-
全球工业化与城市化的高速发展导致重金属严重污染水资源,人类社会正遭受严峻的健康挑战[1-3]。铅作为一种毒性重金属,由于其在生态系统中具有生物累积性和持久性的特点,已被世界环保组织列为优先治理的一种污染物[4]。长期饮用含铅废水会损坏人体器官,增加癌症的发病率。目前,污水中铅的治理技术主要有化学沉淀、膜过滤、电渗析以及生物修复等,但这些技术在实际的污水处理中存在诸多限制因素,且可能会带来二次污染[5-7]。吸附法因其具有成本低、高效、安全、无副产物生成等优点被认为是当前最具应用前景的技术[8]。
生物炭是由生物质原料经高温无氧或微氧热解而成的高度芳香化的多孔富炭固体。因其具有优良的表面性能(大比表面、多孔结构、丰富的官能团等)、来源广泛、对环境友好等优点,受到各研究领域高度关注[9]。近年来,生物炭在治理污水中的有机污染物与重金属方面表现出了极大的潜力,是一种应用范围较为广泛的环境污染吸附剂[10-11]。有研究[9]发现,生物炭的表面理化性质决定其吸附性能,而原料与热解条件(尤其是热解温度)又是影响生物炭表面理化性质的主要因素。因此,选择合适的原料以及适宜的热解温度是生产高效吸附产品的必要条件。
我国食用菌产业规模庞大,2017年食用菌总产量约为3.7×107 t,随之而产生的菌糠总量高达6.0×107 t[12]。大规模的菌糠堆积会对生态环境造成巨大压力,同时也对废弃物处理工作提出了严峻的挑战。菌糠的传统处理方式为室外堆积或就地焚烧,这样不仅浪费资源,而且污染环境[13]。由于菌糠表面富含羧基、羟基、磷酸基团与羰基等官能团,国内外学者已将其作为重金属吸附剂进行了大量研究。HU等[14]研究发现,香菇菌糠吸附Cu2+主要是由于其表面富含羟基、氨基以及羧基等官能团;宋涛[15]利用NaOH改性黑木耳菌糠吸附水中的Pb2+,其最大吸附量达到了49.53 mg·g−1;JIN等[16]根据Langmuir模型计算得出平菇菌糠对Cd2+的最大吸附量为87.2 mg·g−1。然而,关于以菌糠为原料制备生物炭去除水体中的Pb2+研究却鲜有报道,且其吸附性能及吸附机制尚不清楚。因此,本研究以平菇菌糠为生物质原料,在250、450和650 ℃下慢速热解制备生物炭,通过BET、SEM-EDS、XRD、FT-IR等多种现代化技术对生物炭样品进行表征,采用批量吸附实验研究其对水体中Pb2+的吸附特性,利用机制定性、定量分析实验,深入解析其吸附机理,为固废管理以及污水中Pb2+的去除提供参考。
-
平菇菌糠(PS)取自山西农业大学食用菌研究中心,样品经60 ℃烘干48 h后,粉碎筛分至1 mm。将粉碎后的样品装入100 mL耐高温瓷坩埚中,经压实密封后,放入马弗炉。热解前,充入N2 10~20 min,马弗炉的升温速率设置为10 ℃·min−1,然后分别在250、450、650 ℃下热解2 h,热解温度的选择参考文献中的方法[17-18];待自然冷却至室温后,研磨过100目筛,最后将制备样品收集在密封袋中保存,以备进一步实验利用。根据原料名称和热解温度,将平菇菌糠生物炭分别命名为PS250、PS450和PS650。
-
采用马弗炉测定PSBC灰分,灼烧温度为800 ℃;使用pH计(PHS-4C+,上海,雷磁)测定PSBC的pH,在测定前,振荡1 h,固水比设为1∶20;使用元素分析仪(Vario Macrocube,德国,Elementar)测定PSBC 中的C、H、N的含量,根据质量平衡计算O含量,并依次计算O/C与H/C值;使用扫描电镜能谱仪(JEOL,JSM-6490LV,日本,Hitachi)对PSBC吸附前后的表面形态进行表征,放大4 000倍;基于Brunner-Emmet-Teller(BET)与Barrett-Joyner-Halenda(BJH)理论,使用比表面与孔径分析仪(ASAP 2020,美国,Micromeritics)测定PSBC比表面积、孔径及孔径体积;使用Zeta电位分析仪(ZS90,英国,Malvern Panalytical)测定PSBC表面Zeta电位;使用X射线衍射仪 (XRD,D8 Advance,德国,Bruker)在2θ为2°~70°内扫描获得XRD图像,分析PSBC吸附前后表面晶体结构;使用傅里叶红外光谱仪(FTIR,Nicolet,美国,Thermo)对PSBC吸附前后的表面官能团进行定性分析,样品经KBr压片后,在波数500~4 000 cm−1内扫描64次获得光谱。
-
在批量吸附实验中,Pb2+储备液(1 000 mg·L−1)采用Pb(NO3)2与蒸馏水制备,以0.01 mol·L−1 NaNO3作为溶液背景电解质;在后续实验中,所需Pb2+浓度通过稀释储备液获得;稀释后的Pb2+溶液经0.1 mol·L−1的HNO3和NaOH调节pH后,在恒温振荡箱中分批进行吸附实验。
在考察初始pH对吸附的影响时,将Pb2+储备液稀释至300 mg·L−1,然后调节溶液pH至3~7(过高的pH会导致沉淀产生)。准确称取0.05 g 生物炭样品(PS250、PS450与PS650),分别加入100 mL锥形瓶中(含40 mL稀释液),在25 ℃下,以150 r·min−1转速振荡24 h后,过滤取样。滤液中Pb2+浓度使用ICP-OES(Optima 5300 DV,美国,Perkin Elmer)测定,实验重复3次,根据吸附量结果确定最佳pH。
生物炭的平衡吸附量(qe)与去除率(ƞ)分别由式(1)和式(2)计算。
式中:qe为平衡吸附量,mg·g−1;η为去除率;C0与Ce分别为Pb2+溶液的初始浓度与吸附平衡浓度,mg·L−1;V为溶液体积,mL;m为生物炭的质量,g。
在进行吸附动力学实验时,将Pb2+储备液稀释至300 mg·L−1,溶液pH调节为6.0。分别称取0.05 g生物炭加入100 mL锥形瓶中(含40 mL稀释液),在室温下以150 r·min−1转速振荡24 h,并分别在预定时间取样过滤,滤液中Pb2+的浓度由ICP-OES测定,实验重复3次。
利用准一级动力与准二级动力模型拟合生物炭对Pb2+的吸附过程,方程如式(3)和式(4)所示。
式中:qt与qe分别为t时刻和吸附平衡时的Pb2+吸附量,mg·g−1;k1为准一级吸附速率常数,min−1;k2为准二级吸附速率常数,g·(mg·min) −1。
在进行吸附等温线实验时,将Pb2+储备液分别稀释至100、200、300、400、500、600和700 mg·L−1,溶液pH调节为6.0。分别称取0.05 g生物炭加入含40 mL不同浓度稀释液的100 mL锥形瓶中,在室温下以150 r·min−1转速振荡后过滤,使用ICP-OES检测滤液中剩余Pb2+的浓度,实验重复3次。
利用Langmuir与Freundlich模型对吸附等温线进行拟合,方程如式(5)和式(6)所示。
式中:qe与qmax分别为平衡吸附量和最大吸附容量,mg·g−1;Ce为吸附达到平衡时溶液中Pb2+的溶度,mg·L−1;kL为与吸附强度有关的Langmuir常数;kF与n分别为反应吸附容量和吸附强度的Freundlich常数。
定量分析生物炭吸附Pb2+机制主要围绕3种吸附作用[8, 17]:1)生物炭与Pb2+之间的沉淀作用(Qp),酸洗会去除生物炭大部分矿物质,但对表面官能团无影响,脱矿前后生物炭对Pb2+吸附量变化值则为沉淀机制贡献的吸附量(Qp),计算方法如式(7)所示;2)含氧官能团对Pb2+的络合作用(Qf),由于羟基、羧基等含氧官能团的存在,经酸洗后的生物炭,吸附Pb2+前后的pH会降低,具体反应方程如式(8)和式(9)所示,据ZHANG等[19]的研究报道,将pH变化值换算成H+的浓度,即为含氧官能团的络合对Pb2+贡献的吸附量(Qf);3) π电子与Pb2+之间的相互作用(Qπ),酸洗后的生物炭对Pb2+的吸附量(Qa)是由含氧官能团的络合以及π电子的结合共同作用的结果,因此,π电子结合作用对Pb2+贡献的吸附量(Qπ)由式(10)计算。不同吸附机制的Pb2+吸附量对总吸附量(Qt)的贡献率分别由Qp/Qt、Qf/Qt与Qπ/Qt表示。
