类化合物, 如表1所示. 化合物的定性依据为色谱保留时间和质谱图, 本研究采用内标法(内标化合物为苯-d6、2-溴-1,1,1-三氟乙烷和氯苯-d5), 通过建立工作曲线对目标化合物进行定量分析[24]. 每次使用仪器前都需要验证系统稳定性, 将内标添加到样品中, 根据内标浓度变化判断系统是否稳定.

    表 1  VOCs物种及分类
    Table 1.  Species and classification of VOCs
    分类Classification物种Species
    烷烃乙烷、丙烷、异戊烷、正戊烷、正丁烷、异丁烷、正己烷、2-甲基戊烷、3-甲基戊烷、2, 2, 4-三甲基戊烷、甲基环戊烷、异丁基环己烷、正庚烷、3-甲基己烷、2-甲基己烷、2, 3-二甲基己烷、2, 3, 4-三甲基戊烷、甲基环己烷、辛烷、2-甲基庚烷、3-甲基庚烷、2, 3-二甲基戊烷、壬烷、2, 4-二甲基戊烷、2, 2-二甲基丁烷、环戊烷、正癸烷、正十一烷、正十二烷
    芳香烃苯、甲苯、乙苯、间/对二甲苯、邻二甲苯、偏三甲苯、间乙基甲苯、对乙基甲苯、邻乙基甲苯、正丙苯、1, 2, 3-三甲苯、均三甲苯、对二乙苯、异丙基苯、间二乙苯、1, 4-二氯苯、氯苯、1, 2, 4-三氯苯、1, 2-二氯苯、1, 3-二氯苯、苯乙烯、苯甲醛、萘
    烯烃乙烯、丙烯、1-丁烯、反-2-丁烯、反-2-戊烯、顺-2-丁烯、异戊二烯、1-戊烯、1-己烯、顺-2-戊烯
    炔烃乙炔
    卤代烃四氯化碳、三氯甲烷、1, 2-二氯丙烷、1, 2-二氯乙烷、溴二氯甲烷、氯乙烷、溴甲烷、二氯甲烷、氯甲烷、六氯-1, 3-丁二烯、四氯乙烯、顺-1, 3-二氯丙烯、氯乙烯、1, 1-二氯乙烯
    含氧/含硫类化合物甲基叔丁基醚、丙酮、丁烯醛、甲基乙基酮、二硫化碳、甲基异丁基酮、正丁醛、异丙醇、己醛、四氢呋喃、乙酸乙酯、2-己酮
     | Show Table
    DownLoad: CSV

    采样前, 用清罐仪(Entech-3100D)对苏玛罐进行3—5次重复清洗, 至少选取1只充入高纯氮气放置24 h, 作为样品进行分析, 以保证目标化合物未检出或低于检出限; 清洗完成后, 置于避光恒温室内暂存. 采样期间, 用不锈钢密封帽将苏玛罐的进气口密封, 以避免接口处被污染或者真空状态被破坏. 进行实际样品分析前, 先进行空白检查, 确保仪器系统不会带来污染. 检测过程中进行重复性试验, 确保检测目标化合物浓度的相对偏差≤15%. 绘制标准曲线时, 保证每个响应因子的相对标准偏差(RSD)均<30%.

    本研究使用PMF模型[25], 根据模型物种选取原则[26], 从89种VOCs物种中选择41种代表性物种进行来源定量分析, 其中包括15种烷烃、3种烯烃、15种芳香烃、6种卤代烃和2种含氧化合物. 其基本原理是将受体矩阵分解为源成分谱矩阵、源贡献矩阵和残差矩阵. PMF计算过程中的基本公式如(1)所示:

    Eik=pj=1AikBik+εik(i=1,2,,n) (1)

    式中, Eikk次观测的污染物i的浓度; j为因子, AikBik分别为源成分谱和源贡献; ɛik为残差. PMF主要是计算目标函数Q的最小值, 目标函数如(2)所示:

    Q=mink(εikσik)2 (2)

    式中, σik样品的不确定性偏差. 样品的不确定度U计算公式如(3)所示:

    U={(Ec)2+M2(c>M)56M(cM) (3)

    式中, E为误差比例; M为检测限; c为污染物的浓度.

    苯、甲苯、乙苯、二甲苯(BTEX)和MTBE是美国环保署(US EPA)和国际癌症研究机构公布的有毒有害空气污染物, 对人体健康有较大危害. 本研究使US EPA的综合风险信息系统[27] (Integrated Risk Information System, IRIS)对BTEX和MTBE开展职业暴露和日常暴露下的非致癌风险评估, 对苯、乙苯和MTBE开展两种暴露条件下的致癌风险评估. 暴露浓度的计算公式如(4)所示:

    EC=CA×ET×EF×EDAT (4)

    式中, EC是吸入暴露浓度, µg·m−3; CA是污染物平均浓度, µg·m−3; ET是暴露时间, 结合刘妍等[20]和Yan等[22]的研究, 本文拟定停车场内人员职业暴露时间为10 h·d−1, 日常暴露时间为10 min·d−1; EF是暴露频率, 按国家规定的正常工作时间260 d·a−1[28]; ED是持续暴露时间, 结合已有研究[20, 22], 职业暴露选取10 a, 日常暴露选取30 a; AT是平均暴露时间, 参考《中国人群暴露参数手册{成人卷}》规定(中华人民共和国环境保护部, 2013年), 选取74.8 × 365 d × 24 h.

    特定VOCs物种致癌风险(R)和非致癌风险 (HQ)的估算公式分别如(5)所示:

    R=EC×IUR;HQ=EC/(RfC×1000) (5)

    式中, R是估算的吸入性致癌风险; IUR是单位吸入风险, m3·µg−1, 数据来自US EPA的IRIS[27]; HQ是特定VOCs物种的非致癌风险商; RfC是慢性参考浓度, mg·m−3, 数据来自US EPA的IRIS; 致癌风险R低于1 × 10−6被认为是相对安全的. 此外, 本文使用HI = ∑HQ进行分析, 其中HI是几种污染物的HQ之和. 如果HQ或HI低于1, 则表示没有慢性致癌风险; 但如果HQ超过1, 则代表长期接触后会有慢性致癌风险.

