Loading [MathJax]/jax/output/HTML-CSS/jax.js

湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺

郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
引用本文: 郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
Citation: ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062

湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺

    作者简介: 郑雪松(1996—),男,硕士研究生。研究方向:水污染技术。E-mail:742816982@qq.com
    通讯作者: 孙亚兵(1964—),男,博士,副教授。研究方向:水污染控制工程。E-mail:sybnju@163.com
  • 基金项目:
    南京市环境保护科学研究院“功能化改性除磷吸附剂的研究”项目(0211-151662)
  • 中图分类号: X703

Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma

    Corresponding author: SUN Yabing, sybnju@163.com
  • 摘要: 以避蚊胺(DEET)为模型污染物,研究了湿壁介质阻挡放电(DBD)协同浮石载羟基氧化铁去除污染物的可行性。采用浸渍法制备了浮石载羟基氧化铁复合材料,并对其进行了SEM、XRF、XRD、FT-IR和BET表征。同时研究了放电电压、初始pH、催化剂投加量等参数对DEET的去除率的影响。结果表明:在DEET初始浓度为20 mg·L−1、初始pH=7、放电电压为15 kV、催化剂添加量为0.45 g时,反应27 min后,DEET的去除率为90.52%,且经过4次循环使用后,材料对DEET仍然具有较高的去除率;相比于单一的湿壁介质阻挡放电,DEET去除率提高了13.22%,一级动力学反应速率提高了62.26%。最后讨论了DBD强化浮石载羟基氧化铁去除DEET的可能机制。以上研究结果可为DBD技术去除水中有机污染物的应用提供参考。
  • 土壤是人类农业生产的物质基础,一旦遭受污染,会对粮食安全和人体健康造成危害。2014年发布的《全国土壤污染状况调查公报》[1]显示,我国土壤重金属污染问题不容乐观,污染土壤中约82.4%的土壤受到重金属及准金属污染,且土壤重金属污染具有隐蔽性、滞后性、治理难、周期长的特点[2]。重金属极易在土壤-植株体系内迁移和累积,会造成环境污染和生态破坏。因此,对土壤重金属的治理迫在眉睫。

    目前,土壤重金属的处理方法包括物理法(土壤淋洗、蒸汽浸提、电动力学修复)、化学法(化学修复剂)和生物法(微生物催化降解、植物修复、动物修复)[3]。化学原位钝化技术因其成本低、见效快、处理效果显著而得到广泛的应用[4]。常用的钝化剂主要有石灰[5]、磷酸盐[6]、有机质[7-8]、金属氧化物[9-11]和黏土矿物[12]。其中,凹凸棒石是一种典型的含水富镁铝硅酸盐黏土矿物,具有独特的化学成分和物理结构,内表面积大、孔隙较多、离子交换能力强,在化工、环保和印染等领域得到了广泛的应用。谭科艳等[13]研究了凹凸棒石对铜锌镉重金属污染土壤的修复效果,结果表明,适量添加凹凸棒石黏土矿物可对Cu的平均修复率达到31.50%,对Zn元素的平均修复率达到26.15%,对Cd元素的平均修复率达到34.92%,能够有效减少蔬菜对Cu、Zn、Cd元素的吸收。马博[14]研究表明,凹凸棒石综合钝化能力更强,且在酸性较高的极端条件下效果优于膨润土和沸石,低配比凹凸棒石对衡阳尾矿中Cr、Zn、Cd、Pb、Cu的钝化效果显著。ZHANG等[15]发现,凹凸棒石的施加可显著降低Cu的生物可利用态质量分数,缓解重金属Cu对油菜植株的生理胁迫效应。

    常用的凹凸棒石改性方法有无机改性、有机改性、生物质改性和微波改性[16]。LIANG等[17]通过制备巯基改性凹凸棒石钝化Cd污染土壤,可显著增强土壤颗粒对Cd的吸附,抑制农作物对重金属Cd的吸收。XU等[18]将纳米零价铁负载凹凸棒石施用进土壤中,可有效促进重金属Cd、Cr和Pb发生形态转变,并将其固定下来。甘肃省具有丰富的凹凸棒石矿藏,但常常因为品位较低未能得到大规模开发利用。为解决此问题,制备5种不同体积分数H2SO4、不同改性时间的酸改性凹凸棒石,探讨不同钝化材料的添加量对土壤重金属Cu和Zn的钝化效果,并结合环境风险指数和重金属修复效率评估酸改性凹凸棒石的最佳投加量,以期为农田重金属污染土壤的治理和甘肃省凹凸棒石的应用提供参考。