式中:Qt为总吸附量,mg·g−1;Qp为沉淀机制贡献的吸附量,mg·g−1;Qf为含氧官能团的络合贡献的吸附量,mg·g−1;Qa为π电子结合贡献的吸附量,mg·g−1。
-
准确称取0.05 g生物炭,置于40 mL浓度为300 mg·L−1的Pb2+稀释溶液中,吸附24 h后,过滤获得负载Pb2+的固体样品。选用0.1 mol·L−1 HCl作为解吸剂[18],分别称取0.05 g负载Pb2+的生物炭加入含40 mL HCl的100 mL锥形瓶中,解吸1 h,之后通过离心法进行固液分离,收集滤液待测。同时,使用去离子水对分离出的固体样品进行多次冲洗后,分别加入40 mL含Pb2+稀释液(300 mg·L−1),再次进行吸附、过滤,实验条件与1.3节中的描述一致。使用ICP-OES测定剩余滤液的Pb2+浓度,实验重复3次。
-
实验考察了热解温度对PSBC性质的影响。3种热解温度条件下制备的PSBC主要理化性质见表1。随热解温度的升高,PSBC的产率逐渐降低,灰分含量与pH明显增加。同时,PSBC中的C元素含量增加,O、H与N元素含量降低。O与H含量降低主要是由于PS在热解过程发生了脱水作用,N含量降低可能原因是高温导致挥发性含氮物质(
NH+4/NO−3 )损耗[20]。O/C与H/C指标可分别反映生物炭的炭化程度和芳香性[21]。随着热解温度的升高,O/C与H/C均明显降低。这表明高温下制备的PSBC炭化程度高且具有较好的芳香性。这与ZHANG等[19]报道的生物炭在高温下形成更多芳香结构的研究结果一致。如表1所示,PS250、PS450、PS650的Zeta电位分别为−29.7、−27.2与−26.4 mV,表明热解温度对PSBC表面所带负电荷量影响较小。生物炭表面带负电荷,有利于吸附溶液中重金属阳离子。基于BJH理论计算出的不同PSBC的孔径结果表明,3种生物炭的平均孔径均介于2~50 nm之间,属于介孔结构[3]。随着热解温度由250 ℃上升至650 ℃,PSBC的比表面由5.37 m2·g−1大幅度增加为75.63 m2·g−1,孔径体积由0.01 cm3·g−1增加为0.11 cm3·g−1。这说明高温热解(650 ℃)制备的生物炭具有较高的比表面积和良好的孔径结构。这些特点可为其吸附水体中Pb2+提供更多的结合点位[3],从而有利于重金属Pb2+的去除。图1(a)~图1(c)为不同PSBC的扫描电镜图谱。在放大4 000倍的条件下观察发现,随着热解温度的升高,PSBC表面变得越来越粗糙,无规则,且形成了更多的孔隙结构。这说明较高的热解温度有利于多孔结构的形成,同时也验证了随热解温度的升高比表面积增大的结论。图1(d)~图1(i)为吸附后不同PSBC的扫描电镜图谱,可以看出,吸附后的PSBC表面均有白色针状物质的出现。对这些物质进行EDS分析后结果表明,吸附后的PSBC表面附着了一些含Pb2+的化合物,且能谱图中代表Pb2+的吸收峰随着热解温度的升高而变得更加尖锐。
图2为不同PSBC的XRD衍射图谱,可以看出,热解温度对XRD衍射峰强度影响较大。3种生物炭的XRD图谱均出现2种明显的衍射峰,分别代表SiO2(2θ=26.6°)与CaCO3(2θ=29.4°)晶体相,说明PSBC富含石英和方解石。随热解温度的升高,代表SiO2(2θ=26.6°)与CaCO3(2θ=29.4°)衍射峰的峰值强度明显增强,表明高温热解有利于形成更多的SiO2和CaCO3矿物,从而间接解释了生物炭的灰分含量随热解温度的升高而增加的现象。同时,PS650中富含CaCO3,其可释放到溶液中与Pb2+形成沉淀,促进对Pb2+的吸附[19]。
不同PSBC的红外光谱图见图3。从图3中可清楚观察到不同PSBC在3 417、1 638、1 585、1 413、1 384、875与762 cm−1处存在明显吸收峰,表明其富含官能团。随热解温度由250 ℃上升至650 ℃,3 417 cm−1处的—OH伸缩振动峰[22]、1 638 cm−1处的羧基与羰基C=O振动峰[23]、1 585 cm−1处的芳香族C=O吸收峰[18]以及1 384 cm−1处的羧酸C—O环振动峰均减弱[17],这主要是由于高温热解的脱水、脱羟和脱羧作用。这些含氧官能团的损失可能会影响PSBC对Pb2+的吸附能力[23]。875 cm−1处出现的振动带为CaCO3晶体典型吸收峰[7],随热解温度的升高,其峰值强度增强,说明高温热解促使更多的CaCO3的形成,这种现象与XRD分析结果一致。1 413 cm−1与762 cm−1处的振动带分别代表芳香C=C环与芳香C—H振动的吸收峰[24],随热解温度的升高,2条吸收峰均有不同程度增强。说明高温热解有利于PSBC中更多芳香结构的生成,这一现象与表1中芳香性指标(H/C)随着热解温度的变化规律一致。
-
由图4可知,随溶液初始pH由3.0上升至6.0,PS250、PS450与PS650的吸附量由11.02、33.22和49.26 mg·g−1增加为79.47、137.53和191.03 mg·g−1,随后均呈降低趋势。低pH条件下,PSBC对Pb2+的吸附效果极差,这主要是由于溶液中大量的H+会与Pb2+形成激烈竞争吸附,导致PSBC表面大量的结合位点被占据,从而削弱其对Pb2+的吸附能力。随溶液pH升高,H+含量减少,这会使PSBC表面出现更多的结合位点,从而增加其对Pb2+的吸附量[7]。因此,PSBC对Pb2+吸附的最佳pH为6.0,在后续实验中,将Pb2+溶液的pH均调节为最佳。
-
反应时间对Pb2+吸附量的影响如图5所示。可以看出,3种PSBC对Pb2+的吸附是一种典型的动力学过程,在吸附开始后的2 h内,吸附量快速增加,随后增长幅度缓慢,直到24 h吸附达到平衡。在快速吸附阶段,PS250、PS450与PS650对Pb2+的吸附量分别占到总吸附量的74.37%、90.16%与97.52%。传质驱动力与表面结合位点是导致快速吸附过程产生的2个主要原因[7],在吸附初期,由于高浓度Pb2+产生的较大传质驱动力以及PSBC表面较多的结合位点,这2种原因导致溶液中的Pb2+可以快速的附着于PSBC的表面;随着吸附过程的进行,溶液中传质驱动力的减弱以及PSBC表面结合位点的减少使溶液中Pb2+的吸附趋于缓慢[3]。
准一阶与准二阶模型的拟合参数如表2所示。准二阶模型的相关系数均大于准一阶模型(R2>0.99),且由准二阶模型计算出的理论吸附量更接近实际吸附量,表明准二阶动力学模型更适合对Pb2+的吸附过程拟合。同时,也说明PSBC对Pb2+的吸附主要以化学吸附为主[22]。另外,PS650的吸附速率常数k2远大于其他2种生物炭,表明其可以更快地达到吸附平衡。
-
不同PSBC对Pb2+的等温吸附线如图6所示,模型拟合参数见表3。可以看出,在低浓度范围内,不同PSBC对Pb2+的吸附量迅速增加,随着初始浓度的增加,Pb2+吸附量持续缓慢增长,直至趋于稳定。这主要是由于低浓度条件下,PSBC表面可提供充足的吸附结合位点,有利于Pb2+吸附量的快速增加。而随Pb2+浓度的增加,PSBC表面的结合位点的逐渐饱和导致其吸附量逐渐趋于平稳。
由表3可知,Freundlich模型(R2为0.995 2~0.997 6)比Langmuir模型(R2为0.879 9~0.969 5)更适合描述PSBC对Pb2+的吸附过程(表3),说明Pb2+的吸附过程以多分子层吸附为主[24]。此外,不同PSBC的Freundlich常数n为1~10,表明PSBC对Pb2+的吸附属于有利吸附[25]。对于吸附容量常数kF,其值随着热解温度的升高大幅度增加,说明PS650较其他2种生物炭具有更大的吸附容量。同时,由Langmuir模型计算出的PS250、PS450与PS650的最大吸附量分别达到了94.02、156.22与215.30 mg·g−1。结果也表明PS650对溶液中Pb2+吸附能力最强,这主要归根于PS650具有较大的比表面积及良好的介孔结构(表1)。本研究所制备的PS650对Pb2+的吸附量高于大多数吸附材料,甚至高于一些改性生物炭(表4),表明高温制备的PSBC在去除Pb2+方面具有一定的应用潜力。