    研究期间北京市某地下停车场内所有VOCs样品的平均浓度为514.16 μg·m−3, 远高于北京市[29]空气中VOCs浓度(83.4 μg·m−3), 与大连市[23]某大型商场地下负1层停车场VOCs浓度(508.00 μg·m−3)相当, 低于该商场负2层停车场VOCs浓度(1250.00 μg·m−3); 日均值变化范围为310.60—742.69 μg·m−3, 显著高于北京市[29]空气中VOCs的浓度变化范围(21.4—439.1 μg·m−3).

    研究期间, 烷烃(43.76%)是地下停车场内VOCs的主要组分(图2), 其次是芳香烃(28.89%)和烯烃(10.97%), 炔烃(1.08%)占比最小, 与北京市[29-30]空气中VOCs组分特征基本一致.

    图 2  地下停车场VOCs组分特征
    Figure 2.  Composition characteristics of VOCs in underground park

    浓度排名前十的物种分别为: 甲苯(67.94 μg·m−3)、异戊烷(57.43 μg·m−3)、正戊烷(26.94 μg·m−3)、甲基叔丁基醚(23.42 μg·m−3)、乙烯(21.43 μg·m−3)、苯(18.63 μg·m−3)、正丁烷(17.79 μg·m−3)、正己烷(15.74 μg·m−3)、间/对二甲苯(15.33 μg·m−3)和丙烯(14.97 μg·m−3). 本研究中甲苯浓度最高, 与里约热内卢[19](209.24 μg·m−3)、波兰北部[21](12.90 μg·m−3)和广州[22](239.90 μg·m−3)等城市停车场研究中甲苯为优势物种的结果一致, 但浓度大小存在一定差异, 可能与采样周期、采样方式以及停车场状况不同有关.

    早高峰时段(8:00—10:00)烷烃(54.26%)占比最大, 其次是芳香烃(22.16%). 该时段异戊烷浓度最高(67.01 μg·m−3), 其次是甲苯(34.85 μg·m−3). 异戊烷是汽油挥发典型示踪物[31], 该时段VOCs浓度可能与汽油挥发排放较大有关. 晚高峰时段(16:00—18:00)烷烃(40.23%)占比最大, 其次是芳香烃(32.89%). 该时段甲苯浓度最高(109.40 μg·m−3), 相比早高峰上升213.92%, 甲苯是机动车尾气排放的特征物种[32-33], 该时段VOCs可能受尾气排放影响较大.

    研究期间, 周五地下停车场内VOCs日均浓度最高(742.69 μg·m−3), 相比周四浓度上升了139.15%, 为变化幅度最大的一天. 考虑到周末放假的影响(图3), 周五当天办公楼内人员活动频率上升, 燃油车出入次数(107次)的显著增加导致较多的尾气排放可能是当天VOCs浓度急剧升高的原因. 早高峰时段和晚高峰时段是地下停车场内VOCs浓度上升最快的两个时段, 变化率分别达到93.92%和56.28%, 可能是由于这两个时段燃油车出入次数最多(分别为17次和16次), 短时间内污染物排放量大导致

    图 3  地下停车场VOCs变化特征和机动车出入情况
    Figure 3.  Variation characteristics of VOCs and vehicle number in underground park

    地下停车场内VOCs浓度在周二达到第二高峰(680.92 μg·m−3), 相比周一增加了67.41%. 当天燃油车出入次数只有86次, 比周一减少6次, 但周一到周三期间, 室外天气以阴雨天为主. 连续的阴雨天导致室内外温差较小, 其中周二室内外温差仅为0.1℃. 研究表明, 当室内外温差较小时,VOCs不利于向室外扩散[34]. 周四当天天气转晴, 室内外温差增大, 有利于气体交换, VOCs浓度明显降低. 因此, 不利的扩散条件会导致燃油车排放的大量尾气无法及时排出, 从而使得VOCs累积.

    研究期间, VOCs浓度呈现“单峰”的变化特征(图4), 最高峰出现在晚高峰时段, 峰值为789.29 μg·m−3. 在进出车次相近的情况下, 晚高峰时段VOCs浓度是早高峰时段的2.25倍, 这可能是由于晚高峰燃油车冷启动时发动机内温度较低, 燃油燃烧不充分导致[35], 同时三元催化器在燃油车冷启动时起燃时间较长导致尾气无法得到有效处理也有一定影响[36]. 此外, 由于地下停车场与外界气体交换能力有限, 造成的污染物不断累积也会影响VOCs浓度[23, 37]. 采样7 d内, 晚高峰时段VOCs浓度均大于早高峰时段, 表明燃油车冷启动对停车场内VOCs浓度的影响大于正常运行工况.

    图 4  地下停车场VOCs日变化和车辆出入情况
    Figure 4.  Diurnal variation of VOCs and vehicle number in underground park

    研究表明, 芳香烃之间的比值可以用来识别不同排放源[4, 12]. 隧道内机动车的研究发现, 通常苯/乙苯(B/E)比值小于5, 甲苯/乙苯(T/E)比值小于6[38-39]. 广州某隧道B/E值和T/E值分别为0.7和3.1[22]. 异戊烷与正戊烷具有相似的大气寿命, 通过异戊烷与正戊烷的比值(I/N)可初步判断VOCs来源. 有研究结果显示, 我国隧道实验和汽油挥发I/N值分别约为2.9和3.8[40-41]. 本研究中B/E值和T/E值分别为1.5和5.9, 约为广州某隧道的2倍, 高甲苯和高苯表明地下停车场受机动车尾气的影响显著高于隧道[42]; I/N值为2.4, 与隧道实验的比值较为接近, 表明地下停车场内VOCs可能主要受机动车尾气的影响.

