-
矿物的浮选过程会产生大量的选矿废水,其中含有重金属离子、残留的有机浮选药剂等有毒有害物质。这些选矿废水中的重金属离子由于毒性强、不能降解,直接排入水体中会毒害水生生物和破坏环境[1]。目前,针对含重金属选矿废水的处理技术主要为向选矿废水中投入过量的碱性物质,使重金属离子转化为相应的氢氧化物沉淀,再通过混凝沉淀法去除废水中的重金属离子。李香兰等[2]利用石灰乳调节pH,使选矿废水中重金属离子形成难溶的氢氧化物沉淀。张同胜[3]采用2段石灰乳中和法处理废水中的重金属。由以上研究可知,化学混凝沉淀法能有效地处理高浓度的含重金属废水,但是该技术也具有出水pH偏高[4]、药剂消耗大[5]、重金属回收难[6],处理低浓度重金属废水效果差[7]等不足。另外,浮选药剂需要在适宜的pH条件下使用,而铅锌矿的浮选过程通常在碱性条件下进行,导致选矿废水多数呈碱性[8]。因此,开发一种低成本、易回收且能够有效处理中低浓度重金属废水的处理工艺势在必行。
生物吸附法是利用具有活性或非活性生物作为生物吸附剂将环境或水溶液中的金属离子或非金属化合物通过吸附分离出来的方法[9]。由于其具有处理成本低、重金属易回收、能有效处理低浓度的重金属废水等优势,近年来逐渐被应用于含重金属废水的处理研究中[10]。生物吸附法的研究主要集中在生物吸附剂的制备、生物吸附的工艺参数和吸附机理[11]。如何降低生物吸附剂的制备成本、优化生物吸附的工艺参数和明确其吸附机理,成为生物吸附法工业推广应用的重要影响因素。
近年来,农林废弃物[12]和剩余污泥[13]来源广、价格低廉,且具有良好的潜在吸附能力,已成为制备生物吸附剂的重要原料。本研究利用自制的活性污泥基生物吸附剂对广东省某铅锌矿的含铅选矿废水进行了生物吸附处理。分别考察了吸附剂投加量、吸附时间、pH和温度4个因素对活性污泥基生物吸附剂对Pb2+吸附的影响,利用响应曲面法(response surface methodology, RSM),对自制生物吸附剂吸附选矿废水中的重金属离子进行工艺参数优化,并对各影响因素之间的交互影响作用进行评价,同时通过红外光谱对吸附前后的自制生物吸附剂官能团进行了分析,初步探讨了其对Pb2+的吸附机理,研究结果可为生物吸附法处理含铅选矿废水提供参考。
响应曲面法优化污泥基吸附剂处理含铅选矿废水的实验条件
Experiment conditions optimization of lead-containing mineral processing wastewater treatment by sludge-based adsorbent through response surface methodology
-
摘要: 针对碱性含铅选矿废水的处理问题,利用CaO-SA对广东省某含铅选矿废水进行了吸附研究。通过单因素实验,研究了吸附时间、pH、温度和吸附剂投加量等因素对吸附剂吸附Pb2+的影响。利用Box-Behnken 实验设计探究了吸附时间、pH、温度和投加量对Pb2+的吸附影响并优化最优工艺参数,最后对CaO-SA吸附Pb2+的机理进行探讨。单因素实验结果表明:吸附饱和时间为60 min;吸附剂最优投加量为5 g·L−1;提高温度有利于吸附的进行;在碱性条件下,投加量为5 g·L−1,适当增加温度有利于提高Pb2+的去除率。通过Box-Behnken 实验设计探究发现:各因素对吸附效果的影响顺序为温度>吸附时间>投加量> pH;在最佳条件(投加量为6 g·L−1、温度40 ℃、pH=11、吸附时间为30 min)下,Pb2+的去除率为99.63%;在较短吸附时间内,适当地增加投加量与提高温度有助于提高Pb2+的去除率。对CaO-SA的SEM表征结果显示,该材料孔隙发达,提供吸附位点多。红外光谱与XRD的结果显示,CaO-SA对Pb2+的吸附主要为吸附剂中羧酸盐与Pb2+结合的化学吸附,其次是吸附剂中大量存在的硅酸盐与Pb2+结合的物理吸附。以上研究结果可为CaO-SA工业化应用提供参考。Abstract: In order to treat the alkaline lead-containing mineral processing wastewater, CaO-SA was used to treat a kind of wastewater in Guangdong. The effects of adsorption time, pH, temperature and dosage on Pb2+ adsorption by adsorbents were studied through the single factor experiment. Through Box-Behnken experimental design, the effects of adsorption time, pH, temperature and dosage on Pb2+ adsorption was investigated, and the process parameters were optimized. The Pb2+ adsorption mechanism by CaO-SA was also discussed. The single factor experiment results showed that the equilibrium times for Pb2+ adsorption was 60 min, the optimum dosage of CaO-SA was 5 g·L−1, and the increase of temperature was beneficial to Pb2+removal. The Box-Behnken experimental result showed that the influence order of various factors on the adsorption effect was temperature>adsorption time>addition amount>pH. Under the optimal adsorption conditions: the CaO-SA dosage of 6 g·L−1, the temperature of 40 °C, pH 11, and the adsorption time of 30 min, Pb2+ removal rate reached 99.63%. For the interaction of the factors, some increase of CaO-SA dosage and temperature conduced to the increase of Pb2+ removal during a short adsorption time. SEM images showed CaO-SA had developed pores and provided lots of adsorption sites. FT-IR and XRD result indicated that that Pb2+ adsorption on the surface of CaO-SA was mainly through chemical adsorption with the combination of Pb2+ and carboxylate in CaO-SA, followed by physical adsorption with the combination of Pb2+ and a large amount of silicate in the adsorbent. This study can provide reference for the industrial application of CaO-SA.
