-
随着我国城镇化进程和新农村建设的不断推进,村镇生活污水排放量也在逐渐增长。考虑到农村地区对优美生态环境的客观需要,有针对性地对农村污水进行治理是社会发展的必然趋势。目前,我国农村污水处理方式主要包括两类:一是靠近城镇排水管道的,纳入排水管道处理,通过管网将农户污水收集并统一处理;二是采用小型污水处理设备,以及自然生态处理等形式将单户或几户的污水就近处理利用[1]。相对于城镇污水而言,农村污水具有以下特点:污水来源复杂,不同地区的排放强度及规律各有差异;农村污水水量波动较为明显;村镇规模相对较小,且分布极为分散,不利于将污水集中处理;污水排放量不稳定,夜间排放量可以忽略[2]。这些不利因素对农村污水的高效治理构成了巨大挑战。
2018年9月29日,住建部和生态环境部联合发布了《关于加快制定地方农村生活污水处理排放标准的通知》[3]。通知提到,农村生活污水500 m3·d−1以上规模(含500 m·d−1)的农村生活污水处理设施可参照执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)[4]执行;而处理规模在500 m3·d−1以下的农村生活污水处理设施,由各地可根据实际情况进一步确定具体处理规模标准。在此政策基础上,各省市纷纷制定了各自地方的排放标准。有些地方标准相对宽松,但有些却比较严格,对氮磷要求很高,例如北京市、天津市等。
根据《室外排水设计规范》[5],为了达到良好的脱氮效果,要求进水的BOD5/TKN宜大于4,而农村污水常常不满足这一要求。农村污水浓度往往较低,低浓度生活污水对生物脱氮影响的后果往往是出水总氮(TN)不达标[6]。其原因主要包括:雨污水合流的稀释作用、地下水渗入稀释作用、化粪池的不合理设置等[7-8]。为了满足日益严格的TN出水标准,尽管外加碳源一定程度上加重了污水厂的经济负担。但是,在缺氧区投加碳源是一条最为稳妥的方法,也是目前不同运营单位最常采用的一种方法。不同污水厂(站)在外加碳源时,采用的外加碳源不尽相同。选择合适的碳源,确定适合的碳源投加量是保证村镇低浓度污水处理达标排放的一条重要途径。
对于农村污水而言,虽然处理工艺具有一定的差异,但主要脱氮原理基本上仍为传统的硝化-反硝化过程。其中,COD与磷酸盐浓度可分别通过曝气以及投加沉淀剂的方式达到排放标准,而脱氮过程则难以通过投加药剂这种立竿见影的形式迅速达标。因此,在农村污水处理的过程中,面临的主要困境往往是出水TN无法达标,为此需要进行深入研究,探究适宜的碳源类型。反硝化菌对不同类型有机物的代谢方式具有差异,其代谢速率各不相同;且不同反硝化菌属最适利用的碳源种类同样具有差异,投加不同种类的碳源可富集不同的反硝化菌属。为摸清不同碳源作为补充碳源对反硝化过程脱氮效果的影响,本研究采用乙酸钠、乙醇、葡萄糖和蔗糖作为碳源,对不同的反硝化过程的脱氮效果进行了探究。本研究可为农村污水处理过程中选用外加碳源的种类提供参考依据。
碳源种类对农村污水反硝化过程脱氮效果的影响
Effect of carbon sources on nitrogen removal in denitrification process of rural wastewater
-
摘要: 针对农村污水普遍存在碳源不足的问题,研究了不同碳源种类对反硝化脱氮过程的影响。选用SBR,以乙酸钠、乙醇、葡萄糖、蔗糖为碳源,分别控制COD∶N值为4.5、5、6.5、6.5,对反应器脱氮速率以及氮素指标变化规律进行了研究。结果表明:投加乙酸钠、乙醇、葡萄糖、蔗糖时,其平均反硝化速率分别为0.050、0.031、0.034、0.026 g·(g·h)−1;有机物结构越复杂,意味着代谢过程越复杂,反硝化所需时间亦相对延长;投加乙酸钠、乙醇、葡萄糖、蔗糖时,当硝酸盐基本被完全消耗时,分别于第50、70、70、70 min时反应器中亚硝酸盐积累量达到了最大值;以葡萄糖为碳源时,最大亚硝酸盐积累率为42.5%;而以乙酸钠和乙醇为碳源时,最大亚硝酸盐积累率次之,分别为23.2%和19.5%;以蔗糖为碳源时,最大亚硝酸盐积累率最小,仅为7.0%。以上研究结果可为低浓度农村污水处理过程中针对外加碳源种类的选择提供参考。Abstract: Aiming at the common problems of insufficient carbon source in rural domestic wastewater, the effects of different organic carbon sources in denitrification process were studied. SBR reactor was used to study its denitrification rate and variation of nitrogen element indices when sodium acetate, ethanol, glucose and sucrose were taken as carbon sources and COD/N value was controlled at 4.5, 5, 6.5 and 6.5, respectively. The results showed that when sodium acetate, ethanol, glucose or sucrose were added, the average denitrification rates were 0.050, 0.031, 0.034 and 0.026 g·(g·h)−1, respectively. The more complex the organic structure, the more complex the metabolic process and the longer the time required for denitrification. When sodium acetate, ethanol, glucose, or sucrose were added and the nitrate was completely consumed, the nitrite accumulation reached the maximum value at 50, 70, 70 and 70 min, respectively. When glucose was used as the carbon source, the maximum nitrite accumulation rate was 42.5%. When sodium acetate or ethanol were used as the carbon source, the maximum nitrite accumulation rate were 23.2% and 19.5%, respectively. When sucrose was used as the carbon source, the maximum nitrite accumulation rate was the smallest with a value of 7.0%. The results of this study can provide a reference for the selection of external carbon sources in the process of low-concentration rural sewage treatment.