-
本研究对吸附机制进行了定性分析。由SEM-EDS的分析结果(图1)可知,随着吸附反应的进行,溶液中的Pb2+会以某种化合物的形态附着在不同PSBC的表面,且随着热解温度由250 ℃升高至650 ℃,能谱图中代表Pb2+的吸收峰变得更加尖锐,说明PS650上吸附的Pb2+含量高于PS250与PS450,这与批量吸附实验所得出的结论相吻合。
为进一步了解Pb2+在PSBC表面的存在形态,通过XRD对吸附后PSBC表面的晶体结构进行分析(图7)。与未吸附PSBC相比(图2),吸附后的XRD图谱上出现了2种新的尖锐峰,这2种峰分别代表白铅矿(PbCO3)与水镁石(Pb3(CO3)2(OH)2)矿物,且其峰值强度随着热解温度的升高在不断增强。而代表CaCO3晶体的尖锐峰均消失。溶液中的Pb2+主要通过置换CaCO3中的Ca2+,从而在PSBC上形成新的沉淀物质。由于PbCO3的溶解平衡常数(Ksp=7.4×10−14)比CaCO3(Ksp=2.8×10−9)小5个数量级,因此,溶液中的Pb2+很容易将CaCO3上的Ca2+替换[9]。上述分析结果表明,沉淀机制确实参与了PSBC对Pb2+的吸附过程,并且沉淀量随着生物炭热解温度的升高而增大。
对比吸附前后不同PSBC的红外光谱图(图3)发现,吸附后PSBC上的含氧官能团的特征峰均发生了变化,例如3 417 cm−1(—OH)与1 638 cm−1(羧基C=O)处的吸收峰明显减弱,1 585 cm−1(芳香C=O)与1 384 cm−1(C—O)处的吸收峰发生了明显的位移,这些结果表明含氧官能团参与了PSBC对Pb2+的吸附。图谱中875 cm−1处代表CaCO3吸收峰的消失,说明CaCO3与溶液中的Pb2+发生了反应,进一步证实了沉淀机制存在于Pb2+吸附过程,这与吸附后XRD所呈现的结果一致。此外,1 413 cm−1 (C=C)及762 cm−1(芳香C—H)处的吸收峰发生了明显的减弱,表明PSBC上的芳香结构发生了变化。这可能是由于环芳香族π体系提供的π电子与Pb2+形成了络合物,且π-Pb2+间的相互作用会随着生物炭热解温度的升高不断增强[17]。
本研究对吸附机制进行了定量分析。沉淀作用(Qp)、含氧官能团的络合(Qf)以及π-Pb2+间的相互作用(Qπ)对整体吸附量(Qt)的贡献如图8所示。可以看出,不同吸附机制对PSBC吸附Pb2+的贡献依次为Qp>Qπ>Qf,说明沉淀作用是PSBC吸附Pb2+的主要机制。随热解温度由250 ℃上升至650 ℃,Qp由49.33 mg·g−1增加为154.77 mg·g−1,Qp/Qt比值由62.14%增加为81.36%,表明Pb2+的矿物沉淀作用随热解温度的升高而增加,这与之前分析结果(图1和图7)一致。对于π-Pb2+间的相互作用,PS250、PS450、PS650的Qπ分别为11.30、21.14、31.15 mg·g−1,Qπ/Qt的比值分别到达了14.23%、15.36%、16.48%,说明π-Pb2+间的相互作用会随着热解温度的升高逐渐增强,这与PSBC的芳构化程度和环芳香族π体系提供的π电子会随热解温度的升高而增大的结论(图3)一致。与Qπ和Qπ/Qt的变化规律相反,随热解温度由250 ℃升高至650 ℃,Qf由18.76 mg·g−1降低为4.11 mg·g−1,Qf/Qt的比值由23.63%下降至2.16%,表明高温热解会降低PSBC表面含氧官能团对Pb2+的络合作用,此现象进一步验证了PSBC上含氧官能团数量会随热解温度的升高而降低,如图3揭示了高温生物炭上的—OH、C=O以及C—O基团的吸收峰值较低温生物炭弱。
-
在实际的污水修复过程中,重金属回收以及吸附产品的重复再利用是一项非常重要的工作。使用0.1 mol·L−1的HCl对吸附后的PSBC进行解吸,不仅可以了解其解吸效率,同时也有助于对吸附机制进一步解析。由图9可知,PS250、PS450与PS650的解吸效率分别达到了70.33%、79.57%与83.94%,这主要是由于低pH条件下吸附后的PSBC表面上Pb沉淀矿物(白铅矿与水镁石)的溶解造成的[30]。高的解吸效率不仅说明了PSBC具有高Pb2+回收潜力,而且再次证明了沉淀作用是PSBC吸附的Pb2+的主要机制。同时,解吸结果也表明PSBC表面上形成的沉淀矿物含量随着热解温度的升高而增加,这与机理分析中得到的结论(图7)一致。对于再利用实验,解吸附后,不同PSBC对Pb2+的吸附能力大幅度降低,去除率仅达到了16.28%~19.35%,这说明使用HCl作为解吸剂不利于PSBC的重复再利用。虽然HCl可以通过与PSBC表面附着的PbCO3发生反应导致Pb2+溶解,但过量H+也会造成PSBC表面CaCO3分解,从而大幅度降低PSBC对Pb2+的吸附能力(沉淀作用),导致其可重复利用性能差[31]。因此,寻找到一种具有高的解吸效率且不会影响CaCO3结构的解吸剂是提高PSBC可重复利用性能的关键,这有待于在今后的工作中作进一步的研究。
-
1) PSBC是一种介孔材料,随热解温度由250 ℃上升至650 ℃,其产率、O/C与H/C的比值、孔径大小以及表面含氧官能团均减少,而灰分含量、pH、孔径体积以及比表面积均明显增加。同时,PSBC表面芳构化程度随热解温度的升高而增大。
2) PSBC对Pb2+的吸附依赖于溶液的pH,当pH为6.0时达到最大吸附量。准二阶动力模型与Freundlich模型适用于描述PSBC对Pb2+的吸附过程,说明Pb2+的吸附主要是发生在多分子层上的化学吸附。由Langmuir模型计算出的PS250、PS450与PS650的最大吸附量分别为94.02、156.22与215.30 mg·g−1,PS650所具有的高效除Pb2+能力归因于其拥有的大比表面积与良好的介孔结构,其吸附能力甚至高于一些改性生物炭。因此,PS650可以作为一种廉价、高效的吸附剂应用于污水Pb2+的处理。
3)根据SEM-EDS、XRD、FTIR等定性以及定量分析结果,碳酸盐的沉淀作用为PSBC吸附Pb2+的主要机制,同时还伴随着π-Pb2+间相互作用以及含氧官能团络合作用的贡献。沉淀与π-Pb2+相互作用的贡献比例会随着热解温度的升高不断增加,而含氧官能团的络合作用却在不断减弱。
平菇菌糠生物炭对水体中Pb2+的吸附特性与机制
Adsorption characteristics and mechanisms of Pb2+ in water on biochar derived from spent Pleurotus ostreatus substrate
-
摘要: 为缓解固废处理压力及开发高效廉价Pb2+吸附产品,以平菇菌糠(PS)为原料,在250、450、650 ℃温度下,限氧热解制备生物炭(PSBC),并采用BET、SEM-EDS、XRD、FT-IR对样品的表面理化性质进行了探究。通过批量吸附、机制定性和定量分析实验,研究了PSBC对水体中Pb2+的吸附特性和吸附机理。结果表明:当热解温度由250 ℃升至650 ℃,含氧官能团数量减少,比表面积与芳构化程度急剧增加;PSBC对Pb2+的吸附依赖于溶液pH,当pH为6.0时吸附量最大。吸附过程符合准二级动力学与Freundlich模型,说明以多分子层上的化学吸附为主。相较PS250与PS450,PS650拥有较大比表面积与良好的介孔结构,可为Pb2+的吸附提供更多的结合位点。经Langmuir模型计算,PS650最大吸附量为215.30 mg·g−1,其吸附效果甚至高于一些改性生物炭。机理分析表明,PSBC吸附Pb2+的主要机制为碳酸盐的沉淀作用,同时还伴随着含氧官能团的络合以及π-Pb2+间相互作用的贡献。本研究结果可为菌糠固废管理以及污水中Pb2+的去除提供参考。