-
表 1 实验自变量因素及其水平
Table 1. Factors and levels of experimental design
各水平
编码取值因素 (A)吸附
时间/min(B)温度/℃ (C)投加量/
(g·L−1)(D)pH −1 30 20 2 6 0 45 30 4 9 1 60 40 6 12 表 2 实验设计和结果
Table 2. Experimental design and the corresponding results
编号 变量编码水平 去除率/
%(A)吸附
时间/min(B)温度/℃ (C)投加量/
(g·L−1)(D)pH 1 −1 −1 0 0 72.45 2 0 0 −1 1 98.75 3 1 0 1 0 98.53 4 0 0 0 0 93.64 5 0 0 0 0 85.44 6 1 0 0 −1 98.98 7 −1 0 −1 0 96.11 8 0 −1 0 −1 90.45 9 −1 1 0 0 90.21 10 1 0 −1 0 99.86 11 0 0 1 −1 93.47 12 0 0 1 1 91.68 13 0 1 0 1 88.25 14 0 −1 0 1 92.68 15 1 −1 0 0 93.34 16 0 −1 −1 0 98.21 17 0 0 0 0 77.68 18 −1 0 0 −1 98.20 19 0 1 −1 0 98.0 20 −1 0 0 1 85.48 21 0 1 0 −1 96.78 22 0 1 1 0 94.12 23 0 0 0 0 86.14 24 0 0 −1 −1 99.74 25 1 1 0 0 94.27 26 −1 0 1 0 94.2 27 0 0 0 0 94.27 28 1 0 0 1 94.27 29 0 −1 1 0 94.27 表 3 方差分析表
Table 3. Analysis of variance
项目 平方和 自由度 均方 F P 模型 1 087.04 14 77.65 14.84 < 0.000 1 A 115.38 1 115.38 22.05 0.000 3 B 141.52 1 141.52 27.05 0.000 1 C 57.03 1 57.03 10.90 0.005 2 D 5.07 1 5.07 0.97 0.341 6 AB 243.20 1 243.20 46.49 < 0.000 1 AC 273.90 1 273.90 52.36 < 0.000 1 AD 32.72 1 32.72 6.25 0.025 4 BC 0.048 1 0.048 9.25×10−3 0.924 7 BD 66.10 1 66.10 12.63 0.003 2 CD 92.16 1 92.16 17.62 0.000 9 A2 34.64 1 34.64 6.62 0.022 1 B2 1.52 1 1.52 0.29 0.598 9 C2 18.79 1 18.79 3.59 0.078 9 D2 4.26 1 4.26 0.81 0.382 1 残差 73.24 14 5.23 净误差 0 4 0 总离差 1 160.28 28 -
[1] 夏艳圆. 铅锌选矿废水絮凝吸附处理与回用实验研究[D]. 赣州: 江西理工大学, 2018. [2] 李香兰, 李蘅. 某钨矿选矿废水处理研究[J]. 大众科技, 2011, 13(7): 129-130. doi: 10.3969/j.issn.1008-1151.2011.07.052 [3] 张同胜. 含重金属离子废水处理过程中pH值的设定[J]. 硫酸工业, 2005, 47(4): 27-30. doi: 10.3969/j.issn.1002-1507.2005.04.007 [4] 宋宝旭, 刘四清. 国内选矿厂废水处理现状与研究进展[J]. 矿冶, 2012, 21(2): 97-103. doi: 10.3969/j.issn.1005-7854.2012.02.023 [5] 张志, 赵永斌, 刘如意. 微电解-中和沉淀法处理酸性重金属矿山地下水的实验研究[J]. 有色金属(选矿部分), 2002, 54(2): 45-47. [6] POLLMANN K, KUTSCHKE S, MATYS S, et al. Bio-recycling of metals: Recycling of technical products using biological applications[J]. Biotechnology Advances, 2018, 36: 1048-1062. [7] 刘珊妮. 黄金选矿厂及冶炼厂含砷重金属废水提标处理技术分析与评价[D]. 西安: 西安建筑科技大学, 2012. [8] 文虹. CP吸附剂处理铅锌选矿废水实验研究[D]. 徐州: 中国矿业大学, 2018. [9] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4): 673-701. [10] VIJAYARAGHAVAN K, BALASUBRAMANIAN R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions[J]. Journal of Environmental Management, 2015, 160: 283-296. doi: 10.1016/j.jenvman.2015.06.030 [11] RANGABHASHIYAM S, BALASUBRAMANIAN P. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae[J]. Bioresource Technology Reports, 2019, 5: 261-279. doi: 10.1016/j.biteb.2018.07.009 [12] MO J H, YANG Q, ZHANG N, et al. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment[J]. Journal of Environmental Management, 2018, 227: 395-405. [13] XU G R, YANG X, SPINOSA L. Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment[J]. Journal of Environmental Management, 2015, 151: 221-232. [14] 张双圣, 刘汉湖, 张双全, 等. 污泥吸附剂的制备及其对含Pb2+模拟废水的吸附特性研究[J]. 环境科学学报, 2011, 31(7): 1403-1412. [15] 王开峰, 彭娜, 涂长青, 等. 非活体生物质对水中活性艳红X-3B的吸附研究[J]. 环境工程学报, 2010, 4(2): 309-314. [16] 马双进, 胡亚虎, 王厚成, 等. 活性污泥对重金属离子吸附特性的研究[J]. 工业用水与废水, 2018, 49(6): 9-13. doi: 10.3969/j.issn.1009-2455.2018.06.003 [17] 颜游子, 黄魁, 刘恒毅, 等. 碱性体系浸出废铅膏中的铅[J]. 有色金属, 2018, 70(5): 10-16. [18] 吴海锁, 张鸿, 张爱茜, 等. 活性污泥对重金属离子混合物的生物吸附[J]. 环境化学, 2002, 21(6): 528-532. doi: 10.3321/j.issn:0254-6108.2002.06.002 [19] 王雅辉, 吕文英, 邹雪刚, 等. 响应面法优化胡敏素对Cu2+的吸附及机理研究[J]. 环境科学学报, 2017, 37(2): 624-632. [20] ZYKOVA I V, PANOV V P, MAKASHOVA T G, et al. Fundamental aspects of heavy metal absorption by activated-sludge microorganisms[J]. Russian Journal of Applied Chemistry, 2002, 75(10): 1650-1652. doi: 10.1023/A:1022283903090 [21] 唐虹, 康得军, 谢丹瑜. 活性污泥吸附重金属离子的影响因素[J]. 工业用水与废水, 2015, 46(6): 1-5. doi: 10.3969/j.issn.1009-2455.2015.06.002 [22] 陆主. 改性剩余污泥吸附废水中Cd2+的研究[D]. 湘潭: 湘潭大学, 2014. [23] VIMALNATH S, SUBRAMANIAN S. Studies on the biosorption of Pb(II) ions from aqueous solution using extracellular polymeric substances (EPS) of Pseudomonas aeruginosa[J]. Colloids and Surfaces B: Biointerfaces, 2018, 172: 60-67. doi: 10.1016/j.colsurfb.2018.08.024 [24] 吴景贵, 席时权, 姜岩. 红外光谱在土壤有机质研究中的应用[J]. 光谱学与光谱分析, 1998, 18(1): 52-57. [25] WANG J L, CHEN C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2): 195-226. doi: 10.1016/j.biotechadv.2008.11.002 [26] ZHOU Y M, FU S Y, ZHANG L L, et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II)[J]. Carbohydrate Polymers, 2014, 101: 75-82. doi: 10.1016/j.carbpol.2013.08.055 [27] 吴宏海, 吴大清, 彭金莲. 重金属离子与石英表面反应的研究[J]. 地球化学, 1998, 27(6): 523-531. doi: 10.3321/j.issn:0379-1726.1998.06.002 [28] NASEEM R, TAHIR S S. Removal of Pb(II) from aqueous, pacidic solutions by using bentonites as an adsorbent[J]. Water Research, 2001, 35(16): 3982-3986. doi: 10.1016/S0043-1354(01)00130-0 [29] 刘云, 吴平宵. 粘土矿物与重金属界面反应的研究进展[J]. 环境污染治理技术与设备, 2006, 7(1): 17-22. [30] 贾木欣, 孙传尧. 几种硅酸盐矿物对金属离子吸附特性的研究[J]. 矿冶, 2001, 10(3): 25-31. doi: 10.3969/j.issn.1005-7854.2001.03.006