-
Key words:
- low-concentration wastewater /
- nitrite /
- denitrification /
- carbon source /
- SBR
-
表 1 不同水质条件下的COD与
${{\bf{NO}}_{\bf{3}}^ {{-}} }$ -N浓度Table 1. COD and
${\rm{NO}}_3^ - $ -N concentration under different water quality碳源类型 COD/(mg·L−1) ${\rm{NO}}_3^ - $ -N /(mg·L−1)COD∶N 乙酸钠 450 100 4.5 乙醇 500 100 5 葡萄糖 650 100 6.5 蔗糖 650 100 6.5 表 2 反硝化细菌的驯化时间
Table 2. Period for domestication of denitrifying bacteria
碳源类型 驯化时间/d MLSS/(g·L−1) MLVSS/(g·L−1) MLVSS∶MLSS 乙酸钠 17 2.65 1.98 0.746 乙醇 24 3.28 2.56 0.78 葡萄糖 26 2.75 2.23 0.812 蔗糖 30 4.4 3.5 0.795 -
[1] 刘俊新. 因地制宜, 构建适宜的农村污水治理体系[J]. 给水排水, 2017, 43(6): 1-3. doi: 10.3969/j.issn.1002-8471.2017.06.001 [2] 文一波. 中国村镇污水处理系统解决方案[M]. 北京: 化学工业出版社, 2017. [3] 生态环境部办公厅, 住房和城乡建设部办公厅. 关于加快制定地方农村生活污水处理排放标准的通知[R]. 2018. [4] 中华人民共和国国家环境保护总局, 中华人民共和国国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB 18918-2002[S]. 北京: 中国环境科学出版社, 2002. [5] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 室外排水设计规范: GB 50014-2006[S]. 北京: 中国计划出版社, 2016. [6] 付昆明, 廖敏辉, 王俊安, 等. 村镇低浓度生活污水现状及处理技术分析[J]. 环境工程, 2019, 37(4): 48-51. [7] 邵林广. 南方城市污水处理厂实际运行水质远小于设计值的原因及其对策[J]. 给水排水, 1999, 25(2): 11-13. [8] 郝晓地. 可持续污水-废物处理技术[M]. 北京: 中国建筑工业出版社, 2006. [9] 张自杰. 排水工程(下)[M]. 5版. 北京: 中国建筑工业出版社, 2015. [10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [11] ZHAO Y F, MIAO J, REN X, et al. Effect of organic carbon on the production of biofuel nitrous oxide during the denitrification process[J]. International Journal of Environmental Science and Technology, 2018, 15(2): 461-470. doi: 10.1007/s13762-017-1397-9 [12] 付昆明, 曹相生, 孟雪征, 等. 污水反硝化过程中亚硝酸盐的积累规律[J]. 环境科学, 2011, 32(6): 1660-1664. [13] CASTRO-BARROS C M, JIA M, VAN LOOSDRECHT M C, et al. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment[J]. Bioresource Technology, 2017, 233: 363-372. doi: 10.1016/j.biortech.2017.02.063 [14] ALMEIDA J S, REIS M, CARRONDO M. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens[J]. Biotechnology and Bioengineering, 1995, 46(5): 476-484. doi: 10.1002/bit.260460512 [15] THOMSEN J K, GEEST T, COX R P. Mass-spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by paracoccus-denitrificans[J]. Applied and Environmental Microbiology, 1994, 60(2): 536-541. doi: 10.1128/AEM.60.2.536-541.1994 [16] HAMLIN H J, MICHAELS J T, BEAULATON C M, et al. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture[J]. Aquacultural Engineering, 2008, 38(2): 79-92. doi: 10.1016/j.aquaeng.2007.11.003 [17] AN S M, GARDNER W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas)[J]. Marine Ecology Progress Series, 2002, 237: 41-50. doi: 10.3354/meps237041 [18] YANG X P, WANG S M, ZHOU L X. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonasstutzeri D6[J]. Bioresource Technology, 2012, 104: 65-72. doi: 10.1016/j.biortech.2011.10.026 [19] GE S J, PENG Y Z, WANG S Y, et al. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/ ${\rm{NO}}_3^- $ -N[J]. Bioresource Technology, 2012, 114: 137-143. doi: 10.1016/j.biortech.2012.03.016[20] GLASS C, SILVERSTEIN J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839. doi: 10.1016/S0043-1354(97)00260-1 [21] PAN Y T, NI B J, BOND P L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J]. Water Research, 2013, 47(10): 3273-3281. doi: 10.1016/j.watres.2013.02.054 [22] GABARRÓ J, GONZÁLEZ-CÁRCAMO P, RUSCALLEDA M, et al. Anoxic phases are the main N2O contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration[J]. Bioresource Technology, 2014, 163: 92-99. doi: 10.1016/j.biortech.2014.04.019 [23] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042 [24] GLASS C, SILVERSTEIN J, OH J. Inhibition of denitrification in activated sludge by nitrite[J]. Water Environment Research, 1997, 69(6): 1086-1093. doi: 10.2175/106143097X125803 [25] 阎宁, 金雪标, 张俊清. 甲醇与葡萄糖为碳源在反硝化过程中的比较[J]. 上海师范大学学报(自然科学版), 2002, 31(3): 41-44.