    MTBE通常被用作汽油蒸发和汽车尾气排放的示踪物[43]. 本研究中, B/MTBE值和T/MTBE值分别为0.8和2.9, 略大于隧道空气内的比值(0.6和2.1); E/MTBE值和X/MTBE值分别为0.5和1.2, 与90#汽油中的比值(0.4和1.2)相似[22]. 研究发现, 由于发动机运转时甲苯和二甲苯脱烷基导致MTBE和苯的富集量减少, 此时B/MTBE比值较高, 机动车尾气排放是主要影响[22]. 本研究中, 较高的B/MTBE值(0.8)表明汽车尾气排放可能是地下停车场内VOCs的主要来源, 另外汽油挥发也有一定影响.

    对特征物种比值进行小时特征分析, B/MTBE、T/MTBE、E/MTBE、X/MTBE的比值均表现出相同特征: 早高峰时段比值最小, 而在晚高峰时段最大. 可能由于早高峰时段机动车较热, 大量机动车短时间涌入地下停车场, 停车场内温度升高, 有利于汽油挥发, 特征物种比值较低[22]; 随着出入车辆减少及室内外气体交换, 停车场内温度逐渐降低, 汽油挥发作用减弱, 汽车尾气影响逐渐增大; 晚高峰时段, 机动车因冷启动在短时间内排放出大量尾气, 导致VOCs浓度迅速升高, 特征物种比值也达到最大值. 因此, 早高峰时段汽油挥发对停车场内VOCs影响最大, 而晚高峰时段机动车尾气占主导作用.

    本研究使用EPA PMF 5.0模型对停车场内VOCs样品进行源解析, 结果如图5所示. 因子1中甲苯、乙苯、丙烯、C3—C5烷烃和芳香烃贡献较大, 甲苯等芳香烃物是汽车尾气示踪剂[32-33], 丙烯主要来自机动车尾气排放[44], C3-C5类烷烃以及芳香烃是城市机动车尾气排放的主要物种[45-47], 因子1被识别为是机动车尾气源. 因子2中正戊烷、异戊烷和MTBE贡献较大, 3个物种均是汽油挥发的示踪物[31, 48]; 结合源谱[49]可知, 正丁烷、异戊烷、正戊烷和环戊烷对汽油挥发源的贡献大于机动车尾气源, 而乙烯和丙烯对两个污染源的贡献则表现出相反的特征, 因子2被识别为是汽油挥发源. 因子3中贡献较大的物种有三氯乙烯、四氯化碳、氯代烃和丙酮等, 三氯乙烯和四氯化碳是汽车内有机清洗剂的主要成分[50], 氯代烃和丙酮是常见的汽车内饰挥发物[51-53], 因子3被识别为是汽车内饰挥发源. 因子4中贡献较大的物种有异戊二烯、四氯化碳、正己烷、环戊烷、苯乙烯和均三甲苯等, 由于特征物种来源较为复杂, 可能受室外空气交换的影响, 因子4被识别为是其他源.

    图 5  PMF源解析源谱结果
    Figure 5.  Source apportionment results of PMF

    图6所示, 机动车尾气源对地下停车场内VOCs贡献最大(44.58%), 汽油挥发源和汽车内饰挥发源贡献分别为24.56% 和9.18%. 由此可知, 地下停车场内VOCs的主要来源是机动车尾气源, 汽油挥发源也有较大贡献.

    图 6  PMF源解析结果
    Figure 6.  Source apportionment results of PMF

    各时段四类源的贡献如图6所示, 汽车内饰挥发源在06:00—08:00时段对VOCs的贡献最大(38.98%), 早高峰时段汽油挥发源贡献最大(61.27%), 晚高峰时段机动车尾气贡献最大(64.57%). 06:00—08:00时段, 由于机动车出入较少, 此时累积在停车场中的汽车内饰挥发物贡献最大; 早高峰时段机动车温度较高, 短时间内大量机动车进入使停车场内温度升高, 利于汽油挥发出大量VOCs; 晚高峰时段, 大量机动车在冷启动工况下汽油不完全燃烧排放出高浓度的VOCs, 导致机动车尾气贡献最大. 因此, 在早晚高峰时段应加大地下停车场的通风强度, 以减少汽油挥发和机动车尾气的影响.

    本研究对苯(B)、甲苯(T)、乙苯(E)、二甲苯(间\对二甲苯和邻二甲苯)(X)和MTBE开展停车场中人员(成人)的职业暴露和日常暴露健康风险评估. 采样期间这6类芳香烃物种占总芳香烃浓度的82.21%, MTBE占含氧/含硫类化合物总浓度的48.73%.

    在职业暴露的情况下, 采样期间BTEX和MTBE的HI为3.72×10−2, 低于EPA认定的安全阈值(HI=1), 表明BTEX和MTBE的非致癌风险在安全范围内; 苯、乙苯和MTBE的致癌风险R分别为5.77×10−6、1.14×10−6和2.42×10−7, 苯和乙苯高于EPA规定的安全阈值(1.0×10−6), 表明苯和乙苯有致癌风险. 日变化分析显示(图7), 苯的致癌风险全天均高于安全阈值, 乙苯的致癌风险在12:00—22:00期间高于安全阈值, 两个物种均在晚高峰时段达到一天中的最大值, 分别是安全阈值的10.56倍和2.00倍. 因此, 工作人员应加强个人防护, 尽量减少晚高峰期间在停车场内停留的时间.

