[1] KARWACKI C J, JONES P. Toxic industrial chemical assessment report of NBC filter performance[R]. Maryland: The U.S. Army Edgewood Chemical Biological Center, 2000.
[2] BOBBITT N S, MENDONCA M L, HOWARTH A J, et al. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents[J]. Chemical Society Reviews, 2017, 46(11): 3357-3385. doi: 10.1039/C7CS00108H
[3] DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chemical Reviews, 2014, 114(11): 5695-5727. doi: 10.1021/cr4006473
[4] MALEKI H. Recent advances in aerogels for environmental remediation applications: A review[J]. Chemical Engineering Journal, 2016, 300: 98-118. doi: 10.1016/j.cej.2016.04.098
[5] 王馨博, 栾志强, 李凯, 等. 气凝胶在气体吸附净化中的应用研究进展[J]. 材料导报, 2018, 32(13): 2214-2222. doi: 10.11896/j.issn.1005-023X.2018.13.012
[6] 张惠, 王喜芹, 栾志强, 等. 铜-胺改性ZSM-5吸附剂的制备及其对NOx的净化机理[J]. 环境工程学报, 2013, 7(12): 4887-4890.
[7] NAWROCKI J, RIGNEY M, MCCORMICK A, et al. Chemistry of zirconia and its use in chromatography[J]. Journal of Chromatography A, 1993, 657(2): 229-282. doi: 10.1016/0021-9673(93)80284-F
[8] HERTL W. Surface chemistry of zirconia polymorphs[J]. Langmuir, 1989, 5(1): 96-100. doi: 10.1021/la00085a018
[9] MOGILEVSKY G, KARWACKI C J, PETERSON G W, et al. Surface hydroxyl concentration on Zr(OH)4 quantified by 1H MAS NMR[J]. Chemical Physics Letters, 2011, 511(4): 384-388.
[10] PETERSON G W, KARWACKI C J, FEAVER W B, et al. Zirconium hydroxide as a reactive substrate for the removal of sulfur dioxide[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 1694-1698.
[11] PETERSON G W, WAGNER G W, KELLER J H, et al. Enhanced cyanogen chloride removal by the reactive zirconium hydroxide substrate[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11182-11187.
[12] PETERSON G W, ROSSIN J A. Removal of chlorine gases from streams of air using reactive zirconium hydroxide based filtration media[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2675-2681.
[13] GLOVER T G, PETERSON G W, DECOSTE J B, et al. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide[J]. Langmuir, 2012, 28: 10478-10487. doi: 10.1021/la302118h
[14] BILLINGSLEY B G, BREY L A, BUECHTER W, et al. Layered or mixed sorbent bed protective filtration device: 9908076[P]. 2018-03-06.
[15] BALOW R B, LUNDIN J G, DANIELS G C, et al. Environmental effects on zirconium hydroxide nanoparticles and chemical warfare agent decomposition: Implications of atmospheric water and carbon dioxide[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39747-39757.
[16] BRADSHAW H, BUTLER C, STEPHENSON H. Zirconium hydroxide: 7794687[P]. 2010-09-14.
[17] FEAVER W B, ROSSIN J A. Material and process for the filtration of nitric acid and NO2 from streams of air: 7678182[P]. 2010-03-16.
[18] GUO G Y, CHEN Y L, YING W J. Thermal, spectroscopic and X-ray diffraction analyses of zirconium hydroxides precipitated at low pH values[J]. Materials Chemistry & Physics, 2004, 84(2): 308-314.
[19] LIU H, SUN X, YIN C, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151(2/3): 616-622.
[20] SENGUPTA A, MALIK S N, BAHADUR D. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface[J]. Applied Surface Science, 2016, 363: 346-355. doi: 10.1016/j.apsusc.2015.12.047
[21] GIANNAKOUDAKIS D A, MITCHELL J K, BANDOSZ T J. Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: The role of surface and chemical features[J]. Journal of Materials Chemistry A, 2016, 4(3): 1008-1019. doi: 10.1039/C5TA09234E
[22] KIM S, BYL O, YATES J T. The adsorption of triethylenediamine on Al2O3-I: A vibrational spectroscopic and desorption kinetic study of surface bonding[J]. The Journal of Physical Chemistry B, 2005, 109(8): 3499-3506. doi: 10.1021/jp0405512
[23] REZAEI F, JONES C W. Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 1. Single-component adsorption[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 12192-12201.
[24] BROSIUS R, BAZIN P, THIBAULT-STARZYK F, et al. Operando FTIR study of reaction pathways of selective catalytic reduction of NOx with decane in the presence of water on iron-exchanged MFI-type zeolite[J]. Journal of Catalysis, 2005, 234(1): 191-198. doi: 10.1016/j.jcat.2005.06.010
[25] HADJIIVANOV K I. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews, 2000, 42(1/2): 71-144.
[26] PETERSON G W, ROSSIN J A, KARWACKI C J, et al. Surface chemistry and morphology of zirconia polymorphs and the influence on sulfur dioxide removal[J]. The Journal of Physical Chemistry C, 2011, 115(19): 9644-9650. doi: 10.1021/jp201173x
[27] U.S. National Institute of Standards and Technology. The NIST X-ray photoelectron spectroscopy database[EB/OL]. [2019-07-11]. https://srdata.nist.gov/xps/Default.aspx, 2012.
[28] LIU E, SARKAR B, CHEN Z, et al. Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite[J]. Microporous and Mesoporous Materials, 2016, 225: 450-455. doi: 10.1016/j.micromeso.2016.01.023
[29] BALTRUSAITIS J, JAYAWEERA P M, GRASSIAN V H. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions[J]. Physical Chemistry Chemical Physics, 2009, 11(37): 8295-8305. doi: 10.1039/b907584d