-
目前,填埋是我国最主要的生活垃圾处理方式。2018年,我国经填埋处理的生活垃圾量为1.2×108 t,占清运总量的52%[1]。生活垃圾含有大量可降解有机物,被微生物降解后产生会大量填埋气。在厌氧条件下,填埋气由甲烷(CH4)(体积分数55%~56%)、二氧化碳(CO2)(体积分数40%~45%)、含硫和含氮化合物等组成[2-4]。有研究[5]表明,CH4比CO2具有更强的温室效应。据估算,填埋场每年排放的CH4约占全球人为CH4排放总量的18%,因此,被认为是重要的长期CH4排放源之一[6]。填埋场不仅是最大的人为温室气体排放源,也是多种恶臭气体的排放源[7-8]。因大多数恶臭气体嗅阈值极低,即使填埋场排放的恶臭气体很少,仍会给附近居民造成不良影响。
填埋场通常利用填埋气收集系统来控制填埋场气体排放[9-10]。然而,由于集气井数量、间距设置以及渗滤液淤积的影响,填埋场的气体收集效率约为55%~91%[11],部分填埋场还存在收集效率不足(2%~14%)的问题[12]。此外,集气装置一般要等到垃圾填埋达到一定高度完成土工膜覆盖后才进行安装或启用,与垃圾填埋并不同步,种种因素使得大量填埋气未能被收集而直接逸散到大气环境中[12-14]。
目前,许多研究集中于气体收集效率的提高方面[11, 13, 15];而有关堆体抽气造成的填埋气组分及排放量的影响的研究鲜有报道。因此,本研究采用垃圾堆体抽气收集填埋气的方式进行填埋气减排处理,与常规集气系统相比,该方法能够及时收集填埋气,减少填埋过程中污染气体的无序排放;同时,抽气操作将新鲜空气主动引入堆体内部,让垃圾内部同时存在厌氧、缺氧和好氧区域,有利于垃圾降解和稳定;实验中利用静态通量箱法探究不同抽气条件设置对填埋气中各组分排放通量的影响,可为我国填埋场温室气体和恶臭气体排放控制对策的制定提供参考。
模拟生活垃圾填埋反应器堆体底部抽气对污染气体排放的控制
Gas extraction from the bottom of the simulated municipal solid waste landfill reactor for controlling air pollution
-
摘要: 在填埋作业期间,生活垃圾填埋场由于缺少覆盖材料和集气系统,导致填埋气排放缺乏有效控制。为探究垃圾堆体抽气操作对填埋气的减排作用,搭建了3个模拟反应器,包括不抽气的对照组(C)、低抽气量组(E1)和高抽气量组(E2)。在为期171 d的实验中,垃圾分3层填埋,使用静态通量箱法,探究了3个反应器中二氧化碳、甲烷及含硫恶臭气体(甲硫醇、二硫化碳、甲硫醚、乙硫醚和二甲二硫醚)排放通量随反应器运行时间和垃圾堆体抽气操作强度的变化情况。结果表明:E2组比C组更早产生甲烷,但其抽气后减排率可达100%;而E1一直未检测到甲烷,可能是因为甲烷化过程并未建立,或是其中甲烷被覆土中的甲烷氧化菌氧化。此外,与自身抽气前相比,E1和E2对5种硫化物具有不同程度的减排效果,但E2的效果更好。上述研究结果可为填埋场的温室气体和含硫恶臭气体减排策略的制定提供参考。Abstract: During landfill operation, landfill gas (LFG) emissions are not controlled properly before the installing landfill cover system and LFG collection system. This study aims to examine the attenuation efficiency of LFG emissions through extracting LFG from the bottom of simulated municipal solid waste (MSW) landfill reactors. Three reactors were constructed to simulate different operation modes, including a control group (C) without extraction, and two extracted groups with low (E1) and high (E2) gas extraction rate, respectively. Three layers of MSW were gradually placed to reflect the field landfill operation during a period of 171 days. The emissions fluxes of methane, carbon dioxide and five sulphur compounds (methyl mercaptan, carbon disulfide, dimethyl sulfide, diethyl sulfide and dimethyl disulfide) were monitored using a static flux chamber method, and their variations with the reactor operation time and gas extraction rate were studied. The results showed that methane produced earlier for E2 than for C, but its gas emission rate could reach 100% through the extraction. However, no methane flux was detected in E1, the possible reason was that methanogenic phase did not established or the methane was oxidized by methanotrophs in cover soil. Additionally, compared with them before gas extraction, E1 and E2 showed different emission reduction effects for all five sulphur compounds, but E2 performed better than for E1. The results could provide reference for establishing mitigation strategies for emissions of greenhouse gases and sulfur-containing odour gases at landfills.