    图 7  职业暴露和日常暴露下三个物种致癌风险R小时变化
    Figure 7.  Hourly variation of carcinogenic risk of three species under occupational exposure and daily exposure

    在日常暴露的情况下, 采样期间BTEX和MTBE的HI为1.86×10−3, 低于EPA认定的安全阈值(HI=1), 表明BTEX和MTBE的非致癌风险在安全范围内; 苯、乙苯和MTBE的致癌风险R分别为2.88×10−7、5.71×10−8和1.21×10−8, 全部低于EPA规定的安全阈值(1.0×10−6), 表明3个物种的致癌风险均在安全范围内. 日变化分析显示(图7), 苯、乙苯和MTBE的致癌风险全天均低于安全阈值, 在晚高峰时段达到一天中的最大值, 分别比前一时段上升95.28%、86.91%和19.77%. 因此, 晚高峰时段要尽量避免在停车场内长时间停留.

    (1)观测期间, 地下停车场内VOCs样品平均浓度为514.16 μg·m−3, VOCs浓度日变化呈现“单峰”特征, 峰值浓度达到789.29 μg·m−3. 影响停车场内VOCs浓度的主要因素有: 机动车运行工况、进出车次以及扩散条件, 其中车辆冷启动工况影响较大.

    (2)源解析结果显示, 机动车尾气(44.58%)是地下停车场内VOCs的最大排放源, 汽油挥发(24.56%)也有较大贡献. 其中, 在早高峰时段汽油挥发源对VOCs贡献最大(61.27%), 而机动车尾气是晚高峰时段VOCs的主要来源(64.57%).

    (3)健康风险评估结果显示, 在日常暴露和职业暴露条件下苯、乙苯和MTBE的致癌风险均在16:00-18:00时段达到最大值, 而在职业暴露下苯和乙苯的致癌风险均高于安全阈值.

    (4)为保护暴露人群健康, 早晚高峰期间要加大地下停车场内的通风强度, 同时人们应尽量避免晚高峰时段在停车场内长时间停留.

    (5)本文对机动车运行工况、进出车次及扩散条件三个因素进行了研究, 未来会针对机动车类型、品牌、油品等其他因素继续进行深入研究.

  • 图 1  氧化剂用量对土壤中氰化物形态的影响

    Figure 1.  Impact of oxidant amount on cyanide form

    图 2  铁氰化物的解络合作用

    Figure 2.  Decomplexation of ferricyanide

    图 3  氧化剂用量对土壤总氰化物去除率的影响

    Figure 3.  Impact of oxidant amount on cyanide removal rate

    图 4  不同氧化剂用量条件下的土壤中总氰化物浓度

    Figure 4.  Cyanide concentration in soil at different oxidant dosages

    图 5  氧化剂用量对土壤浸出液总氰化物浓度的影响

    Figure 5.  Impact of oxidant dosage on cyanide concentration in soil leaching solution

    图 6  土壤氰化物的淋洗动力学曲线

    Figure 6.  Leaching kinetic curve of cyanide in soil

    图 7  淋洗次数对土壤总氰化物去除率的影响

    Figure 7.  Impact of leaching times on cyanide removal rate

    图 8  淋洗次数对土壤氰化物形态的影响

    Figure 8.  Impact of leaching times on cyanide form

    图 9  淋洗次数对土壤浸出液中总氰化物浓度的影响

    Figure 9.  Impact of leaching times on cyanide concentration in soil leaching solution

    图 10  氧化淋洗修复工艺路线

    Figure 10.  Oxidation and leaching techniqual route

    表 1  修复技术比选

    Table 1.  Comparison and selection of remediation technology

    修复技术修复周期/a修复成本目标达成度适用性备注
    水泥窑热解技术1~2周边复合技术要求水泥窑已饱和
    化学氧化技术0.5~1中~高中~高
    淋洗技术1~2中~高中~高中~高
    电动技术2~5无案例支撑
    固化稳定化技术0.5~1对污染物总量修复目标无效
    微生物技术3~6工期过长
    修复技术修复周期/a修复成本目标达成度适用性备注
    水泥窑热解技术1~2周边复合技术要求水泥窑已饱和
    化学氧化技术0.5~1中~高中~高
    淋洗技术1~2中~高中~高中~高
    电动技术2~5无案例支撑
    固化稳定化技术0.5~1对污染物总量修复目标无效
    微生物技术3~6工期过长
    下载: 导出CSV

