-
随着人们对环境保护的重视,有机废气排放标准日益严格,对挥发性有机化合物(VOCs)的减排治理工作一直是国内外研究热点[1-3]。特别是近几年来,VOCs的持续减排成为我国“十三五”大气污染防控的重点工作[4]。油气回收技术能有效减少石油生产运输过程中的有机气体排放。随着国家对石化产业油气排放指标的精细化具体化,油气回收技术也有了新的挑战[5]。吸附法是油气回收的主要工艺之一[6],由于各种吸附剂的吸附容量有限,因此,油气吸附回收装置须频繁吸附-解吸再生吸附剂,才能节省成本,达到最高的使用价值。
如何高效、经济地再生吸附剂,是油气吸附回收技术中必须重点解决的问题,同时亦是国内外研发的热点。目前常见的解吸方法有热解吸、真空解吸、超声波解吸等。SALVADOR等[7]通过热解吸和吹扫,分析了碳质吸附剂的热再生解吸过程。LASHAKI等[8]研究了解吸吹扫中氧杂质对活性炭性能的影响。LEMUS等[9]在常温、常压条件下实现了活性炭的再生。ZHANG等[10]对多孔矿物吸附剂进行了热解吸分析。蔡道飞等[11]和王英霞等[12]用微波加热、微波真空等方法对吸附剂的解吸再生进行了分析。胡克伟[13]、范春辉等[14]和周超[15]对吸附剂解吸过程进行了动力学拟合,得到了不同方程的解吸拟合效果,但并未涉及吸附剂对有机废气的解吸动力学情况。
在现有研究中,吸附剂多是处在静态吸附或微小流量下的吸附-解吸再生过程,与工业应用中的动态吸附-解吸过程有一定差距。而超声波解吸在工业应用中的成本较高,工业化应用尚存在一定困难[16]。为了进一步研究工业应用中,在高浓度有机气体的低排放国家标准背景下[17]不同解吸方式对吸附剂的解吸效果与影响机理,本研究搭建中型实验平台,以炭基吸附剂A-1、硅基吸附剂S-1为研究对象,对多种解吸方式下吸附剂解吸效果进行研究,以期为工业应用中吸附剂的解吸方法提供参考。
多种解吸方式作用下吸附剂解吸正己烷动力学分析
Kinetic analysis of n-hexane desorption on adsorbent by various desorption methods
-
摘要: 选择2种不同微孔结构的吸附剂(A-1、S-1),在多种解吸方式下(真空、真空加热、负压+补气、热吹扫),对正己烷进行了动态吸附/解吸实验,重点观察了不同温度、真空度、解吸流量下的解吸方式对2种吸附剂的解吸情况。结果表明:在基于吸附穿透为参考点的动态吸附过程中,即使经过不同解吸方式(真空、真空加热、负压补气、热吹扫)的解吸实验,吸附剂在整个动态吸附-解吸-再吸附过程的有效吸附总容量保持稳定;由于A-1、S-1微孔分布不同,其解吸效果存在很大差异,S-1由于中孔、大孔结构较多而具有更好的解吸性能,“负压+补气”方式的解吸增加了塔内流量,从而打破了浓差极化层,提高了解吸过程解吸效率。对解吸过程进行准一级、准二级、Bangham动力学模型拟合,发现Bangham动力学方程的拟合效果最好,R2均大于0.99,这2种吸附剂对正己烷的解吸动力学行为遵循Bangham动力学方程。Abstract: In this study, two adsorbents (A-1, S-1) with microporous structure were selected to conduct n-hexane dynamic adsorption and desorption experiments with various desorption methods (vacuum, vacuum heating, negative pressure + supplemental gas, thermal purge). The effects of temperature, vacuum degree and desorption flow rate on the desorption performance of these two adsorbents were studied. The results showed that in the dynamic adsorption process with a reference point based on the adsorption penetration, the total effective adsorption capacities of these two adsorbents throughout the dynamic adsorption-desorption-re-adsorption process remained stable even if different desorption methods (vacuum, vacuum heating, negative + supplemental gas, thermal purge) were used. Two adsorbents presented different desorption effects due to different pore size distribution, and S-1 had a better desorption performance with more mesoporous and macroporous structure than A1. The desorption method of negative pressure + supplemental gas increased the flow in the tower, reduced the diffusion resistance between particles, broke the concentration polarization layer and improved the desorption efficiency in the desorption process. The desorption process was fitted by quasi-first-order, quasi-second-order, and Bangham kinetic models, and the Bangham kinetic equation presented the best fitting result with R2 greater than 0.99. Therefore, the desorption kinetics of n-hexane on these two adsorbents followed Bangham kinetic model.