Abstract: In order to alleviate the pressure of solid waste treatment and develop cheap and efficient Pb2+ adsorbent products, spent Pleurotus ostreatus substrate (PS) was used as raw material to prepare biochar (PSBC) by limited oxygen pyrolysis at temperature of 250, 450 and 650 ℃, and the surface physical and chemical properties of the samples were studied by BET, SEM-EDS, XRD and FT-IR. The characteristics and mechanism of Pb2+ adsorption on PSBC were studied by the experiments of batch adsorption, mechanism qualitative and quantitative analysis. The results showed that the specific surface area and aromatization of PSBC increased sharply and oxygen-containing functional groups decreased when the pyrolysis temperature increased from 250 ℃ to 650 ℃. The adsorption of Pb2+ on PSBC was pH-dependent, and the maximum adsorption amount occurred at pH 6.0. The pseudo second order kinetic model and the Freundlich model were suitable for fitting the adsorption process of Pb2+ onto PSBC, which proved that the process was chemical adsorption occurring on the multi-molecular layer. Compared with PS250 and PS450, PS650 had larger specific surface area, better-developed mesoporous structure and more binding sites for Pb2+ adsorption. The maximum adsorption capacity calculated by Langmuir model was 215.30 mg∙g−1, which was even higher than those of some modified biochars. The results of qualitative and quantitative analysis showed that the precipitation of carbonate always dominated the adsorption process of Pb2+ on PSBC, being accompanied by the complexation of oxygen-containing functional groups and the interaction between π-Pb2+.The results can provide reference for solid waste management of spent mushroom substrate and the removal of Pb2+ from sewage.
-
涉重危废指含重金属的危险废物,其危险特性源于重金属的毒性,分为材料源危废和工业源危废[1-2]。涉重危废是危险废物中最为独特且极为重要的类别之一,也是《巴塞尔公约》[3]和国际社会优先关注和严格监管的大类危废类别。我国《国家危险废物名录》(2021年版)[4]包含46大类危废,其中涉重危废就有18大类。重金属的不可降解性决定了涉重危废的环境风险不能完全消除;而重金属的广泛应用及其基础材料地位又决定了涉重危废具有显著的资源属性和循环利用价值。从涉及的金属类型来看,包括铬、钼、锌、铅、锡、镉、镍、金、银、铜、钯、铍、砷、硒、碲、锑、汞、铊等各种金属,这些金属同时属于有毒、剧毒、高价、稀有、稀散、稀贵、战略储备(类)金属。从产排行业来看,包括金属冶炼生产、金属制品生产、金属加工处理、重金属基功能材料失效和废弃等全产业链。从形成机制来看,包括金属基材料/产品功能丧失的废旧和失效材料、金属生产/加工过程产生的废渣和废料以及环境污染控制生成的污泥和飞灰等。总之,涉重危废具有量大、面广、源多、物杂的产排特性[1-2]。
当前,从涉重危废中提取回收各种昂贵、高价和有价金属既是从源头控制重金属环境污染的现实需要,又是实现金属资源循环利用和保障金属资源安全供给的发展需要。涉重危废的资源化利用代表了其处理处置技术的发展方向,已得到全球固废处置与资源化领域产业界和学术界的广泛关注。面对数量巨大、结构复杂多变、环境风险突出、资源属性各异的涉重危废,怎样才能实现其科学、合理、高效、高质、高值的资源化利用?解析涉重危废产排规律和本质特性,提出金属分离提取的科学原理和工艺技术的优选原则,构建资源化利用的理论体系是实现这一目标的首要前提。
前期工作已完成涉重危废的概念创制、提出了涉重危废资源化利用的实现路径,论证了三维属性(污染、资源和结构属性)量化描述涉重危废特性的科学性,阐述了建立基于三维属性精细化分级分类体系的重要性[1-2]。但这些前期的理论创制、概念提出和制度设计仍是孤立的、离散的、局部的、单维度的,并没有形成系统化的完整理论体系,不能科学地回答涉重危废高效、高质、高值资源化利用的问题。完整的理论体系既要有基础性概念又要有多维度体系化设计,既要解决金属提取回收技术原理问题又要解决金属提取后二次残渣利用方式和污染控制问题,既要关注掌握不同类型涉重危废产排规律又要研究建立其科学分级分类及精细化管理问题。
涉重危废资源化理论体系包括涉重危废概念、来源及其资源化利用内涵和路径;不同行业和来源涉重危废的产排系数、产排特性和产排规律;不同行业和来源涉重危废资源属性、污染属性和结构属性及基于三维属性的精细化分级分类体系;不同类型涉重危废无害化处置和资源化利用的边际识别及其三维属性指标体系;不同类型涉重危废有价金属提取的技术原理和技术体系;脱毒“脱帽”残渣建材化利用路径选择及其产品安全和环境风险评价体系。该理论体系的构建、发展和成熟将使涉重危废处理处置这一重要细分领域由孤立的个体研究和感性经验上升到系统的科学理论,并为涉重危废资源化利用提供支撑。
1. 涉重危废及其资源化利用
1.1 涉重危废及其来源
涉重危废具有突出的危害特性和独有的资源属性。涉重危废概念的创制对于该类别危废更具针对性的分类精准监管、高效处置和高值利用至关重要,对于全球重金属污染防控和金属资源安全供给意义重大,是构成本理论体系的重要基础概念之一。涉重危废指含重金属的危险废物,其危险特性源于重金属毒性。这一创制概念首次将含重金属的危险废物与其他类别危废的边际进行了科学界定,形成了涉重危废这一危险废物的重要细分领域[1]。
涉重危废概念的提出,覆盖并联通了从金属冶炼生产、金属制品加工、金属表面处理、金属产品废弃到金属循环再生的产排全过程,既凸显了这一危险废物重要细分领域的共有特性也明确了其外延。按外延性质,又可进一步将涉重危废分为材料源危废和工业源危废2类。前者指重金属基功能材料或产品失效或废弃后演变而成的危废,如废旧电池和废催化剂等[5-6];后者指重金属生产、加工、利用或环境治理过程产生的涉重危废,如电镀污泥和冶炼废渣等[7-8]。
1.2 金属/重金属五分法
作为危险废物的重要细分领域,涉重危废显示出相当突出的资源-环境二元属性。因此,既要对涉重危废中的有毒金属进行固化稳定化甚至脱除以消除其危害特性,又要对涉重危废中的有价金属进行提取回收以实现其资源化利用。长期以来,有价金属定义的泛化和边界不明,尤其是有价金属和有毒金属之间的复杂交错,极大地困扰着涉重危废资源-环境二元属性的精确量化评价,及对涉重危废的精准监管、高效处置和资源化利用。