    表 2  氰化物污染土壤修复效果

    Table 2.  Remediation effect for cyanide-contaminated soil

    统计值土壤总氰化物浓度/(mg·kg−1)土壤浸出液氰化物浓度/(mg·L−1)
    检出最大值9.120.089
    检出平均值4.590.052
    修复目标值9.860.1
    统计值土壤总氰化物浓度/(mg·kg−1)土壤浸出液氰化物浓度/(mg·L−1)
    检出最大值9.120.089
    检出平均值4.590.052
    修复目标值9.860.1
    下载: 导出CSV
  • [1] 宋昕, 林娜, 殷鹏华. 中国污染场地修复现状及产业前景分析[J]. 土壤, 2015, 47(1): 1-7.
    [2] 谢剑, 李发生. 中国污染场地修复与再开发[J]. 环境保护, 2012, 40(Z1): 14-24.
    [3] 房彬, 张建, 李玉庆. 土壤氰化物污染生物修复技术研究进展[J]. 化工环保, 2016, 36(4): 375-380. doi: 10.3969/j.issn.1006-1878.2016.04.004
    [4] 张涛, 仇浩, 邹泽李. 氰化物污染土壤的化学氧化修复方法初步研究[J]. 环境科学学报, 2009, 29(7): 1465-1469. doi: 10.3321/j.issn:0253-2468.2009.07.019
    [5] 杨世迎, 陈友媛, 胥慧真. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008, 20(9): 1433-1438.
    [6] JOSEPH J P, ESTHER O, ALLISON M. Advanced oxidation processes for organic contaminant destruction based on fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1): 1-84.
    [7] 高焕方, 龙飞, 曹园城. 新型过硫酸盐活化技术降解有机污染物的研究进展[J]. 环境工程学报, 2015, 9(12): 5659-5664. doi: 10.12030/j.cjee.20151202
    [8] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908.
    [9] 晏井春. 含铁化合物活化过硫酸盐及其在有机污染物修复中的应用[D]. 武汉: 华中科技大学, 2012.
    [10] MEEUSSEN J C L, KEIZER M G, RIEMSDIJK W H V, et al. Solubility of cyanide in contaminated soils[J]. Journal of Environmental Quality, 1994, 23(4): 785-792.
    [11] PARGA J R, SHUKLA S S, CARRILLO-PEDROZA F R. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol[J]. Waste Management, 2003, 23(2): 183-191. doi: 10.1016/S0956-053X(02)00064-8
    [12] PAK D, CHANG W. Oxidation of aqueous cyanide solution using hydrogen peroxide in the presence of heterogeneous catalyst[J]. Environmental Technology, 1997, 18(5): 557-561. doi: 10.1080/09593331808616573
    [13] LEE T, KWON Y, KIM D. Oxidative treatment of cyanide in wastewater using hydrogen peroxide and homogeneous catalyst[J]. Journal of Environmental Science & Health: Part A Toxic/hazardous Substances & Environmental Engineering, 2004, 39(3): 787-801.
    [14] 叶圣豪, 孙贤波, 胡兰芳. 化学氧化法对焦化废水中氰化物深度处理的效果[J]. 净水技术, 2011, 30(1): 45-48. doi: 10.3969/j.issn.1009-0177.2011.01.012
    [15] 贾玉. 化学沉淀结合Fenton法处理焦化废水中氰化物的研究[J]. 现代工业经济和信息化, 2017, 7(11): 30-32.
    [16] 龙飞. 过硫酸盐及其活化技术处理含氰污染土壤与有机废水研究[D]. 重庆: 重庆理工大学, 2016.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.9 %DOWNLOAD: 2.9 %HTML全文: 90.2 %HTML全文: 90.2 %摘要: 6.9 %摘要: 6.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 87.9 %其他: 87.9 %Beijing: 3.8 %Beijing: 3.8 %Beiwenquan: 0.1 %Beiwenquan: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Chaowai: 0.1 %Chaowai: 0.1 %Chifeng: 0.1 %Chifeng: 0.1 %Chiyoda: 0.2 %Chiyoda: 0.2 %Chongqing: 0.1 %Chongqing: 0.1 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.2 %Hangzhou: 0.2 %Hong Kong: 0.2 %Hong Kong: 0.2 %Hyderabad: 0.2 %Hyderabad: 0.2 %Jinan: 0.1 %Jinan: 0.1 %Kunshan: 0.1 %Kunshan: 0.1 %luohe shi: 0.2 %luohe shi: 0.2 %Monclova: 0.2 %Monclova: 0.2 %Nanjing: 0.5 %Nanjing: 0.5 %Orléans: 0.2 %Orléans: 0.2 %Qingdao: 0.1 %Qingdao: 0.1 %Shanghai: 0.3 %Shanghai: 0.3 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Tianjin: 0.1 %Tianjin: 0.1 %Tongchuanshi: 0.2 %Tongchuanshi: 0.2 %Wuhan: 0.3 %Wuhan: 0.3 %Xi'an: 0.1 %Xi'an: 0.1 %Xiamen: 0.1 %Xiamen: 0.1 %XX: 2.4 %XX: 2.4 %Yuncheng: 0.2 %Yuncheng: 0.2 %兴安盟: 0.1 %兴安盟: 0.1 %北京: 1.4 %北京: 1.4 %南阳: 0.1 %南阳: 0.1 %吉林: 0.1 %吉林: 0.1 %大连: 0.1 %大连: 0.1 %昌吉: 0.1 %昌吉: 0.1 %深圳: 0.2 %深圳: 0.2 %重庆: 0.2 %重庆: 0.2 %银川: 0.1 %银川: 0.1 %鹤壁: 0.1 %鹤壁: 0.1 %鹰潭: 0.1 %鹰潭: 0.1 %其他BeijingBeiwenquanChang'anChaowaiChifengChiyodaChongqingGulanHangzhouHong KongHyderabadJinanKunshanluohe shiMonclovaNanjingOrléansQingdaoShanghaiShenyangShenzhenTianjinTongchuanshiWuhanXi'anXiamenXXYuncheng兴安盟北京南阳吉林大连昌吉深圳重庆银川鹤壁鹰潭Highcharts.com
图( 10) 表( 2)
计量
  • 文章访问数:  3411
  • HTML全文浏览数:  3411
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-01
  • 录用日期:  2020-05-10
  • 刊出日期:  2020-11-10
袁珊珊, 宋震宇, 巢军委, 李野, 杨伟. 氧化淋洗联合修复氰化物污染土壤技术及工程实践[J]. 环境工程学报, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003
引用本文: 袁珊珊, 宋震宇, 巢军委, 李野, 杨伟. 氧化淋洗联合修复氰化物污染土壤技术及工程实践[J]. 环境工程学报, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003
YUAN Shanshan, SONG Zhenyu, CHAO Junwei, LI Ye, YANG Wei. Process study and project practice on restoring cyanide-contaminated soil with joint techniques of oxidation and flushing[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003
Citation: YUAN Shanshan, SONG Zhenyu, CHAO Junwei, LI Ye, YANG Wei. Process study and project practice on restoring cyanide-contaminated soil with joint techniques of oxidation and flushing[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3192-3200. doi: 10.12030/j.cjee.201912003

氧化淋洗联合修复氰化物污染土壤技术及工程实践

    通讯作者: 宋震宇(1982—),男,博士,高级工程师。研究方向:污染场地修复等。E-mail:songzhenyu@tjeco-city.com
    作者简介: 袁珊珊(1988—),女,硕士,工程师。研究方向:污染场地修复等。E-mail:yuanshanshan@tjeco-city.com
  • 1. 天津生态城环保有限公司,天津 300480
  • 2. 天津市污染场地治理修复技术工程中心,天津 300480