    重金属复合污染土壤采自甘肃省白银市东大沟(36° 59′ 96′′ N,104° 22′ 76′′ E)。土壤的基本理化性质为pH 7.28、土壤电导率(EC)1457 µS·cm−1、重金属Cu质量分数为1029.11 mg·kg−1、重金属Ni质量分数为87.18 mg·kg−1、重金属Zn质量分数为707.51 mg·kg−1。其中,Cu和Zn均远超国家标准限值,分别为《土壤环境质量农用地土壤污染风险管控标准》(GB 15618-2018)[19]的5.15倍和2.83倍。

    凹凸棒石质黏土复合矿物(简称为“凹凸棒石”)购自甘肃当地,原矿采自甘肃省临泽县板桥镇红色凹凸棒石矿,土状结构,粒度为2 mm左右,主要的矿物成分为凹凸棒石29.7%、石英21.8%、长石14.6%、白云石 6.3%、其他组分27.6%,是一种由凹凸棒石为主,石英和长石以及碳酸盐矿物等伴生的黏土质复合非金属矿物。其主要化学成分为:SiO2 48.38%、Al2O3 11.24%、Fe2O3 4.78%、MgO 7%、CaO 7.41%[20]

    称取定量凹凸棒石,破碎、研磨,过200目筛(直径0.075 mm)。基于49种酸改性钝化材料的研究[21],制备5种优选酸改性凹凸棒石,具体配制条件见表1。将凹凸棒石粉末与不同体积分数的H2SO4溶液混合,固液比为1∶10(mv),500 r·min−1转速下搅拌一定时间后,烘干、研磨、过筛制得钝化材料。按2、4、8、16、24 g·kg−1的添加量,将酸改性凹凸棒石钝化材料加入到1.5 kg实际重金属复合污染土壤中,混合均匀,重量法添加去离子水,保持70%的田间持水量,钝化培育30 d后测定土壤的理化性质和重金属形态,每组处理设置不添加任何钝化材料的土壤样品作为对照,记为CK。

    表 1  酸改性凹凸棒石的制备方法
    Table 1.  The preparation method of acid modified attapulgite
    实验编号H2SO4体积分数/%反应时间/h
    A110.072
    A212.548
    A312.572
    A412.596
    A515.072
     | Show Table
    DownLoad: CSV

    采用X射线衍射仪(MiniFlex600,日本Rigaku公司)分析改性前后的凹凸棒石晶体物相组成,扫描速度为10°·min−1,角度为5°~80°,扫描过程采用Cu-Kα 辐照。采用扫描电子显微镜(GeminiSEM500,德国ZEISS公司)观察改性前后凹凸棒石的表面形貌,将样品过200目筛网,在15 kV电压下以相同倍率下放大观察分析。

    采用pH计(pHS-3C,上海仪电科学仪器股份有限公司)测定土壤pH,固液比为1∶2.5(mv)。采用电导率仪(DDS-307A,上海仪电科学仪器股份有限公司)测定土壤EC,固液比为1∶5(mv)。采用BaCl2-H2SO4强迫交换法测定土壤阳离子交换量(CEC)。采用BCR连续提取法测定土壤重金属化学形态。土壤重金属总量经HCl-HNO3-HF-HClO4消解后,火焰原子吸收分光光度计(TAS-990,北京普析通用仪器有限责任公司)测定浓度。

    本实验选用H2O和DTPA作为提取剂来评价土壤重金属的生物有效性。土壤重金属水溶态测定时,称取5 g土壤样品与50 mL蒸馏水均匀混合,25 ℃下充分振荡24 h,火焰原子吸收分光光度法测定上清液中重金属浓度。土壤重金属DTPA提取态测定时,称取2 g土壤样品与40 mL DTPA提取液均匀混合,25 ℃下振荡12 h,火焰原子分光光度法测定上清液中重金属浓度。

    污染土壤的生态风险指数(Ecological risk index,ERI)指土壤中活性较高的生物有效态质量分数与重金属总量之比,用于表示土壤中重金属的生态环境风险,常用于底泥沉积物、土壤和污泥中重金属的风险评价,通常分为5个等级,即无风险(<1%)、低风险(1%~10%)、中风险(10%~30%)、高风险(30%~50%)、极高风险(>50%)。按式(1)计算[22-23]