为了更精准地指导涉重危废中有价金属的回收利用及有毒金属的污染控制,本理论体系将金属/重金属进行了五分法分类[1],即:1)昂贵金属,单价100×104 元·t−1以上,包括金、银、钯、鉑、铑等;2)高价金属,单价(5~100)×104 元·t−1(以铜价为下限),包括铜、镍、钴、钼、钒等;3)低价金属,包括锌、锰、铝等;4)高毒金属,包括汞、砷、镉、铬、铅;5)无毒金属,包括钙、镁、铁、钠、钾等。金属五分法为精确反映和评价各类金属/重金属的资源回收价值和环境污染风险提供了分类学支撑,构成了本理论体系的第2个重要基础概念。
1.3 资源化利用路径
涉重危废的资源化利用从本质上讲就是通过调节调控不同金属在溶液-残渣两相中的分配行为(湿法)或在飞灰-熔体-渣体三相中的分配行为(火法)实现目标金属的分离、提取和回收,但不同类别金属需要采取不同的分离提取策略。金属五分法为涉重危废科学合理的资源化利用奠定了分类学基础。涉重危废全量资源化利用的总体原则和实现路径为:提取回收昂贵和高价金属,脱除有毒和高毒金属,保留低价和无毒金属的脱毒残渣进行建材利用。昂贵和高价金属的提取回收实现涉重危废的高值化资源利用,脱毒残渣的建材消纳实现低价和无毒金属的低值化资源利用,有毒和高毒金属的脱除及浓缩实现涉重危废的风险集中管控。
2. 不同行业涉重危废产排系数和产排特性研究
2.1 产排系数及其重要意义
产排系数是指在正常技术经济和管理条件下,生产单位产品所产生或排放的污染物数量的统计平均值。产污系数是指生产单位产品所产生的原始污染物的量;排污系数是指经污染控制措施消减后排放到环境中的污染物的量。产排系数与产品类型、生产工艺、生产规模、原辅料使用、设备技术水平及污染控制措施等有关,通过现场实测、物料衡算或理论计算取得。产排系数是污染物统计、环境管理和污染治理的基础性数据[9-10]。
当前,产排系数在我国水污染和大气污染管理和防治中已发挥重要作用,但危险废物和涉重废物的产排规律、产排特性和产排系数研究基础却十分薄弱。实际上,产排系数对于危险废物和涉重危废产排总量的精确统计、涉重危废的精细管理和精准处理处置更为重要。我国的危险废物日常数据收集是采取产废单位主动申报制度,但由于危险废物高昂的处置费用和严格的管理要求,产废单位的申报数据往往存在少报、瞒报、漏报的现象,因而导致危险废物的真实产排数量难以掌握。借助科学的产排系数推算可有效甄别上报数据的真伪,有助于危险废物和涉重危废排放总量的精确掌握,从而为危险废物和涉重危废的规范管理和合理处置利用提供可靠的数据支持。
2.2 不同类型涉重危废的产排系数和产排特性
涉重危废这一概念覆盖并联通了重金属冶炼生产、重金属制品制造、重金属加工处理、重金属基产品使用、失效及废弃等上中下游涉重全产业链条。涉重危废涉及行业众多、金属类型多样,危废形成的过程和机制也各不相同,因此,不同行业、不同类型、不同过程涉重危废的产排特性和产排系数存在很大差异。从全产业链过程分析,针对铅、锌、铜、镍、铬、镉、汞、钴、钒等重要有毒重金属,系统研究其从冶炼生产、产品制造、加工处理、失效废弃、到再生循环等不同环节的产排规律、产排特性和产排系数,对于加强涉重危废科学管理、推进涉重危废精准处置利用具有重要意义(图1)。
涉重危废的危险特性源于重金属毒性。与有毒有机物相比,重金属不能降解、分解和矿化消失,只有形态转变、价态转化和空间位移。基于重金属的这一性质,通过质量平衡计算(物料衡算法)即可全面了解目标/有毒金属在产物、飞灰、底渣、浸出渣、净化渣、污泥等各相的分布及排入环境的量,并由此表征涉重危废的产排特性和产排系数。在此基础上,进一步研究飞灰、底渣、浸出渣、净化渣、污泥等各类固废/危废中金属赋存形态、液相溶解行为、高温挥发行为及其环境释放行为,从而为涉重危废的风险鉴别及分级分类、无害化处置和资源化利用提供理论依据[11-13]。
涉重危废的有毒金属产排系数计算公式见式(1)至式(4)。
E产生=Q原料−Q产品 (1) E排放=∑Wi×Ci (2) e产生系数=E产生P (3) e排放系数=E排放P (4) 式中:E产生是有毒金属污染产生量;Q原料是原辅料中金属总量;Q产品是产品或出品中的金属利用量;E排放是金属污染排放量;Wi是固废/危废i的排放量;Ci是固废/危废i中有毒金属含量;e产生系数是金属污染产生系数;e排放系数是金属污染排放系数;P是产品(出品)总量。
在现有严格的有毒金属污染排放控制标准下,无论一次危废还是二次危废中有毒金属的污染产生总量和排放总量大致相等,但不同排放途径和来源的有毒金属之环境行为、污染特性和危害强度存在显著差异,因而需要针对典型涉重危废产生、处置和利用全过程加强研究,以识别全产业链环境风险点并研发控制阻隔技术,引导目标金属向高资源利用和低环境风险的循环利用技术工艺和产业发展方式转变。
3. 涉重危废三维属性及其精细化分级分类体系
3.1 涉重危废三维属性
涉重危废具有鲜明的资源-环境二元属性,但目前对于该类别危废二元属性的表征都是粗略说明和定性描述,缺乏量化指标和计算公式。这显然对于涉重危废的精细化管理、无害化处置和资源化利用都极为不利。另一方面,涉重危废产排涉及行业众多、金属类型多样、形成过程机制各不相同,以致其组分多变、结构复杂、种类繁多。不同产业链位阶、不同来源、不同行业、不同类型的涉重危废不仅在资源属性和污染属性上差异巨大,在组成和结构方面也千差万别。复杂多变的结构无论对于有毒/高毒金属的环境释放行为还是昂贵/高价金属的分离提取效能都会产生严重影响和干扰。因此,只有三维(资源、污染、结构)属性才能更加客观、准确、全面地反映涉重危废的固有本质特性。三维属性及其量化计算构成本理论体系的第3个基础概念。涉重危废之结构属性、资源属性和污染属性的量化计算公式和方法参考文献[2]。
3.2 涉重危废精细化分级分类体系
在固体废物/危险废物环境管理中,分级分类聚焦于环境风险管控,只关注固体废物/危险废物的污染属性。为了解决危险废物监管压力和效率之间日益增长的矛盾,新修订的《固体废物污染环境防治法》[14]专门提出危险废物要进行分级分类管理。目前,我国《国家危险废物名录》[4]中并没有体现明确的分级分类管理思路,只是通过豁免管理清单和排除管理清单作为辅助和并行管理措施;而美国等国家针对危险废物小微产生源的分级管理措施基本属于名录管理的补充和完善,并不是严格意义上的分级分类,更没有形成完整体系[15]。
本研究提出的精细化分级分类体系是基于涉重危废三维属性的综合性分级分类,构成本理论体系的第4个基础概念。精细化分级分类体系从环境危害程度,资源利用潜力和物料结构特性3个维度对涉重危废进行定量描述。在三维属性量化计算的基础上进行5级(极高、高、中、低、极低)分级,再基于定量分级进行综合分类。该体系将突破不同行业领域的传统边界划分,完全按照三维属性量化指标进行分级分类。基于行业领域和危害特性定性分类的《国家危险废物名录》[4]和基于三维属性的精细化分级分类体系呈相辅相成的互补关系。前者是国家危险废物监管的依据和基础,后者是前者的辅助和补充,共同为涉重危废的高效精准监管、切实无害化处置和合理资源化利用提供科学可靠的理论基础。
4. 无害化处置和资源化利用边际识别及其三维属性指标体系
涉重危废的资源-环境二元属性决定了无害化处置和资源化利用并举是涉重危废处置利用的基本原则,但无害化处置和资源化利用是两种完全不同的路径选择。前者为了消除涉重危废的污染特性,凸显了环境效益;而后者为了提取回收稀缺的二次金属资源,体现了经济效益。无害化处置和资源化利用的路径选择显著依赖涉重危废的三维属性。
涉重危废的资源化利用潜力不但取决于其所含昂贵/高价金属的浓度、类型、价格、赋存形态以及金属提取的技术经济性,而且与有毒/剧毒金属的含量、种类、赋存形态以及低价/安全金属等干扰离子的种类及浓度都有密切关系。具有高资源属性、低污染属性、低结构属性的涉重危废适宜资源化利用;而具有低资源属性、高污染属性、高结构属性的涉重危废适宜无害化处置。因此,需要在全面分析涉重危废三维属性基础上,确立可满足不同类型涉重危废无害化处置和资源化利用边际识别的三维属性指标体系,才能确保涉重危废科学、合理、可持续地资源化利用。涉重危废资源化利用潜力和无害化处置潜力归一化指标计算公式参考文献[2]。