摘要: 以天津某氰化物污染场地污染土壤为研究对象,采用氧化淋洗联合使用的工艺方法,研究在不同氧化剂用量和淋洗次数条件下氰化物形态转变与修复效果之间的关系。利用氰化物的还原性和较高的溶解度,通过氧化分解和溶解作用实现对土壤中氰化物的去除。结果表明:在氧化条件下,随着氧化剂用量的增加,土壤中总氰化物呈现下降的趋势,土壤中氰化物的形态从络合态向易释放态转变,土壤浸提液中总氰化物的浓度呈现先升高后降低的趋势;当氧化剂用量为5%时,总氰化物浓度从51.2 mg·kg−1降低至9.23 mg·kg−1,满足总量的修复目标;而土壤浸提液浓度从初始的1.6 mg·L−1降低至0.79 mg·L−1,未能达到修复目标;在振荡淋洗条件下对土壤淋洗5次,随着淋洗次数的增加,土壤中总氰化物呈现下降的趋势,而氰化物易释放态逐渐减少,土壤浸提液中总氰化物浓度呈现快速下降的趋势;在淋洗3次时,土壤浸提液浓度从初始的1.6 mg·L−1降低至0.04 mg·L−1,达到修复目标,而土壤总氰化物含量从51.2 mg·kg−1降低至10.2 mg·kg−1,未能达到修复目标;氧化技术和淋洗技术联合使用时,在氧化剂用量为3%,淋洗1次条件下,工程实践表明土壤氰化物可以满足总量(9.86 mg·kg−1)和浸出(0.1 mg·L−1)的双重修复目标。本研究所提出的氧化淋洗联合修复技术应用于氰化物污染土壤修复是可行的。

English Abstract

  • 氰化物被广泛应用于电镀、冶金、热处理、焦化和制革等行业。对相关行业企业退役场地土壤环境调查后发现,氰化物是首要这些场地的污染物[1-3]。常见氰化物分为简单氰化物和络合氰化物2种。在工业生产中,一般使用简单氰化物,其残留物进入土壤环境后,易与土壤中的金属元素发生络合反应,因此,土壤中氰化物形态以络合氰化物为主,如铁氰络合物等。虽然络合氰化物与简单氰化物相比毒性较低,但由于其化学性质更加稳定,修复难度更大。

    常用氰化物污染土壤修复技术主要有水泥窑热解技术、化学氧化技术、淋洗技术、电动技术、固化稳定化技术和微生物技术等[4-6]。在国内,氰化物污染土壤修复工艺多采用水泥窑协同处置技术,如苏州机械仪表电镀厂原址污染土壤修复项目、重庆紫光化工公司永川分厂污染土壤修复项目、重庆兰科化工生产场址污染土壤修复项目等。其他类型修复技术还停留在实验阶段,暂时未见实际工程案例的报道。

    天津某氰化物污染场地有数十万吨氰化物污染土壤。该项目原采用水泥窑热解技术进行处理,受水泥窑产能及重污染天气限产限运等因素限制,修复工程进展缓慢。本研究以该场地被污染土壤为研究对象,尝试采用氧化淋洗联合使用的工艺方法,研究在不同工艺条件下氰化物形态转变与修复效果之间的关系,优化筛选最佳工艺条件,并应用于工程实践,以期为国内同类项目提供借鉴和参考。

  • 天津某氰化物污染场地采用异位修复的策略,按照土壤中氰化物浓度的差别分为轻度(9.86~96 mg·kg−1)、中度(96~350 mg·kg−1)、以及重度(350 mg·kg−1以上)污染土壤分类安全暂存。其中,中度、重度污染土壤占比约30%,优先采用水泥窑热解技术进行修复。本研究对象为总氰化物浓度9.86~96 mg·kg−1的轻度污染土壤。

  • 修复后土壤最终用于回填利用。综合考虑人体健康风险和对回填区域地下水环境影响,修复目标采用污染物总量和浸出毒性双重控制标准:既满足修复后土壤中总氰化物含量低于9.86 mg·kg−1,又满足土壤浸出液中总氰化物浓度低于0.1 mg·L−1(Ⅳ地下水质量标准)。土壤浸出方法参考《固体废物浸出毒性浸出方法 硫酸硝酸法》(HJ/T 299-2007)。土壤中总氰化物和易释放态氰化物的检测方法参考《土壤 氰化物和总氰化物的测定 分光光度法》(HJ 745-2015);土壤浸出液中总氰化物的检测方法参考《水质 氰化物的测定 容量法和分光光度法》(HJ 484-2009)。

  • 综合分析各种修复技术的优缺点,同时考虑本项目的实际应用情况,对修复时间、周边现有设施情况、修复成本和修复目标可达性等因素进行分析(表1)。由对比分析结果可知,现有条件下,化学氧化技术和土壤淋洗技术最适合该污染场地轻度氰化物污染土壤(9.86~96 mg·kg−1)的修复。本研究将重点考察这2种技术的修复效果,为确定实际修复工艺做参考。

  • 土壤修复中最常用的氧化剂为过硫酸盐,过硫酸盐与氰化物的反应机理见式(1)~式(3)。

    反应过程:过硫酸盐在铁离子作用下活化为硫酸根自由基;硫酸根自由基在碱性条件下转化为氧化能力更强的羟基自由基;氰化物在羟基自由基的亲核进攻作用下,被分解转化为二氧化碳和氨气[7-9]

    实验方法:将从现场取回的氰化物污染土壤干燥后研磨,并过100目分样筛;称取100 g氰化物污染土壤于烧杯中,调节土壤含水率至40%,加入称量好的过硫酸钠搅拌均匀,氧化反应时间为7 d;考察过硫酸钠用量为1%、1.5%、2%、3%、5%的条件下,土壤中总氰化物和易释放氰化物的含量以及土壤浸提液中总氰化物的含量变化。