    ERIm=CbsCs×100% (1)

    式中:Cbs为土壤中有效态重金属的质量分数,mg·kg−1Cs为土壤中重金属的质量分数,mg·kg−1

    此外,潜在风险指数(potential ecological risk index)可用于评价多种重金属复合污染的生态风险,可按式(2)、式(3)计算。

    Eir=TirCidCib (2)
    RI=ni=1Eir (3)

    式中:Eir为单种重金属元素的潜在风险指数;Cid为土壤中重金属质量分数,mg·kg−1Cib为国家土壤中重金属标准质量分数限值(CCub=100 mg·kg−1CZnb=250 mg·kg−1);Tir为单种重金属元素的生物毒性因子,其中TCur=5,TZnr=1;RI为重金属总的生态风险指数。风险等级划分依据如表2表3所示。

    表 2  土壤中单一重金属(Er)的潜在生态风险指数
    Table 2.  The potential ecological risk index of single heavy metal (Er) in Soil
    Er风险程度
    Er ≤ 40低风险
    40 ≤Er <80中风险
    80 ≤ Er < 160较高风险
    160 ≤ Er < 320高风险
    Er > 320极高风险
     | Show Table
    DownLoad: CSV
    表 3  土壤中复合重金属(RI)的潜在生态风险指数
    Table 3.  The potential ecological risk index of total heavy metals (RI) in Soil
    RI风险程度
    RI ≤ 150低风险
    150 ≤ RI <300中风险
    300 ≤ RI <600高风险
    RI ≥ 600极高风险
     | Show Table
    DownLoad: CSV

    污染土壤中重金属的修复效率(Remediation ratio,RR)指BCR多级提取法中较稳定的重金属残渣态(S4)与土壤重金属4种形态总和的比值,可用于评估重金属的潜在活化风险,按式(4)计算[24]

    RR=S4S1+S2+S3+S4×100% (4)

    式中: S1为重金属元素酸溶态质量分数,mg·kg−1;S2为重金属元素还原态质量分数,mg·kg−1;S3为重金属元素氧化态质量分数,mg·kg−1;S4为重金属元素残渣态质量分数,mg·kg−1

    土壤pH、电导率和阳离子交换量影响着重金属的化学形态,是评价重金属迁移转化和作物生长发育情况的重要指标[25]。施用不同酸改性凹凸棒石后的土壤pH见图1(a),与对照组相比,向土壤中施加5种酸改性凹凸棒石后,土壤pH均呈现显著降低的趋势。在同一投加量水平下,A3处理组pH显著低于其他处理组。这是因为,天然的凹凸棒石本身呈弱碱性,含有大量的羟基等官能团[26],而改性添加的H2SO4具有强酸性,能够和土壤及凹凸棒石中的碱性物质发生反应,从而降低土壤pH,调节土壤的酸碱度。本研究采用的实际污染土壤为北方地区常见的碱性土壤,酸改性凹凸石的施用有效改善了土壤的酸碱环境。不同酸改性凹凸棒石处理后的土壤EC见图1(b),在同一酸改性凹凸棒石处理组中,土壤EC随着添加量的增加而显著增加,且A5处理组EC值显著高于其他处理组。土壤CEC随着凹凸棒石添加量的增加而增加,但不同添加量间差异性不显著(图1(c))。除A4材料投加量为8 mg·kg−1时土壤CEC较高外,其他投加量水平下,A5处理组CEC也显著高于其他处理组。一方面,凹凸棒石的表面带有Na+、K+和Ca2+等阳离子,本身具有较高的阳离子交换容量,随着投加量的增加,土壤中带电的离子浓度升高,从而提高土壤电导率[27];另一方面,当改性时添加的H2SO4体积分数较大时,凹凸棒石表面会带有大量的H+,这些活泼的阳离子可能会和土壤中的Cu2+、Zn2+发生阳离子交换反应,提高土壤的EC和CEC [28]

    图 1  酸改性凹凸棒石钝化土壤的理化性质
    Figure 1.  The physicochemical properties of soil stabilized with acid-modified attapulgite