5. 不同类型危废有价金属提取的技术原理和技术体系
5.1 涉重危废资源化利用的核心要务和关键诉求
涉重危废具有的资源-环境二元属性,决定了其资源化利用的核心内涵是潜在资源价值的最大化回收和环境危害特性的最大化降低,其中的关键诉求是昂贵/高价金属的深度提取以实现最大的经济效益和剧毒/高毒金属的深度脱除以实现残渣的危险属性降级。但无论昂贵/高价金属的提取回收还是剧毒/高毒金属的脱除分离,都需要适宜的技术工艺以及相应的处置成本,工艺选择和费用投入与涉重危废的三维属性存在紧密关系[16]。基于不同类型涉重危废无害化处置和资源化利用的边际识别,对于资源化利用潜力较高的涉重危废则实现资源化利用,对于资源化利用价值较低的涉重危废则实行无害化处置。
5.2 涉重危废中有价金属提取和危险属性降级的技术体系
火法冶金、湿法冶金和生物沥浸在涉重危废有价金属提取和危险属性降级中各具优劣。总体来讲,火法冶金适宜高浓度、大批量、单一金属的分离提取和危险属性降维,尤其是低沸点、易挥发金属的烟化或挥发提取;湿法工艺适宜中高浓度、中小批量、多金属的同步提取回收;生物沥浸-循环富集适宜低浓度、小批量、多金属深度浸提和危险属性降级[17-18]。3种金属提取工艺存在较高的互补性和协同性,因此,只有科学合理的工艺组合才能保证有价金属提取和危险属性降级两大诉求的有效达成。例如:火法工艺还原融熔所产的合金或富氧侧吹所产的冰铜、冰镍等富集物料必须借助湿法工艺才能进一步获得高纯度单质态金属或金属盐;湿法工艺所产浸出渣需要借助生物沥浸-循环富集工艺以实现金属的深度提取、液相富集和危险属性降级;生物沥浸工艺有时需要火法或湿法工艺作为前(预)处理,如石化废催化剂需要低温煅烧去除包覆的油类物质后,才能确保生物沥浸高效进行,高浓度电镀污泥则需要前置硫酸浸提再串以生物沥浸才能使其处理规模提高、浸提富集成本减低。
目前,涉重危废中昂贵/高价等目标金属的提取回收技术工艺选择大多依靠孤立的离散实验和研究者的感性经验。由于缺乏系统完整的科学原理指导以及基于定量分析的优选理论支持,现有的涉重危废金属提取工艺普遍存在设计不合理、标准不统一、技术不规范、路径选择随意性大的问题,加之涉重危废结构复杂多变的特性有时甚至出现技术工艺难以运行的严重状况。这是因为,金属提取工艺选择不但与金属类型性质有关,而且与其含量及赋存形态也存在很大关系,甚至与共存的其他低价、高毒和无毒金属以及处理规模、电价水价、物料配伍等都存在密切关系。所以,需要在三维属性精细化分级分类基础上,深入探究涉重危废三维属性及其分级分类与金属提取优化工艺及其组合之间的内在关联和响应关系,阐明不同分级分类物料提取工艺优选的一般规律和总体原则,构建涉重危废金属提取回收技术优选的多目标多参数定量精准决策体系。
6. 涉重危废脱毒残渣的建材化利用标准体系
涉重危废金属提取过程需要在特定反应介质中进行,反应介质中的外加物料会以各种方式进入残渣之中,并改变残渣的元素组成、物相结构、金属含量及其赋存形态。不同的金属提取工艺或工艺组合可实现涉重危废的危险属性降级,但脱毒残渣中各类金属和其他有害组分、含量、赋存形态及环境风险差异较大,其建材化利用方式、途径和使用方向也各不相同[19]。因此,需要系统分析不同三维属性涉重危废脱毒残渣的物相、结构和组成,识别关联产品安全和环境安全的有害元素和离子,评估脱毒残渣建材化利用的产品安全和环境风险并进行分级分类,建立建材化利用的黑/白名单,进而提出涉重危废脱毒残渣建材化利用的技术规范和标准体系。
基于产品安全的离子/元素限值按式(5)计算;基于环境安全的离子/元素限值按式(6)计算。
M×S1⩽L (5) 式中:M指脱毒残渣中关联产品安全的离子/元素含量;L指建材产品安全要求限值;S1指脱毒残渣在建材产品中的掺和比。
N×S2⩽K (6) 式中:N指脱毒残渣中关联环境安全的离子/元素含量;K指建材环境安全要求限值;S2指脱毒残渣在建材产品中的掺和比。
脱毒残渣在建材产品中的掺和比S取S1和S2二者中的最小值。当S≤10%,则说明该消纳途径风险大,可列入黑名单;当S≥30%,则说明该消纳途径风险小,可列入白名单。通过黑/白名单的管理,使脱毒残渣是否采用或采用何种建材化利用的路径判别更加便利。
7. 涉重危废资源化利用理论体系构建及意义
涉重危废产排贯穿金属冶炼生产、金属加工处理、金属基材料制备、废弃和再利用等全产业链。金属作为现代生活和工业生产的基础性原材料,其生产、消耗和废弃正以前所未有的规模在全球进行,因此,涉重危废的产生也以前所未有的速度在全球发生。据估算,世界上涉重危废的年产量在1×108 t左右,我国涉重危废年产量在3 000×104~3 500×104 t[1]。涉重危废的长期任意排放是全球环境重金属污染的主因之一,而重金属不能降解的特性又使得重金属污染显示出累积性、持久性和高危害性。但另一方面,涉重危废含有以各种形式存在的多种金属元素,而金属不可再生的特性又赋予了涉重危废独有的二次资源价值。有毒/高毒/剧毒金属赋予涉重危废污染属性,昂贵/高价/有价金属赋予涉重危废资源属性,金属激发的污染属性和资源属性并存是涉重危废最显著的特点。从涉重危废中提取回收有价金属不但能够从源头消除涉重危废的环境危害,而且还可实现稀缺金属资源的循环永续利用,是固体废物处理处置学科及资源再生学科领域的热点课题。
作为危险废物的重要细分领域,涉重危废资源化利用已是国内外经济社会发展的必然趋势,而我国作为世界制造大国,更是面临涉重危废产排量不断增长和金属资源愈加短缺的双重困境,涉重危废的资源化利用更加紧迫。然而,涉重危废固有的高污染属性给其资源化利用带来很大困扰,在分级分类、提取工艺、风险管控、政策法律等许多方面都面临巨大挑战[20-21]。目前,针对不同类型涉重危废,世界各国学者在技术层面广泛研究了有价金属高效提取的火法冶炼、湿法冶炼和生物沥浸的工艺优化、过程控制和溶释机理,但基本都是基于特定单一危废物料的孤立个案研究,未见针对涉重危废三维属性的量化分析及精细化分级分类,亦未见无害化处置和资源化利用的边界识别研究,更未见有价金属深度提取和危险属性降级的技术原理探究和技术工艺优选,以及脱毒残渣建材化利用的方式、工艺和标准研究。涉重危废量大、面广、源多、物杂的产排特性,给其高效、高质、高值的资源化利用带来很大挑战。构建基于精细化分级分类的涉重危废资源化利用理论体系是实现这一目标的根本保证,是指导涉重危废资源化利用健康、科学、可持续发展的必然要求,是涉重危废资源化利用从经验数据积累到完整学科形成的必然要求。
涉重危废资源化利用的理论框架以涉重危废、金属五分法、涉重危废三维属性及精细化分级分类4组概念为基础,以涉重危废精细化分级分类体系、涉重危废无害化处置和资源化利用边际识别指标体系、涉重危废有价金属提取和危险属性降级技术体系、涉重危废脱毒残渣建材化利用标准体系4大体系建设为核心,以涉重危废产排系数计算、涉重危废三维属性定量描述、涉重危废资源化利用和无害化处置潜力归一化指数计算、涉重危废脱毒残渣建材化利用风险控制和黑白名单管理4个重要问题为抓手和工具(总体框架见图2)。该理论体系全面系统地回答了涉重危废全量高值化资源利用所涉及的关键问题和重大困扰,有力保障了其资源化利用的过程安全、产品安全和环境安全。该理论体系的构建、发展和成熟将使得涉重危废这一重要细分领域由孤立的个体研究上升到系统的科学理论,并为涉重危废的精细化监管、精准化风险管控和高质化资源利用提供全周期全方位全流程的理论指导。
8. 结语
1)从涉重危废中提取有价回收金属促进其污染属性向资源属性的定向转化,虽然可从源头消除涉重危废的环境污染而且实现金属资源的循环利用,但其危险属性对资源化利用构成了极大困扰。为了确保涉重危废的科学、合理、健康、可持续、高值化利用,构建了涉重危废资源化利用的理论体系。