-
表 1 实验所用垃圾组分及相关参数
Table 1. Composition and physical properties of waste
垃圾成分 占比/% 填埋质量/kg 含水率/% TS/% VS/% 相对密度Gs 餐厨垃圾 55.0 21.45 70.53 29.47 94.71 1.04 纸类 10.0 3.90 7.84 92.16 83.62 0.88 塑料 10.0 3.90 — 100.00 99.97 0.84 沙土 20.0 7.80 5.61 94.39 1.88 2.30 玻璃 4.5 1.75 — 100.00 — 2.55 金属 0.5 0.20 — 100.00 — 2.43 -
[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018. [2] ZOU S C, LEE S C, CHAN C Y, et al. Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China[J]. Chemosphere, 2003, 51(9): 1015-1022. doi: 10.1016/S0045-6535(03)00004-3 [3] SCHEUTZ C, BOGNER J, CHANTON J P, et al. Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill[J]. Waste Management, 2008, 28(10): 1892-1908. doi: 10.1016/j.wasman.2007.09.010 [4] MAJUMDAR D, RAY S, CHAKRABORTY S, et al. Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site[J]. Journal of the Air & Waste Management Association, 2013, 64(7): 834-845. [5] LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. doi: 10.1038/344529a0 [6] BOGNER J, PIPATTI R, HASHIMOTO S, et al. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the intergovernmental panel on climate change (IPCC) fourth assessment report. Working group III (mitigation)[J]. Waste Management and Research, 2008, 26(1): 11-32. doi: 10.1177/0734242X07088433 [7] YANG N, ZHANG H, SHAO L M, et al. Greenhouse gas emissions during MSW landfilling in China: Influence of waste characteristics and LFG treatment measures[J]. Journal of Environmental Management, 2013, 129: 510-521. doi: 10.1016/j.jenvman.2013.08.039 [8] CHENG Z W, SUN Z T, ZHU S J, et al. The identification and health risk assessment of odor emissions from waste landfilling and composting[J]. Science of the Total Environment, 2019, 649: 1038-1044. doi: 10.1016/j.scitotenv.2018.08.230 [9] WANG X J, JIA M S, LIN X Y, et al. A comparison of CH4, N2O and CO2 emissions from three different cover types in a municipal solid waste landfill[J]. Journal of the Air and Waste Management Association, 2017, 67(4): 507-515. doi: 10.1080/10962247.2016.1268547 [10] BORJESSON G, SVENSSON B H. Nitrous oxide emissions from landfill cover soils in Sweden[J]. Tellus, Series B: Chemical and Physical Meteorology, 1997, 49(4): 357-363. doi: 10.3402/tellusb.v49i4.15974 [11] BARLAZ M A, CHANTON J P, GREEN R B. Controls on landfill gas collection efficiency: Instantaneous and lifetime performance[J]. Journal of the Air and Waste Management Association, 2009, 59(12): 1399-1404. doi: 10.3155/1047-3289.59.12.1399 [12] MONSTER J, SAMUELSSON J, KJELDSEN P, et al. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method[J]. Waste Management, 2015, 35: 177-186. doi: 10.1016/j.wasman.2014.09.006 [13] XUE Q, LIU L. Study on optimizing evaluation and recovery efficiency for landfill gas energy collection[J]. Environmental Progress & Sustainable Energy, 2014, 33(3): 972-977. [14] BARLAZ M A, CHANTON J P, GREEN R B. Controls on landfill gas collection efficiency: Instantaneous and lifetime performance[J]. Journal of the Air & Waste Management Association, 2015, 59(12): 1399-1404. [15] TOWNSEND T G, MILLER W L. Landfill gas extraction from leachate collection systems[J]. Journal of Solid Waste Technology and Management, 1997, 24(3): 131-136. [16] 李明英, 杨帆, KO J H, et al. 压力对填埋垃圾产甲烷的影响研究[J]. 环境科学学报, 2015, 35(11): 3755-3761. [17] VASAREVIČIUS S. Investigation and evaluation of H2S emissions from a municipal landfill[J]. Journal of Environmental Engineering and Landscape Management, 2011, 19(1): 12-20. doi: 10.3846/16486897.2011.557263 [18] 段振菡. 典型生活垃圾填埋场作业面恶臭物质释放特征及源解析[D]. 北京: 清华大学, 2015. [19] PETERSEN J N, BEREDED-SAMUEL Y, SKEEN R S. The effect of oxygen exposure on the methanogenic activity of an anaerobic bacterial consortium[J]. Environmental Progress, 1998, 17(2): 104-110. doi: 10.1002/ep.670170217 [20] HEDRICK D B, GUCKERT J B, WHITE D C. The effects of oxygen and chloroform on microbial activities in a high-solids, high-productivity anaerobic biomass reactor[J]. Biomass and Bioenergy, 1991, 1(4): 207-212. doi: 10.1016/0961-9534(91)90004-V [21] KIENER A, LEISINGER T. Oxygen sensitivity of methanogenic bacteria[J]. Systematic and Applied Microbiology, 1983, 4(3): 305-312. doi: 10.1016/S0723-2020(83)80017-4 [22] ELFADEL M, FINDIKAKIS A N, LECKIE J O. Environmental impacts of solid waste landfilling[J]. Journal of Environmental Management, 1997, 50(1): 1-25. [23] WEILAND P. Biogas production: Current state and perspectives[J]. Applied Microbiology Biotechnology, 2010, 85(4): 849-860. doi: 10.1007/s00253-009-2246-7 [24] XU Q, QIN J, KO J H. Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations[J]. Journal of Cleaner Production, 2019, 222: 446-454. doi: 10.1016/j.jclepro.2019.03.083 [25] XU Q, TIAN Y, WANG S, et al. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors[J]. Waste Management, 2015, 41: 94-100. doi: 10.1016/j.wasman.2015.03.023 [26] 邵立明, 何品晶, 瞿贤. 回灌渗滤液pH和VFA浓度对填埋层初期甲烷化的影响[J]. 环境科学学报, 2006, 26(9): 1451-1457. doi: 10.3321/j.issn:0253-2468.2006.09.008 [27] ANGELIDAKI I, ELLEGAARD L, AHRING B K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition[J]. Biotechnology and Bioengineering, 1993, 42(2): 159-166. doi: 10.1002/bit.260420203 [28] ZHU M, LYU F, HAO L P, et al. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation[J]. Waste Management, 2009, 29(7): 2042-2050. doi: 10.1016/j.wasman.2008.12.023 [29] FARQUHAR G J, ROVERS F A. Gas production during refuse decomposition[J]. Water, Air & Soil Pollution, 1973, 2(4): 483-495. [30] WEST A E, SCHMIDT S K. Wetting stimulates atmospheric CH4 oxidation by alpine soil[J]. FEMS Microbiology Ecology, 1998, 25(4): 349-353. doi: 10.1111/j.1574-6941.1998.tb00486.x [31] BENDER M, CONRAD R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity[J]. Soil Biology and Biochemistry, 1995, 27(12): 1517-1527. doi: 10.1016/0038-0717(95)00104-M [32] CZEPIEL P M, MOSHER B, CRILL P M, et al. Quantifying the effect of oxidation on landfill methane emissions[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D11): 16721-16729. doi: 10.1029/96JD00222 [33] HIGGINS M J, CHEN Y C, YAROSZ D P, et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors[J]. Water Environment Research, 2006, 78(3): 243-252. doi: 10.2175/106143005X90065 [34] DU W W, PARKER W. Modeling volatile organic sulfur compounds in mesophilic and thermophilic anaerobic digestion of methionine[J]. Water Research, 2012, 46(2): 539-546. doi: 10.1016/j.watres.2011.11.043 [35] YOSHIMURA M, NAKANO Y, YAMASHITA Y, et al. Formation of methyl mercaptan from L-methionine by porphyromonas gingivalis[J]. Infection and Immunity, 2000, 68(12): 6912-6916. doi: 10.1128/IAI.68.12.6912-6916.2000 [36] PHAE C G, SHODA M. A New Fungus which degrades hydrogen-sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide[J]. Biotechnology Letters, 1991, 13(5): 375-380. doi: 10.1007/BF01027686 [37] BAK F, FINSTER K, ROTHFUSS F. Formation of dimethylsulfide and methanethiol from methoxylated aromatic-compounds and inorganic sulfide by newly isolated anaerobic-bacteria[J]. Archives of Microbiology, 1992, 157(6): 529-534. [38] KIENE R P, HINES M E. Microbial formation of dimethyl sulfide in anoxic sphagnum peat[J]. Applied Environmental Microbiology, 1995, 61(7): 2720-2726. doi: 10.1128/AEM.61.7.2720-2726.1995 [39] PERSSON S, EDLUND M B, CLAESSON R, et al. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria[J]. Oral Microbiology and Immunology, 1990, 5(4): 195-201. doi: 10.1111/j.1399-302X.1990.tb00645.x [40] CHIN H W, LINDSAY R C. Volatile sulfur compounds formed in disrupted tissues of different cabbage cultivars[J]. Journal of Food Science, 1993, 58(4): 835-839. doi: 10.1111/j.1365-2621.1993.tb09370.x [41] LIANG Z S, AN T C, LI G Y, et al. Aerobic biodegradation of odorous dimethyl disulfide in aqueous medium by isolated bacills cereus GIGAN2 and identification of transformation intermediates[J]. Bioresource Technology, 2015, 175: 563-568. doi: 10.1016/j.biortech.2014.11.002 [42] LI X, CHEN S S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds[J]. Chemosphere, 2020, 244: 125466. doi: 10.1016/j.chemosphere.2019.125466 [43] ZHOU G M, FANG H H P. Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment[J]. Water Science and Technology, 1998, 38(8/9): 317-324.