    土壤中重金属的水溶态可直观地反映重金属的生物可利用度,这部分形态的重金属质量分数很低,但是却可以直接被植物吸收利用,具有极强的迁移性和毒性,因此常常作为土壤重金属污染评价的重要指标[29]。不同改性凹凸棒石处理后的土壤生物有效态重金属质量分数见图2。从图2可以看出,添加酸改性凹凸棒石后,水溶态Cu和Zn的质量分数均较对照组显著降低。尽管随着投加量的增加,水溶态重金属质量分数出现了先降低后轻微升高的趋势,但差异并未达显著水平。实验结果表明,当投加量为16 g·kg−1时,酸改性凹凸棒石对Cu、Zn的钝化效果最好。其中,A5处理组中水溶态Cu的质量分数最低,较对照组降低了47.38%;A3处理组中水溶态Zn的质量分数最低,较对照组降低了64.44%。土壤中DTPA提取态重金属质量分数常常用来评估植物对重金属的吸收情况,DTPA络合剂能够与重金属离子结合,形成稳定的水溶性络合物,可直观地评价重金属的生物有效性[30]。添加酸改性凹凸棒石后,Cu和Zn的DTPA提取态质量分数均较对照组显著降低。当投加量为16 g·kg−1时,A5处理组中DTPA提取态Cu的质量分数最低,较对照组下降了24.25%,A3处理组中DTPA提取态Zn的质量分数最低,较CK下降了46.77%。DTPA提取态重金属的降低趋势与水溶态重金属基本保持一致。这与罗宁临等[31]的研究结果基本一致。造成以上结果的原因可能是:1)酸改性使得凹凸棒石表面和孔隙内的碳酸盐杂质得以去除,晶束团聚结构变得更加紧密,内表面积和缝隙增大,增强了其对重金属Cu、Zn的吸附能力[32];2)酸改性凹凸棒石的施用提高了土壤的阳离子交换容量,土壤中游离的Cu2+、Zn2+通过阳离子交换作用,与带有负电荷的凹凸棒石和土壤颗粒结合,显著降低了重金属的生物有效性[27,33];3)凹凸棒石表面带有大量的硅羟基等官能团,能与重金属发生络合反应,从而将其固定[14,34]。本研究结果说明,采用优质的钝化材料是降低土壤重金属毒性的关键,而控制合适的投加量对农田土壤的修复也至关重要。

    图 2  酸改性凹凸棒石钝化土壤中重金属的生物有效态质量分数
    Figure 2.  The bioavailable heavy metals in soil stabilized with acid-modified attapulgite

    BCR多级提取法中,重金属各种形态的活性大小依次为酸溶态>可还原态>可氧化态>残渣态[35]。其中,酸溶态重金属的生物可利用度最高,可还原态和可氧化态重金属容易随着pH和氧化还原电位等环境条件的变化而变化,重新释放到环境介质中,残渣态重金属最稳定,不易在土壤中迁移转化,生态毒性最低[35-37]。酸改性凹凸棒石钝化后土壤中重金属形态分布见图3图4。添加不同酸改性凹凸棒石后,酸溶态Cu和Zn的质量分数较对照组显著降低,而残渣态Cu和Zn的质量分数上升(图3图4)。当投加量为16 g·kg−1时,A3处理组中酸溶态Cu和Zn的占比最低,残渣态Cu的比例较对照组上升了3.96%;残渣态Zn的比例较对照组上升了15.26%,这与武成辉等[38]和陶玲等[39]的研究结果一致。添加不同酸改性凹凸棒石可影响重金属在土壤中的形态,促进重金属从活性较高的酸溶态、可还原态向活性较低的可氧化态、残渣态转变,降低了Cu、Zn的生态毒性,实现了土壤的钝化修复。其原因可能是:1)凹凸棒石及其改性材料的添加可通过一系列吸附、离子交换、沉淀和络合作用降低酸溶态Cu、Zn质量分数[40];2)凹凸棒石经过酸处理后,起支撑作用的八面体和四面体溶解,导致凹凸棒石的孔道增大,比表面积增加,凹凸棒石的吸附性能提高[41];3)残渣态重金属 Cu、Zn一般存在于硅酸盐、原生和次生矿物等土壤的晶格中,当向污染土壤中施用酸改性凹凸棒石后,随着钝化时间的延长,低价的Cu2+、Zn2+可能会在凹凸棒石八面体或四面体结构中与Si4+发生晶格置换,能长期稳定在土壤中[42]