-
Key words:
- oil vapor recovery /
- adsorbent /
- n-hexane /
- desorption /
- kinetics
-
表 1 吸附剂孔结构参数
Table 1. Pore structure parameters of adsorbents
吸附剂 BET比表面积/(m2·g−1) 总孔体积/(m3·g−1) 微孔体积/(m3·g−1) 中孔体积/(m3·g−1) 平均孔径D/ nm A-1 2 085 1.309 0.664 0.645 2.512 S-1 464 0.836 0 0.836 7.207 表 2 2种吸附剂的动力学拟合参数
Table 2. Kinetic fitting parameters of two adsorbents
样品 解吸方式 准一级方程 准二级方程 Bangham 方程 φe k1 R2 φe k2 R2 φe k z R2 A-1 真空 94.137 0.033 6 0.973 4 120.31 2.78×10−4 0.986 6 130.70 0.058 6 0.674 5 0.990 4 真空加热 130.622 0.019 2 0.985 5 184.58 8.36×10−5 0.989 7 234.01 0.024 1 0.722 4 0.992 5 负压+补气 — — — — — — 610.46 0.000 59 1.253 6 0.999 9 热吹扫 1 459.06 0.013 7 0.997 8 2 037.20 5.48×10−6 0.998 4 1 501.30 0.015 55 0.958 2 0.997 8 S-1 真空 13.859 0.012 4 0.993 5 20.263 4.62×10−4 0.996 0 26.99 0.014 91 0.737 2 0.998 8 真空加热 70.957 0.001 7 0.994 8 130.58 7.09×10−6 0.994 8 148.86 0.001 07 0.927 7 0.995 9 负压+补气 70.221 0.017 9 0.995 9 100.5 1.37×10−4 0.992 0 64.18 0.009 9 1.200 0 0.999 2 热吹扫 22.717 0.040 9 0.995 5 32.99 9.35×10−4 0.995 5 22.56 0.040 4 1.008 7 0.994 6 -
[1] LI G H, WEI W, SHAO X, et al. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts[J]. Journal of Environmental Sciences, 2018, 67: 78-88. doi: 10.1016/j.jes.2017.08.003 [2] ZHANG X Y, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. doi: 10.1016/j.jhazmat.2017.05.013 [3] 黄丽, 刘石彩, 朱光真, 等. 活性炭对挥发性有机化合物的吸附回收研究进展[J]. 生物质化学工程, 2016, 50(1): 49-56. [4] 黄维秋, 吕成, 郭淑婷, 等. 油气排放及回收的研究进展[J]. 石油学报(石油加工), 2019, 35(2): 45-52. [5] 黄维秋. 油气回收技术的若干关键问题[J]. 油气储运, 2017, 36(6): 606-616. [6] 张晓露. 活性炭对轻烃类VOCs吸附行为研究[D]. 上海: 华东理工大学, 2018. [7] SALVADOR F, NICOLAS M S, RUTH S H, et al. Regeneration of carbonaceous adsorbents. Part I: Thermal regeneration[J]. Microporous and Mesoporous Materials, 2015, 202: 259-276. doi: 10.1016/j.micromeso.2014.02.045 [8] LASHAKI M J, ATKINSON J D, HASHISHO Z, et al. Effect of desorption purge gas oxygen impurity on irreversible adsorption of organic vapors[J]. Carbon, 2016, 90: 310-317. [9] LEMUS J, MARTINEZ-MARTIN M, PALOMAR J, et al. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon[J]. Chemical Engineering Journal, 2012, 211-212(47): 246-254. [10] ZHANG G X, FEIZBAKHSHAN M, ZHENG S L, et al. Effects of properties of minerals adsorbents for the adsorption and desorption of volatile organic compounds (VOC)[J]. Applied Clay Science, 2019, 173: 88-96. doi: 10.1016/j.clay.2019.02.022 [11] 蔡道飞, 黄维秋, 王丹莉, 等. 不同再生工艺对活性炭吸附性能的影响分析[J]. 环境工程学报, 2014, 8(3): 1139-1144. [12] 王英霞, 黄维秋, 吕艳丽, 等. 改性疏水硅胶用于油气吸附解吸的研究[J]. 环境工程学报, 2015, 9(2): 855-861. doi: 10.12030/j.cjee.20150257 [13] 胡克伟. 天然沸石对 ${{\rm{NH}}_4^+ }$ 吸附、解吸动力学的影响[J]. 湖北农业科学, 2013, 52(14): 3290-3293. doi: 10.3969/j.issn.0439-8114.2013.14.019[14] 范春辉, 张颖超, 杨继搏. 超声波辅助下Cr(Ⅲ)在合成沸石上的解吸动力学研究木[J]. 离子交换与吸附, 2013, 29(1): 59-66. [15] 周超. BPA的解吸特征与颗粒活性炭的再生研究[J]. 中国给水排水, 2015, 31(11): 60-63. [16] 黄维秋, 吕艳丽, 饶原刚. 油气回收吸附剂的再生方法[J]. 石油学报(石油加工), 2010, 26(3): 486-492. [17] 环境保护部, 国家质量监督检验检疫总局. 石油炼制工业污染物排放标准: GB 31570-2015[S]. 北京: 中国环境科学出版社, 2015. [18] 史蕊, 李依丽, 尹晶, 等. 玉米秸秆活性炭的制备及其吸附动力学研究[J]. 环境工程学报, 2014, 8(8): 3428-3432. [19] RAGANATI F, ALFE M, GARGIULO V, et al. Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent[J]. Chemical Engineering Journal, 2019, 372(15): 526-535. [20] WANG L, CAO B, WANG S D, et al. H2S catalytic oxidation on impregnated on activated carbon: Experiment and modeling[J]. Chemical Engineering Journal, 2006, 118(3): 133-139. doi: 10.1016/j.cej.2005.12.021 [21] 汪政德, 张茂林, 梅海燕, 等. 毛细凝聚和吸附-脱附回路的物理化学解释[J]. 新疆石油地质, 2002, 23(3): 233-235. doi: 10.3969/j.issn.1001-3873.2002.03.017 [22] 罗文, 吴思操, 刘鹏, 等. 颗粒内部毛细凝聚对气体有效扩散系数的影响[J]. 化工学报, 2015, 66(4): 1363-1369. [23] 杜文平, 李明, 王云峰, 等. 温压耦合特性对吸附制冷解吸性能的影响[J]. 化工学报, 2018, 69(4): 1445-1453.