  • 1)氧化剂用量对土壤中氰化物形态的影响。通过考察氧化后土壤中易释放氰化物和总氰化物的浓度,分析土壤中氰化物的形态变化。易释放态氰化物主要以简单氰化物为主,包括碱金属和碱土金属的氰化物。总氰化物中除了易释放态氰化物以外,还包括络合态氰化物,主要为铁氰化物、亚铁氰化物、铜氰络合物、镍氰络合物和钴氰络合物等。由图1可知,氧化前土壤中氰化物主要以络合态为主,占比达到85%;随着氧化剂用量的增加,土壤中易释放态氰化物出现明显的增加;在氧化剂用量在2%以上时,易释放态氰化物占比从氧化前的15%增加到84%。

    分析其原因,氧化反应过程中,羟基自由基优先进攻键能相对较低、氰化物与络合金属之间的配位键,先将氰化物从络合形态释放出来,而后羟基自由基才去进攻键能较高的、氰化物内部的共价键。以土壤中含量最高的铁氰络合物为例,铁氰化亚铁的稳定结构被破坏后,6个氰根被释放出来,转化成了简单氰化物[10-12](图2)。

    2)氧化剂用量对土壤总氰化物去除效果的影响。实验用土的总氰化物初始浓度为51.2 mg·kg−1。氧化剂用量与土壤总氰化物去除率之间的关系如图3所示。图3表明,在氧化剂用量在1%和3%处存在2个拐点。分别将曲线分为缓慢上升段(氧化剂用量<1%)、快速上升段(1%<氧化剂用量<3%)、以及平稳段(氧化剂用量>3%)3个区间。分析原因如下:在氧化剂用量为0~1%时,由于过硫酸钠活化后产生的羟基自由基优先进攻土壤中其他还原性物质[13-16],如有机质等,作用于氰化物的比例较小,故随着氧化剂用量的增加,总氰化物去除率变化不明显;随着氧化剂用量的进一步加大,土壤中还原性高于氰化物的物质被消耗殆尽,氰化物浓度呈现快速下降趋势;在氧化剂用量超过3%以后,由于转化率的提升(表现为土壤中剩余总氰化物浓度下降),氧化反应速率下降,氰化物的去除率趋于稳定。在氧化剂用量为3%时,土壤中总氰化物去除率已达75%以上;而氧化剂用量为5%时,去除率仅提高至82%,土壤中总氰化物浓度降低至9.23 mg·kg−1(见图4),满足9.86 mg·kg−1的修复目标。

    3)氧化剂用量对土壤浸提液总氰化物去除效果的影响。随着氧化剂用量的增加,土壤浸出液中总氰化物的浓度呈现先增加后降低的趋势(见图5)。在氧化剂用量较低时,化学氧化的解络合作用占主导,对氰化物的氧化分解作用较弱。由于解络合后产生的易释放态氰化物水溶性更强,所以出现了浸出液中总氰化物浓度升高的情况;随着氧化剂用量的增加,氧化分解作用占据主导地位,故土壤浸提液中总氰化物浓度逐渐下降,该规律与已有研究的结果[16]相一致。在氧化剂用量为5%时,去除率仅为52%,土壤浸提液中总氰化物浓度从1.6 mg·L−1降低至0.79 mg·L−1,但距离0.1 mg·L−1的修复目标有较大差距。

    根据氰化物污染土壤的氧化实验结果,化学氧化对土壤中总氰化物的去除效果较好,去除率可达82%,并满足9.86 mg·kg−1的修复目标值;而化学氧化对土壤浸提液中总氰化物的去除效果较差,去除率仅为52%,远未达到0.1 mg·L−1的修复目标。

  • 为考察氰化物在土壤中的吸附解吸性能,取2 g污染土壤于离心管内,加入20 mL水后进行封盖;按此制备10支离心管试样,放入摇床内振荡;分别在振荡10 min、30 min、1 h、2 h、4 h、8 h、16 h、24 h、48 h、72 h时各取出1支离心管进行离心处理,获得上清液;测试上清液中的总氰化物浓度。

    为考察氰化物污染土壤的多次洗脱效果,按上述条件制备离心管试样,固定振荡时间为48 h,离心后分离出全部上清液;而后再加入20 mL水,并振荡48 h后离心分离上清液;重复洗脱5次,测试每次洗脱后土壤中总氰化物和易释放氰化物的含量,以及土壤浸提液总氰化物的浓度。

  • 通过振荡淋洗实验,考察土壤中氰化物的吸附解吸性能(见图6)。分别用准一级动力学方程(式(4)和准二级动力学方程(式(5))对实验数据进行拟合[13-15]

    式中:qtqe分别为t时刻和淋洗达到平衡时的淋洗量,mg·kg−1k1为一级淋洗速率常数,min−1k2为二级淋洗速率常数,kg·(mg·min)−1

    在振荡淋洗实验中,0~1 h内土壤总氰化物去除率快速提高。振荡淋洗1 h时,土壤总氰化物去除率达到30%以上;1 h以后土壤氰化物去除率提高缓慢。这是由于在淋洗初始阶段,土壤中的氰化物和淋洗液可以充分接触,而易释放态氰化物以溶解性较强的碱金属氰化物为主,所以易释放态氰化物优先迁移到液相中。当淋洗时间超过1 h后,易释放态氰化物基本迁移完毕,络合态的氰化物迁移较慢,需较长时间达到吸附解吸平衡。振荡48 h后,氰化物去除率达到50%。利用准一级动力学方程和准二级动力学方程均可较好地拟合淋洗液对土壤中总氰化物的淋洗动力学过程,相关系数均在0.95以上。

    固定振荡淋洗时间为48 h,考察不同淋洗次数对土壤中总氰化物的去除影响(见图7)。针对初始浓度为51.2 mg·kg−1的氰化物污染土,振荡淋洗3次后,总氰化物可降低至10.2 mg·kg−1,接近土壤氰化物总量修复目标值。