    图 3  酸改性凹凸棒石钝化土壤中重金属Cu的BCR形态分布
    Figure 3.  The chemical speciation distribution of Cu in soil stabilized with acid-modified attapulgite
    图 4  酸改性凹凸棒石钝化土壤中重金属Zn的BCR形态分布
    Figure 4.  The chemical speciation distribution of Zn in soil stabilized with acid-modified attapulgite

    为验证上述作用机理,本实验对凹凸棒石改性前后的微观形貌和晶体结构进行表征,扫描电子显微镜图像如图5所示。供试凹凸棒石原矿(ATP)主要呈棒状晶束堆积结构,晶束较长,棒晶密实,孔道结构较少。经不同浓度H2SO4和不同活化时间处理后,凹凸棒石的棒晶发生解束,晶束变短,排列相对松散,可直接接触的点位增多,增强了凹凸棒石对重金属的吸附能力。这与陈雪芳[43]等的研究结果一致:酸改性能够溶解凹凸棒石中的八面体阳离子和四面体硅,使得八面体结构起主要的支撑作用,凹凸棒石孔道开放,孔径增大,比表面积增大,吸附性能提高。但是,当酸浓度较高时,会对层间的阳离子起较强的溶出作用,破坏晶体结构,进而降低凹凸棒石的吸附性能[44]

    图 5  酸改性凹凸棒石的扫描电镜图
    Figure 5.  Scanning electron microscope image of acid modified attapulgite

    酸改性凹凸棒石的X射线衍射图谱结果见图6。凹凸棒石的特征峰位于8.40°处,与标准衍射图谱(JCPDFNo.020018)一致。石英特征衍射峰的存在证实了凹凸棒石中伴生有其他物相的杂质。从图中可以看出,经过酸改性后,凹凸棒石质黏土复合矿物物相组成及凹凸棒石、白云石物相的衍射峰峰强度没有明显改变,石英杂质的峰强度有轻微减弱。这表明,酸改性过程溶解了碳酸盐等杂质,但是并未破坏凹凸棒石的骨架结构。该结果与雷春生等[45]和张萍等[46]的研究结果一致。本研究结果表明,适宜的酸浓度和改性时间能够有效改善天然凹凸棒石原矿的表面形貌和孔隙结构,使得钝化材料孔隙结构增多,孔径变大,比表面积增大,促进了其对重金属的钝化修复。

    图 6  酸改性凹凸棒石的 X 射线衍射图谱
    Figure 6.  X-ray diffraction pattern of acid modified attapulgite

    与土壤中重金属的总量相比,水溶态Cu和Zn的质量分数占比不到0.01%。因此,本研究根据DTPA提取态重金属的质量分数来评价酸改性凹凸棒石钝化剂对土壤重金属的修复效率和生态风险。对照组污染土壤中Cu和Zn的环境风险指数分别对应为24.4%和11.51%。经不同的钝化材料处理后,土壤重金属的环境风险均较对照组显著降低(表4)。当施用A5钝化材料且投加量为16 g·kg−1时,酸改性凹凸棒石处理后Cu的环境风险指数降至最低。土壤Zn的环境风险由中风险降为低风险(表5),当施用A3材料且投加量为16 g·kg−1时,Zn的环境风险指数最低。

    表 4  不同添加量酸改性凹凸棒石钝化土壤中Cu的环境风险指数
    Table 4.  The environmental risk index of Cu in soil stabilized with different amount of acid-modified attapulgite
    酸改性凹凸棒石添加量/(g·kg−1)ERI/%
    A1A2A3A4A5
    221.81±0.13Aa20.80±0.02Ab20.40±0.11Ac20.35±0.07Ac20.49±0.23Ac
    421.72±0.06Aa20.32±0.14Bb19.88±0.26BCc19.77±0.15BCc20.28±0.13Ab
    820.26±0.07Ba19.97±0.14Cb20.10±0.13ABab19.42±0.18Dab19.36±0.06Bc
    1619.80±0.15Ca19.35±0.21Db19.67±0.11Ca19.87±0.07Ba18.48±0.17Dc
    2419.43±0.18Dab19.24±0.15Db19.35±0.17Dab19.56±0.10CDab18.78±0.09Cc
      注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。
     | Show Table
    DownLoad: CSV
    表 5  不同添加量酸改性凹凸棒石钝化土壤中Zn的环境风险指数
    Table 5.  The environmental risk index of Zn in soil stabilized with different amount of acid-modified attapulgite
    酸改性凹凸棒石添加量/(g·kg−1)ERI/%
    A1A2A3A4A5
    29.47±0.03Aa8.85±0.09Ab8.55±0.11Ac8.24±0.11Ad8.31±0.04Ad
    48.52±0.11BCab8.59±0.11Ba8.36±0.06Abc8.00±0.08Bd8.31±0.15Ac
    88.83±0.10BCa8.39±0.10Cb8.48±0.19Ab7.29±0.15Cc8.21±0.20Ab
    168.27±0.06Ca8.13±0.09Da6.13±0.10Bc7.09±0.10Db8.11±0.16Aa
    248.88±0.66Ba8.14±0.15Db6.23±0.22Bd7.00±0.09Dc8.26±0.14Ab
      注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。
     | Show Table
    DownLoad: CSV