2)涉重危废资源化利用的理论体系框架由4组概念和4大体系组成。4组概念包括涉重危废、金属五分法、涉重危废三维属性及精细化分级分类;4大体系包括涉重危废精细化分级分类体系、涉重危废无害化处置和资源化利用边际识别指标体系、涉重危废有价金属提取和危险属性降级技术体系、涉重危废脱毒残渣建材化利用标准体系。
3)该理论体系以4组概念为基础、以4大体系建设为核心,以系统化数学公式和定量计算为工具。该理论体系的提出、发展和成熟将使得涉重危废这一重要细分领域由孤立的个体研究和感性经验上升到系统的科学理论,为涉重危废的精细化监管、精准化风险管控和高质化资源利用提供全周期全方位的理论指导。
辛宝平(1969—),男,理学博士,教授。从事固体废物/涉重危废资源化利用理论体系和技术原理研究。中国环境科学学会理事、中国物资再生协会湿法冶金分会首席科学家、中国环境科学学会固体废物专业委员会副主任委员、中国环境科学学会重金属污染防治专业委员会副主任委员、中国有色冶金学会环境污染防治专业委员会副主任委员、全国危废处理处置技术联盟学术委员会副主任委员、中华环保联合会固危废及污染土壤专委会副主任委员、中国再生资源回收利用协会危险废物专业委员会副主任委员。在《Chemical Engineering Journal》《Bioresource Technology》《Journal of Hazardous Materials》《Waste Management》《ACS Applied Materials and Interfaces》等期刊发表SCI和EI论文100余篇,高水平SCI论文(1区)30篇,发明专利20余项。在国际上首次创制了涉重危废、金属5分法、三维属性及精细化分级分类等系列概念并构建涉重危废资源化利用的理论体系;率先将膜生物反应器(MBR)引入生物沥浸领域,解决了生物沥浸技术周期长、处理量小的行业难题;撰写了涉重危废资源化利用方面的首部专著;主持了全国涉重危废产废和处置行业发展现状及技术需求的首次调研;主持研发涉重危废行业首套100 m3级电镀污泥有价金属生物沥浸-循环富集成套设备和工艺。 -
表 1 PSBC的理化性质
Table 1. Physical-chemical properties of PSBC
生物炭 产率/% 灰分/% pH Zeta电位/mV C/% H/% O/% N/% O/C H/C 比表面积/(m2·g−1) 孔径/nm 孔径体积/(cm3·g−1) PS250 50.86 8.71 8.24 −29.7 65.6 4.68 27.19 2.5 0.41 0.07 5.37 7.32 0.01 PS450 38.67 11.74 9.92 −27.2 69 3.19 25.6 2.26 0.37 0.05 22.75 3.81 0.03 PS650 31.37 14.31 10.08 −26.4 71.5 1.36 25.21 1.93 0.35 0.02 75.63 3.24 0.11 表 2 吸附动力学模型拟合参数
Table 2. Constant and correlation coefficients of the adsorption kinetic equation
生物炭 准一阶动力学模型 准二阶动力学模型 qe,实际 qe,理论 k1 R2 qe,理论 k2 R2 PS250 79.38 74.85 0.021 7 0.960 4 81.47 0.000 4 0.994 2 PS450 137.63 130.72 0.060 4 0.911 5 138.26 0.000 7 0.995 4 PS650 190.23 185.89 0.148 5 0.875 3 191.09 0.001 9 0.998 7 表 3 吸附等温线拟合
Table 3. Isotherm constants for fitting equation
生物炭 Langmuir模型 Freundlich模型 qmax kL R2 kF n R2 PS250 94.02 0.047 3 0.969 5 31.89 5.741 3 0.995 2 PS450 156.22 0.414 3 0.944 7 70.59 6.920 5 0.996 6 PS650 215.30 28.920 1 0.879 9 120.44 8.185 2 0.997 6 表 4 不同吸附剂对Pb2+的吸附容量
Table 4. Adsorption capacity of Pb2+ on different adsorbents
-
[1] GUO S Z, DUAN N, NAN Z G, et al. g-C3N4 modified magnetic Fe3O4 adsorbent: Preparation, characterization, and performance of Zn(II), Pb(II) and Cd(II) removal from aqueous solution[J]. Journal of Molecular Liquids, 2018, 258: 225-234. doi: 10.1016/j.molliq.2018.03.029 [2] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. doi: 10.1016/j.jclepro.2018.01.133 [3] HE J Y, LI Y L, WANG C M, et al. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers[J]. Applied Surface Science, 2017, 426: 29-39. doi: 10.1016/j.apsusc.2017.07.103 [4] YAN Y B, LI Q, SUN X Y. Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(II) and Cd(II) from wastewater[J]. Journal of Colloid and Interface Science, 2015, 457: 86-95. doi: 10.1016/j.jcis.2015.06.035 [5] 罗小锋, 张玉玲. 儿童血铅水平及其暴露因素调查[J]. 医疗装备, 2018, 31(13): 49-50. doi: 10.3969/j.issn.1002-2376.2018.13.029 [6] ABU-DANSO E, PERANIEMI S, LEIVISKA T, et al. Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater[J]. Environmental Pollution, 2018, 242: 1988-1997. doi: 10.1016/j.envpol.2018.07.044 [7] 计海洋, 汪玉瑛, 吕豪豪, 等. 不同炭化温度制备的蚕丝被废弃物生物炭对重金属Cd2+的吸附性能[J]. 应用生态学报, 2018, 29(4): 1328-1338. [8] WANG R Z, HUANG D L, LIU Y G, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261: 265-271. doi: 10.1016/j.biortech.2018.04.032 [9] ZHOU Z, XU Z H, FENG Q J, et al. Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar[J]. Journal of Cleaner Production, 2018, 187: 996-1005. doi: 10.1016/j.jclepro.2018.03.268 [10] ZAZYCKI M A, GODINHO M, PERONDI D, et al. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions[J]. Journal of Cleaner Production, 2018, 171: 57-65. doi: 10.1016/j.jclepro.2017.10.007 [11] CIBATI A, FOEREID B, BISSESSUR A, et al. Assessment of Miscanthus giganteus derived biochar as copper and zinc adsorbent: Study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification[J]. Journal of Cleaner Production, 2017, 162: 1285-1296. doi: 10.1016/j.jclepro.2017.06.114 [12] 刘宁, 张桂芹, 王奉强. 菌糠的资源化研究与开发利用进展[J]. 安徽农业科学, 2019, 47(14): 7-11. doi: 10.3969/j.issn.0517-6611.2019.14.003 [13] LOU Z, SUN Y, BIAN S, et al. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar[J]. Chemosphere, 2017, 169: 23-31. doi: 10.1016/j.chemosphere.2016.11.044 [14] HU X J, GU H D, ZANG T T, et al. Biosorption mechanism of Cu2+ by innovative immobilized spent substrate of fragrant mushroom biomass[J]. Ecological Engineering, 2014, 73: 509-513. doi: 10.1016/j.ecoleng.2014.09.067 [15] 宋涛. 氢氧化钠改性及固定化黑木耳菌糠对水中Pb(II)的吸附特征[D]. 哈尔滨: 东北农业大学, 2018. [16] JIN Y, TENG C Y, YU S M, et al. Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate[J]. Chemosphere, 2018, 191: 799-808. doi: 10.1016/j.chemosphere.2017.08.154 [17] WANG Z Y, LIU G C, ZHENG H, et al. Investigating the mechanisms of biochar’s removal of lead from solution[J]. Bioresource Technology, 2015, 177: 308-317. doi: 10.1016/j.biortech.2014.11.077 [18] DING W C, DONG X L, IME I M, et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere[J]. Chemosphere, 2014, 105: 68-74. doi: 10.1016/j.chemosphere.2013.12.042 [19] ZHANG C, SHAN B Q, TANG W Z, et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere[J]. Bioresource Technology, 2017, 238: 352-360. doi: 10.1016/j.biortech.2017.04.051 [20] TANG Y, ALAM M S, KONHAUSER K O, et al. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater[J]. Journal of Cleaner Production, 2019, 209: 927-936. doi: 10.1016/j.jclepro.2018.10.268 [21] CHOI Y K, KAN E. Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water[J]. Chemosphere, 2019, 218: 741-748. doi: 10.1016/j.chemosphere.2018.11.151 [22] 郜礼阳, 邓金环, 唐国强, 等. 不同温度桉树叶生物炭对Cd2+的吸附特性及机制[J]. 中国环境科学, 2018, 38(3): 1001-1009. doi: 10.3969/j.issn.1000-6923.2018.03.025 [23] GOH C L, SETHUPATHI S, BASHIR M, et al. Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal[J]. Journal of Environmental Management, 2019, 237: 281-288. [24] 邓金环, 郜礼阳, 周皖婉, 等. 不同温度制备香根草生物炭对Cd2+的吸附特性与机制[J]. 农业环境科学学报, 2018, 37(2): 340-349. doi: 10.11654/jaes.2017-1066 [25] WANG C Q, WANG H, CAO Y J. Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation[J]. Colloid and Surfaces A, 2018, 556: 177-184. doi: 10.1016/j.colsurfa.2018.08.036 [26] 郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. doi: 10.12030/j.cjee.201507083 [27] ASUQUO E, MARTIN A, NZEREM P, et al. Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies[J]. Journal of Environmental Chemical Engineering, 2017, 5: 679-698. doi: 10.1016/j.jece.2016.12.043 [28] 杨婷婷, 孟莉蓉, 李晖, 等. 两种生物炭对Pb的吸附特性研究[J]. 农业环境科学学报, 2017, 36(8): 1627-1633. doi: 10.11654/jaes.2017-0276 [29] 于长江, 董心雨, 王苗, 等. 海藻酸钙/生物炭复合材料的制备及其对Pb(II)的吸附性能与机制[J]. 环境科学, 2018, 39(8): 3719-3728. [30] TRAKAL L, VESELSKA V, SAFARIK I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology, 2016, 203: 318-324. doi: 10.1016/j.biortech.2015.12.056 [31] ZHANGJ Q, HU X L, ZHANG K J, et al. Desorption of calcium-rich crayfish shell biochar for the removal of lead from aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 554: 417-423. doi: 10.1016/j.jcis.2019.06.096 -