    振荡淋洗后,土壤中剩余氰化物的存在形态如图8所示。振荡淋洗后,土壤中的易释放态氰化物含量明显下降,且以首次淋洗时下降最多。这是由于以简单氰化物为主的易释放态氰化物更易于向淋洗液中迁移,而淋洗过程中以物理变化的吸附解吸过程为主,故氰化物各形态之间基本未发生相互转化。

    图9所示,淋洗过程对于土壤浸提液中总氰化物浓度的影响较大,原土浸提液浓度为1.6 mg·L−1。首次淋洗后即下降至0.34 mg·L−1,去除率接近80%;淋洗3次时,即可达到0.04 mg·L−1,满足0.1 mg·L−1的修复目标值。

    氰化物污染土壤淋洗实验结果表明,淋洗对土壤中总氰化物的去除效果一般。单次淋洗后,土壤总氰化物去除率不超过50%,且随淋洗次数的增加,去除率呈现下降趋势。淋洗对土壤浸提液中总氰化物的去除效果较为明显。单次淋洗后,土壤浸提液总氰化物去除率接近80%。

  • 应用化学氧化技术,在合适的药剂用量(3%以上)和反应条件(反应时间7 d以上)下,土壤中总氰化物去除率达到80%以上;但氧化过程也会导致土壤中易释放氰化物比例增加,不利于土壤中浸提液中总氰化物浓度的去除,最优条件下去除率仅为52%。

    应用淋洗技术,在单次淋洗条件下,土壤中总氰化物的去除率小于50%;而由于易释放态氰化物更易于向水相中迁移,单次淋洗后土壤浸提液中总氰化物浓度去除率达到80%。

    按照土壤中总氰化物和土壤浸提液中总氰化物的双重修复目标要求,由于氧化技术对土壤总氰化物去除效果好、淋洗技术对土壤浸提液中总氰化物去除率高,故在天津某氰化物污染场地土壤修复项目中结合2种技术的优势,以较低成本实现修复达标是可行的。

  • 按照氧化淋洗联合应用的技术思路,在天津某氰化物污染土壤治理项目进行工程应用。工程实施分为氧化单元和淋洗单元,工艺实施路线如图10所示。

    1)氧化单元实施方案。将污染土从暂存区短驳进入修复区,在封闭的钢结构罩棚内完成土壤的预处理筛分破碎工作,分离出土壤中的大块建筑垃圾,并针对分离出的大块建筑垃圾进行冲洗处理。将筛分破碎后的土壤在罩棚内完成氧化剂的拌和,加药量按照3%的质量比。加药后的污染土由装载机送入静置反应区,维持土壤含水率30%~40%养护7 d后进行自检,自检合格后进入淋洗单元。

    氧化单元的自检合格标准:土壤中总氰化物含量小于15 mg·kg−1(按照淋洗对总氰化物的去除率为50%,修复目标值为9.86 mg·kg−1,反推设计自检合格标准)。

    2)淋洗单元实施方案。氧化自检合格的污染土壤进入淋洗单元,分别经过滚筒洗涤器、水力旋流器、螺旋洗砂机环节进行清洗,在滚筒洗涤器处分离出>2 mm的砂石,同时在螺旋洗砂机处分离出50 μm~2 mm粗砂,经板框压滤后分离出<50 μm的土壤颗粒。淋洗和冲洗环节产生的污水进入污水处理装置进行破氰处理,处置合格后作为淋洗液循环使用。淋洗单元土水比控制在1∶5左右。

    淋洗单元出料砂石合并进入建筑垃圾冲洗环节。对出料的细粒土壤和粗砂进行自检,自检合格后申请验收。

    淋洗单元的自检合格标准:土壤中总氰化物含量小于9.86 mg·kg−1,土壤浸提液中总氰化物含量小于0.1 mg·L−1,即满足本项目的最终修复目标值。

  • 对经氧化淋洗联合修复后、且自检合格的土壤进行修复效果评估。以500 m3为1个检验批,在每个检验批土堆的表层、中层、底层以及不同位置,分别采集9个样品制成1个混合样送检。在对同一阶段处理的约2×104 m3氰化物轻度污染土壤进行验收,共采集44组土壤样品(含4组平行样),检测结果如表2所示。40个检验批土壤均达到双重验收指标的控制要求,合格率达到100%。

  • 1)在氧化条件下,随着氧化剂用量的增加,土壤中总氰化物呈现下降的趋势,土壤中氰化物的形态从络合态向易释放态转变,土壤浸提液中总氰化物的浓度呈现先升高后降低的趋势;当氧化剂用量为5%时,总氰化物浓度从51.2 mg·kg−1降低至9.23 mg·kg−1,满足总量的修复目标,而土壤浸提液浓度从初始的1.6 mg·L−1降低至0.79 mg·L−1,未能达到修复目标。

    2)在振荡淋洗条件下,对土壤淋洗5次。随着淋洗次数的增加,土壤中总氰化物呈现下降的趋势,土壤中氰化物的易释放态逐渐减少,土壤浸提液中总氰化物浓度呈现快速下降的趋势;在淋洗3次时,土壤浸提液浓度从初始的1.6 mg·L−1降低至0.04 mg·L−1,达到修复目标,而土壤总氰化物含量从51.2 mg·kg−1降低至10.2 mg·kg−1,未能达到修复目标。

    3)氧化技术和淋洗技术联合使用时,在氧化剂用量为3%,淋洗1次条件下,土壤氰化物可以满足总量(9.86 mg·kg−1)和浸出(0.1 mg·L−1)的双重修复目标。

    4)本研究成果已成功应用于天津某氰化物污染场地修复项目。土壤修复成本与原水泥窑热解处置成本基本持平。本技术的应用加快了该项目实施进程,对于降低修复工程的邻避效应风险和二次污染风险发挥了重要作用。研究成果和应用案例可为今后国内其他同类项目提供经验借鉴和技术参考。

参考文献 (16)

返回顶部

目录

/

返回文章
返回