    在复合重金属污染土壤中,除了考虑单一重金属的环境风险外,受元素共存的联合作用影响,本研究评价了多种重金属的总环境风险指数RI。除添加量为16 g·kg−1的A1处理外,其他处理均显著降低了土壤RI。由图7可知,A3材料在较高添加量(≥8 g·kg−1)时,土壤RI指数随着添加量的增加显著降低。施用A5材料且添加量为16 g·kg−1时土壤中Cu、Zn的总生态风险指数达到最低。

    图 7  酸改性凹凸棒石钝化土壤中重金属的总环境风险指数
    Figure 7.  The total environmental risk factor of heavy metals in soil stabilized with acid-modified attapulgite

    钝化完成后,通常根据土壤中重金属的修复效率来评价钝化材料的实际应用价值。添加酸改性凹凸棒石后,Cu的修复效率随着投加量的增加呈先升高后轻微降低的趋势(表6),当钝化材料的投加量为16 g·kg−1时,重金属Cu的修复效率明显高于其他处理组。其中,A3处理组的钝化修复效率最高,达11.96%。重金属Zn修复效率的变化趋势与Cu基本一致(表7),当向土壤中施加16 g·kg−1的酸改性凹凸棒石后,Zn的修复效率明显高于其他处理组。其中,A3处理组Zn的钝化修复效率最高,为27.70%。

    表 6  不同添加量酸改性凹凸棒石钝化土壤中Cu的修复效率
    Table 6.  The remediation ratio of Cu in soil stabilized with different amount of acid-modified attapulgite
    酸改性凹凸棒石添加量/(g·kg−1)RR/%
    A1A2A3A4A5
    27.90±0.22Dc7.48±0.26Cc9.52±0.12Ca8.55±0.58Cb7.64±0.17Dc
    48.56±0.12Cb7.82±0.31BCc9.74±0.25Ca9.62±0.23BCa8.55±0.26Cb
    89.11±0.12Bcd8.53±0.24Bd10.20±0.45BCb11.01±0.62ABa9.76±0.20Bbc
    1611.51±0.30Aa9.87±0.28Ab11.96±0.93Aa11.24±0.15Aab11.15±0.32Aab
    2411.30±0.31Aab9.47±0.88Ac11.00±0.38Bab11.58±0.60Aa10.35±0.74Bbc
      注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。
     | Show Table
    DownLoad: CSV
    表 7  不同添加量酸改性凹凸棒石钝化土壤中Zn的修复效率
    Table 7.  The remediation ratio of Zn in soil stabilized with different amount of acid-modified attapulgite
    酸改性凹凸棒石添加量/(g·kg−1)RR/%
    A1A2A3A4A5
    219.21±0.40Cc20.83±0.38Cb22.62±0.47Da20.51±0.98Db23.52±0.99Ca
    421.20±0.48Bb20.86±0.46Cb24.86±1.00Ca21.18±0.30CDb25.63±0.30ABa
    822.39±0.72ABb22.50±0.60BCb24.74±0.34Ca21.97±0.52BCb25.14±0.72BCa
    1623.55±0.12Ac25.16±0.15Abc27.70±0.11Aa24.82±0.11Ac27.40±0.14Aab
    2423.06±0.70Ab22.91±0.15Bb26.23±0.36Ba23.06±0.39Bb26.77±0.12ABa
      注:大写字母表示不同投加量之间的差异性,小写字母表示不同钝化材料之间的差异性。
     | Show Table
    DownLoad: CSV

