[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018.
[2] ZOU S C, LEE S C, CHAN C Y, et al. Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China[J]. Chemosphere, 2003, 51(9): 1015-1022. doi: 10.1016/S0045-6535(03)00004-3
[3] SCHEUTZ C, BOGNER J, CHANTON J P, et al. Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill[J]. Waste Management, 2008, 28(10): 1892-1908. doi: 10.1016/j.wasman.2007.09.010
[4] MAJUMDAR D, RAY S, CHAKRABORTY S, et al. Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site[J]. Journal of the Air & Waste Management Association, 2013, 64(7): 834-845.
[5] LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. doi: 10.1038/344529a0
[6] BOGNER J, PIPATTI R, HASHIMOTO S, et al. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the intergovernmental panel on climate change (IPCC) fourth assessment report. Working group III (mitigation)[J]. Waste Management and Research, 2008, 26(1): 11-32. doi: 10.1177/0734242X07088433
[7] YANG N, ZHANG H, SHAO L M, et al. Greenhouse gas emissions during MSW landfilling in China: Influence of waste characteristics and LFG treatment measures[J]. Journal of Environmental Management, 2013, 129: 510-521. doi: 10.1016/j.jenvman.2013.08.039
[8] CHENG Z W, SUN Z T, ZHU S J, et al. The identification and health risk assessment of odor emissions from waste landfilling and composting[J]. Science of the Total Environment, 2019, 649: 1038-1044. doi: 10.1016/j.scitotenv.2018.08.230
[9] WANG X J, JIA M S, LIN X Y, et al. A comparison of CH4, N2O and CO2 emissions from three different cover types in a municipal solid waste landfill[J]. Journal of the Air and Waste Management Association, 2017, 67(4): 507-515. doi: 10.1080/10962247.2016.1268547
[10] BORJESSON G, SVENSSON B H. Nitrous oxide emissions from landfill cover soils in Sweden[J]. Tellus, Series B: Chemical and Physical Meteorology, 1997, 49(4): 357-363. doi: 10.3402/tellusb.v49i4.15974
[11] BARLAZ M A, CHANTON J P, GREEN R B. Controls on landfill gas collection efficiency: Instantaneous and lifetime performance[J]. Journal of the Air and Waste Management Association, 2009, 59(12): 1399-1404. doi: 10.3155/1047-3289.59.12.1399
[12] MONSTER J, SAMUELSSON J, KJELDSEN P, et al. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method[J]. Waste Management, 2015, 35: 177-186. doi: 10.1016/j.wasman.2014.09.006
[13] XUE Q, LIU L. Study on optimizing evaluation and recovery efficiency for landfill gas energy collection[J]. Environmental Progress & Sustainable Energy, 2014, 33(3): 972-977.
[14] BARLAZ M A, CHANTON J P, GREEN R B. Controls on landfill gas collection efficiency: Instantaneous and lifetime performance[J]. Journal of the Air & Waste Management Association, 2015, 59(12): 1399-1404.
[15] TOWNSEND T G, MILLER W L. Landfill gas extraction from leachate collection systems[J]. Journal of Solid Waste Technology and Management, 1997, 24(3): 131-136.
[16] 李明英, 杨帆, KO J H, et al. 压力对填埋垃圾产甲烷的影响研究[J]. 环境科学学报, 2015, 35(11): 3755-3761.
[17] VASAREVIČIUS S. Investigation and evaluation of H2S emissions from a municipal landfill[J]. Journal of Environmental Engineering and Landscape Management, 2011, 19(1): 12-20. doi: 10.3846/16486897.2011.557263
[18] 段振菡. 典型生活垃圾填埋场作业面恶臭物质释放特征及源解析[D]. 北京: 清华大学, 2015.
[19] PETERSEN J N, BEREDED-SAMUEL Y, SKEEN R S. The effect of oxygen exposure on the methanogenic activity of an anaerobic bacterial consortium[J]. Environmental Progress, 1998, 17(2): 104-110. doi: 10.1002/ep.670170217
[20] HEDRICK D B, GUCKERT J B, WHITE D C. The effects of oxygen and chloroform on microbial activities in a high-solids, high-productivity anaerobic biomass reactor[J]. Biomass and Bioenergy, 1991, 1(4): 207-212. doi: 10.1016/0961-9534(91)90004-V
[21] KIENER A, LEISINGER T. Oxygen sensitivity of methanogenic bacteria[J]. Systematic and Applied Microbiology, 1983, 4(3): 305-312. doi: 10.1016/S0723-2020(83)80017-4
[22] ELFADEL M, FINDIKAKIS A N, LECKIE J O. Environmental impacts of solid waste landfilling[J]. Journal of Environmental Management, 1997, 50(1): 1-25.
