-
防毒面具被用于保障在有毒有害化学物质污染环境中作战及应急处置人员的呼吸安全。由于释放至环境中的污染物可能同时包含多种有毒有害物质,因此,要求防毒面具必须能够同时对多种污染物进行广谱高效的净化。空气净化材料作为防毒面具的核心组成,直接决定面具对受污染空气的净化能力。活性炭因具有价格低廉、制备工艺简便、吸附性能良好等优点,是目前防毒面具中广泛使用的空气净化材料。活性炭材料对沙林、苯与甲苯等高沸点有毒物质具有较好的物理吸附性能。然而,对于Cl2、SO2、NO2和NH3等难以通过物理吸附消除的低沸点有毒物质,活性炭的净化能力则较为有限。有研究[1]表明,目前各国军队现役防毒面具中广泛使用的、负载金属与有机胺作为活性组分的ASZM-TEDA型活性炭材料对上述多种有毒物质的防护时间均低于规定的最低时间要求(15 min)。近年来,针对活性炭材料性能的不足,设计开发能够对多种低沸点有毒物质进行广谱高效脱除的新型空气净化材料,已逐渐成为新的研究热点[2-6]。
氢氧化锆(Zr(OH)4)是一种无定形纳米多孔材料,表面分布有羟基基团、配位不饱和金属阳离子(Zrδ+)和氧空位等多种活性中心[7-9],是已知的同时具有酸碱性和氧化还原性的金属氢氧化物材料之一。以往大量的研究工作仅将Zr(OH)4作为氧化锆(ZrO2)合成过程的中间体,直到最近才由研究人员[10-15]发现并报道了其优良的气体吸附性能。这些研究[10-15]表明,负载Zn、Co和Ag等多种活性金属组分及有机胺三乙烯二胺(triethylenediamine,TEDA)制备的Zr(OH)4基空气净化材料,对低沸点有毒物质具有良好的脱除能力,对CNCl、HCN、SO2、NO2和NH3等多种有毒物质的脱除性能均优于ASZM-TEDA型活性炭材料,对酸性有毒气体NO2的脱除性能提升最为显著。在相同实验条件下,其对NO2的防护时间可达活性炭材料的4倍。然而,针对这一现象,即金属-有机胺改性的Zr(OH)4材料对NO2具有高效净化能力的机理解释,目前尚鲜见报道。
氮氧化物(NO2和NO)对人体有较大的危害,主要通过呼吸道吸入体内,造成急性或慢性中毒,进而对心脏、肾脏等重要人体器官造成损伤,尤其是NO2对人体的毒性可达NO的4~5倍。NO2属于酸性有毒气体中较难消除的目标化学物质,与其他酸性气体不同,其脱除难点主要在于NO2往往会发生还原反应,生成难以被吸附的NO有毒气体,造成材料床层穿透失效。因此,对氮氧化物的净化机理进行研究,有助于指导新型空气净化材料的设计,从而实现延缓甚至抑制NO释放的目的。本研究选取NO2作为目标污染物,首先制备得到负载活性组分Zn和/或TEDA的Zr(OH)4成型颗粒,通过比较负载活性组分前后的NO2和NO在材料床层内部的穿透行为,结合表征分析结果,探讨了不同活性组分负载条件下材料的氮氧化物净化机理,考察了基体、金属Zn和有机胺TEDA在NO2净化过程中各自的作用机制,并分析了“基体-金属-有机胺”三者之间存在的相互协同效应,为新型氮氧化物净化材料的设计开发提供参考。
锌-胺改性氢氧化锆对氮氧化物的净化性能及其净化机理
Removal performance and mechanism of nitrogen oxides by zinc-amine modified zirconium hydroxide
-
摘要: 通过向氢氧化锆(Zr(OH)4)颗粒表面浸渍负载活性组分Zn、三乙烯二胺(triethylenediamine,TEDA)和Zn-TEDA,分别研究了Zn和TEDA单独或同时改性的Zr(OH)4对NO2的净化性能及净化机理,探讨了Zr(OH)4基体、Zn和TEDA 3种组分与NO2及所生成的NO之间的相互作用机制。结果表明:同时负载质量分数为4%的Zn和6%的TEDA,可使Zr(OH)4对NO2的净化能力得到显著提升,改性后材料的穿透时间可达84 min,NO2穿透吸附量可达24.8 mg·cm−3,NO释放比例降低至6%;Zr(OH)4基体主要通过表面端式羟基与NO2形成硝酸盐和亚硝酸盐,从而将其脱除,活性金属组分Zn主要作为表面碱性吸附位点提供辅助作用,而有机胺TEDA则能够催化NO2的表面水解反应,使之转变为酸性更强的HNO3和HNO2,进而得到快速消除;当负载Zn和TEDA时,基体、金属和有机胺可进行有效配合,形成的协同效应对材料的NO2净化性能产生了显著的提升效果,在延缓NO释放的同时大幅降低了NO的生成比例。以上研究结果可为新型氮氧化物净化材料的设计制备提供参考。Abstract: By impregnating active components Zn, triethylenediamine (TEDA) and Zn-TEDA on the surface of zirconium hydroxide (Zr(OH)4) granules, the NO2 removal performance and mechanism of Zn and/or TEDA modified Zr(OH)4 were investigated. The interaction mechanisms of Zr(OH)4, Zn and TEDA with NO2 and yielded NO were discussed in detail. The results showed that the NO2 purifying ability of Zr(OH)4 was significantly improved by loading 4% Zn and 6% TEDA at the same time. The breakthrough time of the zinc-amine modified Zr(OH)4 could reach 84 min, the adsorption capacity for NO2 breakthrough could reach 24.8 mg·cm−3, and the NO release ratio decreased to 6%. In terms of the interaction mechanism with NO2 and NO, Zr(OH)4 matrix removed NO2 mainly through the reaction between surface terminal hydroxyls and NO2, and producing nitrate and nitrite. Zn mainly acted as the assistant of terminal hydroxyls, providing new surface basic adsorption sites for NO2 or acidic intermediates. TEDA could catalyze the surface hydrolysis of NO2 and led to NO2 transformation into more acidic HNO3 and HNO2, then NO2 can be removed quickly. When both Zn and TEDA were loaded, the matrix, metal and amine could cooperate effectively. The synergistic effect among them had a significant improvement on the NO2 removal performance of the material, NO release was delayed and its production proportion was significantly reduced. This provides guidance on the design and preparation of novel air purification materials for nitrogen oxides removal.