    1)当H2SO4的体积分数为12.5%和15%,改性时间为72 h时,制得的酸改性凹凸棒石对Cu、Zn的钝化效果最佳,其最优投加量为16 g·kg−1

    2)向土壤中施加酸改性凹凸棒石,可显著降低重金属Cu、Zn的生物有效态质量分数,当钝化材料的投加量为16 g·kg−1时,H2O提取态Cu、Zn分别降低了25.91%~47.87%和49.69%~65%,DTPA提取态Cu、Zn分别降低了8.63%~24.30%和28.26%~46.84%。这说明,16 g·kg−1凹凸棒石可以有效降低Cu、Zn的生物有效性。

    3)酸改性凹凸棒石的添加促使重金属Cu、Zn由活性较高的酸溶态向活性较低的残渣态转变,提高土壤重金属修复效率,当H2SO4的体积分数为12.5%,改性时间为72 h时,向土壤中投加16 g·kg−1酸改性凹凸棒石,Cu、Zn的修复效率最高,可达11.96%和27.70%,此时Zn的环境风险最低,降至6.13%,处于低风险。

  • 图 1  实验装置示意图

    Figure 1.  Schematics of experimental system

    图 2  浮石和浮石载羟基氧化铁的扫描电镜图

    Figure 2.  SEM images of pumice and Fe-coated pumice

    图 3  浮石和浮石载羟基氧化铁的氮吸附等温线

    Figure 3.  Nitrogen sorption isotherm of pumice and Fe-coated pumice

    图 4  催化剂的XRD图

    Figure 4.  XRD patterns of catalysts

    图 5  催化剂的FT-IR图

    Figure 5.  FT-IR spectra of catalysts

    图 6  浮石载羟基氧化铁投加量对DEET去除速率的影响

    Figure 6.  Effect of Fe-coated pumice dosage on the removal rate of DEET

    图 7  不同催化剂对DEET去除率的影响

    Figure 7.  Effect of different catalysts on the removal efficiency of DEET

    图 8  初始pH和放电电压对DEET去除率的影响

    Figure 8.  Effect of initial pH and discharge voltage on the removal efficiency of DEET

    图 9  催化剂循环次数对DEET去除率和铁浸出的影响

    Figure 9.  Effect of catalyst recirculation on the removal efficiency of DEET and the Fe leaching

    图 10  不同模式协同浮石载羟基氧化铁和自由基清除剂对DEET去除的影响

    Figure 10.  Effects of different modes combined Fe-coated pumice and radical scavengers on the removal of DEET