[23] WEILAND P. Biogas production: Current state and perspectives[J]. Applied Microbiology Biotechnology, 2010, 85(4): 849-860. doi: 10.1007/s00253-009-2246-7
[24] XU Q, QIN J, KO J H. Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations[J]. Journal of Cleaner Production, 2019, 222: 446-454. doi: 10.1016/j.jclepro.2019.03.083
[25] XU Q, TIAN Y, WANG S, et al. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors[J]. Waste Management, 2015, 41: 94-100. doi: 10.1016/j.wasman.2015.03.023
[26] 邵立明, 何品晶, 瞿贤. 回灌渗滤液pH和VFA浓度对填埋层初期甲烷化的影响[J]. 环境科学学报, 2006, 26(9): 1451-1457. doi: 10.3321/j.issn:0253-2468.2006.09.008
[27] ANGELIDAKI I, ELLEGAARD L, AHRING B K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition[J]. Biotechnology and Bioengineering, 1993, 42(2): 159-166. doi: 10.1002/bit.260420203
[28] ZHU M, LYU F, HAO L P, et al. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation[J]. Waste Management, 2009, 29(7): 2042-2050. doi: 10.1016/j.wasman.2008.12.023
[29] FARQUHAR G J, ROVERS F A. Gas production during refuse decomposition[J]. Water, Air & Soil Pollution, 1973, 2(4): 483-495.
[30] WEST A E, SCHMIDT S K. Wetting stimulates atmospheric CH4 oxidation by alpine soil[J]. FEMS Microbiology Ecology, 1998, 25(4): 349-353. doi: 10.1111/j.1574-6941.1998.tb00486.x
[31] BENDER M, CONRAD R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity[J]. Soil Biology and Biochemistry, 1995, 27(12): 1517-1527. doi: 10.1016/0038-0717(95)00104-M
[32] CZEPIEL P M, MOSHER B, CRILL P M, et al. Quantifying the effect of oxidation on landfill methane emissions[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D11): 16721-16729. doi: 10.1029/96JD00222
[33] HIGGINS M J, CHEN Y C, YAROSZ D P, et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors[J]. Water Environment Research, 2006, 78(3): 243-252. doi: 10.2175/106143005X90065
[34] DU W W, PARKER W. Modeling volatile organic sulfur compounds in mesophilic and thermophilic anaerobic digestion of methionine[J]. Water Research, 2012, 46(2): 539-546. doi: 10.1016/j.watres.2011.11.043
[35] YOSHIMURA M, NAKANO Y, YAMASHITA Y, et al. Formation of methyl mercaptan from L-methionine by porphyromonas gingivalis[J]. Infection and Immunity, 2000, 68(12): 6912-6916. doi: 10.1128/IAI.68.12.6912-6916.2000
[36] PHAE C G, SHODA M. A New Fungus which degrades hydrogen-sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide[J]. Biotechnology Letters, 1991, 13(5): 375-380. doi: 10.1007/BF01027686
[37] BAK F, FINSTER K, ROTHFUSS F. Formation of dimethylsulfide and methanethiol from methoxylated aromatic-compounds and inorganic sulfide by newly isolated anaerobic-bacteria[J]. Archives of Microbiology, 1992, 157(6): 529-534.
[38] KIENE R P, HINES M E. Microbial formation of dimethyl sulfide in anoxic sphagnum peat[J]. Applied Environmental Microbiology, 1995, 61(7): 2720-2726. doi: 10.1128/AEM.61.7.2720-2726.1995
[39] PERSSON S, EDLUND M B, CLAESSON R, et al. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria[J]. Oral Microbiology and Immunology, 1990, 5(4): 195-201. doi: 10.1111/j.1399-302X.1990.tb00645.x
[40] CHIN H W, LINDSAY R C. Volatile sulfur compounds formed in disrupted tissues of different cabbage cultivars[J]. Journal of Food Science, 1993, 58(4): 835-839. doi: 10.1111/j.1365-2621.1993.tb09370.x
[41] LIANG Z S, AN T C, LI G Y, et al. Aerobic biodegradation of odorous dimethyl disulfide in aqueous medium by isolated bacills cereus GIGAN2 and identification of transformation intermediates[J]. Bioresource Technology, 2015, 175: 563-568. doi: 10.1016/j.biortech.2014.11.002
[42] LI X, CHEN S S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds[J]. Chemosphere, 2020, 244: 125466. doi: 10.1016/j.chemosphere.2019.125466
[43] ZHOU G M, FANG H H P. Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment[J]. Water Science and Technology, 1998, 38(8/9): 317-324.