-
Key words:
- zirconium hydroxide /
- zinc /
- triethylenediamine /
- nitrogen oxides /
- removal performance /
- removal mechanism /
- synergistic effect
-
表 1 Zn和TEDA负载量对穿透时间的影响
Table 1. Effects of Zn and TEDA loading amount on breakthrough time
单一负载金属Zn 单一负载有机胺TEDA 4% Zn +不同负载量TEDA 负载质量分数/% 穿透时间/min 负载质量分数/% 穿透时间/min 负载质量分数/% 穿透时间/min 0 18.5 0 18.5 0 41 1 22 2 30 2 53 2 26 4 38.5 4 68 3 33 6 52 6 84 4 41 8 74 8 75 5 36.5 10 90.5 10 66.5 表 2 不同材料的穿透时间、NO2穿透吸附量以及NO释放比例
Table 2. Breakthrough time, adsorption capacity of NO2 breakthrough and NO release proportions of different materials
材料 穿透
物质穿透时间/
min单位质量
穿透
吸附量/
(mg·g−1)单位体积
穿透
吸附量/
(mg·cm−3)NO释放
比例/%Zr NO 18.5 2.3 5.5 13 4Zn/Zr NO 41 4.8 12.1 11 6T/Zr NO 52 6.4 15.3 10 4Zn6T/Zr NO 84 10.0 24.8 6 表 3 吸附NO2前后不同含氧官能团或表面物种含量的变化
Table 3. Change in O-containing functional groups or surface species before and after NO2 adsorption
样品名称 含氧官能团或表面物种相对占比/% Br—OH/Zr Br—OH Te—OH 吸附氧或吸附
氧+${\rm{NO}}_3^ - $ +${\rm{NO}}_2^ - $ Zr 50.7 31.2 18.1 1.8 Zr-ED 51.0 24.2 24.8 1.8 4Zn/Zr 53.6 32.3 14.2 1.9 4Zn/Zr-ED 53.3 18.0 28.6 1.9 6T/Zr 55.7 30.6 13.7 1.8 6T/Zr-ED 55.9 15.4 28.7 1.9 4Zn6T/Zr 55.6 31.1 13.3 1.8 4Zn6T/Zr-ED 55.1 10.1 34.9 2.0 表 4 吸附NO2前后表面含氮物种的相对含量的变化
Table 4. Change in N-containing species before and after NO2 adsorption
样品名称 含氮官能团或表面物种相对占比/% 吸附氮或吸附
氮+ TEDATEDA—Zrδ+ TEDA—H+ ${\rm{NO}}_2^ - $ ${\rm{NO}}_3^ - $ Zr 100.0 — — — — Zr-ED 39.8 — — 18.6 41.6 4Zn/Zr 100.0 — — — — 4Zn/Zr-ED 42.5 — — 8.7 48.8 6T/Zr 67.3 32.7 0 — — 6T/Zr-ED 15.2 0 16.4 14.2 54.2 4Zn6T/Zr 82.7 17.3 0 — — 4Zn6T/Zr-ED 16.5 0 14.9 8.6 60.0 注:—代表相应数据不适用。 -
[1] KARWACKI C J, JONES P. Toxic industrial chemical assessment report of NBC filter performance[R]. Maryland: The U.S. Army Edgewood Chemical Biological Center, 2000. [2] BOBBITT N S, MENDONCA M L, HOWARTH A J, et al. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents[J]. Chemical Society Reviews, 2017, 46(11): 3357-3385. doi: 10.1039/C7CS00108H [3] DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chemical Reviews, 2014, 114(11): 5695-5727. doi: 10.1021/cr4006473 [4] MALEKI H. Recent advances in aerogels for environmental remediation applications: A review[J]. Chemical Engineering Journal, 2016, 300: 98-118. doi: 10.1016/j.cej.2016.04.098 [5] 王馨博, 栾志强, 李凯, 等. 气凝胶在气体吸附净化中的应用研究进展[J]. 材料导报, 2018, 32(13): 2214-2222. doi: 10.11896/j.issn.1005-023X.2018.13.012 [6] 张惠, 王喜芹, 栾志强, 等. 铜-胺改性ZSM-5吸附剂的制备及其对NOx的净化机理[J]. 环境工程学报, 2013, 7(12): 4887-4890. [7] NAWROCKI J, RIGNEY M, MCCORMICK A, et al. Chemistry of zirconia and its use in chromatography[J]. Journal of Chromatography A, 1993, 657(2): 229-282. doi: 10.1016/0021-9673(93)80284-F [8] HERTL W. Surface chemistry of zirconia polymorphs[J]. Langmuir, 1989, 5(1): 96-100. doi: 10.1021/la00085a018 [9] MOGILEVSKY G, KARWACKI C J, PETERSON G W, et al. Surface hydroxyl concentration on Zr(OH)4 quantified by 1H MAS NMR[J]. Chemical Physics Letters, 2011, 511(4): 384-388. [10] PETERSON G W, KARWACKI C J, FEAVER W B, et al. Zirconium hydroxide as a reactive substrate for the removal of sulfur dioxide[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 1694-1698. [11] PETERSON G W, WAGNER G W, KELLER J H, et al. Enhanced cyanogen chloride removal by the reactive zirconium hydroxide substrate[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11182-11187. [12] PETERSON G W, ROSSIN J A. Removal of chlorine gases from streams of air using reactive zirconium hydroxide based filtration media[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2675-2681. [13] GLOVER T G, PETERSON G W, DECOSTE J B, et al. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide[J]. Langmuir, 2012, 28: 10478-10487. doi: 10.1021/la302118h [14] BILLINGSLEY B G, BREY L A, BUECHTER W, et al. Layered or mixed sorbent bed protective filtration device: 9908076[P]. 2018-03-06. [15] BALOW R B, LUNDIN J G, DANIELS G C, et al. Environmental effects on zirconium hydroxide nanoparticles and chemical warfare agent decomposition: Implications of atmospheric water and carbon dioxide[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39747-39757. [16] BRADSHAW H, BUTLER C, STEPHENSON H. Zirconium hydroxide: 7794687[P]. 2010-09-14. [17] FEAVER W B, ROSSIN J A. Material and process for the filtration of nitric acid and NO2 from streams of air: 7678182[P]. 2010-03-16. [18] GUO G Y, CHEN Y L, YING W J. Thermal, spectroscopic and X-ray diffraction analyses of zirconium hydroxides precipitated at low pH values[J]. Materials Chemistry & Physics, 2004, 84(2): 308-314. [19] LIU H, SUN X, YIN C, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151(2/3): 616-622. [20] SENGUPTA A, MALIK S N, BAHADUR D. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface[J]. Applied Surface Science, 2016, 363: 346-355. doi: 10.1016/j.apsusc.2015.12.047 [21] GIANNAKOUDAKIS D A, MITCHELL J K, BANDOSZ T J. Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: The role of surface and chemical features[J]. Journal of Materials Chemistry A, 2016, 4(3): 1008-1019. doi: 10.1039/C5TA09234E [22] KIM S, BYL O, YATES J T. The adsorption of triethylenediamine on Al2O3-I: A vibrational spectroscopic and desorption kinetic study of surface bonding[J]. The Journal of Physical Chemistry B, 2005, 109(8): 3499-3506. doi: 10.1021/jp0405512 [23] REZAEI F, JONES C W. Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 1. Single-component adsorption[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 12192-12201. [24] BROSIUS R, BAZIN P, THIBAULT-STARZYK F, et al. Operando FTIR study of reaction pathways of selective catalytic reduction of NOx with decane in the presence of water on iron-exchanged MFI-type zeolite[J]. Journal of Catalysis, 2005, 234(1): 191-198. doi: 10.1016/j.jcat.2005.06.010 [25] HADJIIVANOV K I. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews, 2000, 42(1/2): 71-144. [26] PETERSON G W, ROSSIN J A, KARWACKI C J, et al. Surface chemistry and morphology of zirconia polymorphs and the influence on sulfur dioxide removal[J]. The Journal of Physical Chemistry C, 2011, 115(19): 9644-9650. doi: 10.1021/jp201173x [27] U.S. National Institute of Standards and Technology. The NIST X-ray photoelectron spectroscopy database[EB/OL]. [2019-07-11]. https://srdata.nist.gov/xps/Default.aspx, 2012. [28] LIU E, SARKAR B, CHEN Z, et al. Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite[J]. Microporous and Mesoporous Materials, 2016, 225: 450-455. doi: 10.1016/j.micromeso.2016.01.023 [29] BALTRUSAITIS J, JAYAWEERA P M, GRASSIAN V H. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions[J]. Physical Chemistry Chemical Physics, 2009, 11(37): 8295-8305. doi: 10.1039/b907584d