    表 1  浮石和浮石载羟基氧化铁的比表面积和孔容

    Table 1.  Surface area and pore volume for pumice and Fe-coated pumice

    样品比表面积/(m2·g−1)孔径/nm孔容/(cm3·g−1)
    浮石0.5622.340.003
    浮石载羟基氧化铁9.655.990.014
    样品比表面积/(m2·g−1)孔径/nm孔容/(cm3·g−1)
    浮石0.5622.340.003
    浮石载羟基氧化铁9.655.990.014
    下载: 导出CSV
  • [1] COSTANZO S D, WATKINSON A J, MURBY E J, et al. Is there a risk associated with the insect repellent DEET(N,N-diethyl-m-toluamide) commonly found in aquatic environments?[J]. Science of the Total Environment, 2007, 384(1/2/3): 214-220.
    [2] SONG W, COOPER W J, PEAKE B M, et al. Free-radical-induced oxidative and reductive degradation of N,N′-diethyl-m-toluamide (DEET): Kinetic studies and degradation pathway[J]. Water Research, 2009, 43(3): 635-642. doi: 10.1016/j.watres.2008.11.018
    [3] MEREL S, NIKIFOROV A I, SNYDER S A. Potential analytical interferences and seasonal variability in diethyltoluamide environmental monitoring programs[J]. Chemosphere, 2015, 127: 238-245. doi: 10.1016/j.chemosphere.2015.02.025
    [4] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U. S. streams, 1999-2000: A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211.
    [5] SUN J, LUO Q, WANG D, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China[J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140. doi: 10.1016/j.ecoenv.2015.03.032
    [6] TISCH M, SCHMEZER P, FAULDE M, et al. Genotoxicity studies on permethrin, DEET and diazinon in primary human nasal mucosal cells[J]. European Archives of Oto-Rhino-Laryngology, 2002, 259(3): 150-153. doi: 10.1007/s004050100406
    [7] ROSSNER A, SNYDER S A, KNAPPE D R U. Removal of emerging contaminants of concern by alternative adsorbents[J]. Water Research, 2009, 43(15): 3787-3796. doi: 10.1016/j.watres.2009.06.009
    [8] SCHOLTZ V, PAZLAROVA J, SOUSKOVA H, et al. Nonthermal plasma: A tool for decontamination and disinfection[J]. Biotechnology Advances, 2015, 33(6): 1108-1119. doi: 10.1016/j.biotechadv.2015.01.002
    [9] YU Z, SUN Y, ZHANG G, et al. Degradation of DEET in aqueous solution by water falling film dielectric barrier discharge: Effect of three operating modes and analysis of the mechanism and degradation pathway[J]. Chemical Engineering Journal, 2017, 317: 90-102. doi: 10.1016/j.cej.2017.02.068
    [10] AKBAL F. Adsorption of basic dyes from aqueous solution onto pumice powder[J]. Journal of Colloid and Interface Science, 2005, 286(2): 455-458. doi: 10.1016/j.jcis.2005.01.036
    [11] YAVUZ M, GODE F, PEHLIVAN E, et al. An economic removal of Cu2+ and Cr3+ on the new adsorbents: Pumice and polyacrylonitrile/pumice composite[J]. Chemical Engineering Journal, 2008, 137(3): 453-461. doi: 10.1016/j.cej.2007.04.030
    [12] HUANG H C, HUANG G L, CHEN H L, et al. Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications[J]. Thin Solid Films, 2006, 515(3): 1033-1037. doi: 10.1016/j.tsf.2006.07.071
    [13] RAO K V S, SUBRAHMANYAM M, BOULE P. Immobilized TiO2 photocatalyst during long-term use: Decrease of its activity[J]. Applied Catalysis B: Environmental, 2004, 49(4): 239-249. doi: 10.1016/j.apcatb.2003.12.017
    [14] KITIS M, KAPLAN S S. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles[J]. Chemosphere, 2007, 68(10): 1846-1853. doi: 10.1016/j.chemosphere.2007.03.027
    [15] HEIBATI B, RODRIGUEZ-COUTO S, TURAN N G, et al. Removal of noxious dye: Acid orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone[J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 124-131. doi: 10.1016/j.jiec.2015.06.016
    [16] ZHANG T, LI C, MA J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: Property and activity relationship[J]. Applied Catalysis B: Environmental, 2008, 82(1/2): 131-137.
    [17] SUI M, SHENG L, LU K, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 94-100.
    [18] YUAN L, SHEN J, CHEN Z, et al. Role of Fe/pumice composition and structure in promoting ozonation reactions[J]. Applied Catalysis B: Environmental, 2016, 180: 707-714. doi: 10.1016/j.apcatb.2015.07.016
    [19] 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014.
    [20] 刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
    [21] IGISU M, KOMIYA T, KAWASHIMA M, et al. FT-IR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng'an, South China[J]. Gondwana Research, 2014, 25(3): 1120-1138. doi: 10.1016/j.gr.2013.05.002
    [22] LI X B, ZHAO D F, YANG S S, et al. Influence of thermal history on conversion of aluminate species in sodium aluminate solution[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3348-3355. doi: 10.1016/S1003-6326(14)63476-2
    [23] KREHULA S, MUSIĆ S. Influence of copper ions on the precipitation of goethite and hematite in highly alkaline media[J]. Journal of Molecular Structure, 2007, 834: 154-161.
    [24] LEI L C, ZHANG Y, ZHANG X W, et al. Degradation performance of 4-chlorophenol as a typical organic pollutant by a pulsed high voltage discharge system[J]. Industrial & Engineering Chemistry Research, 2007, 46(17): 5469-5477.
    [25] ZHANG H, HUANG Q, KE Z, et al. Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas-solution interface and its safety evaluation[J]. Water Research, 2012, 46(19): 6554-6562. doi: 10.1016/j.watres.2012.09.041
    [26] PELEG M. The chemistry of ozone in the treatment of water[J]. Water Research, 1976, 10(5): 361-365. doi: 10.1016/0043-1354(76)90052-X
    [27] ZHANG T, LI W, CROU J P. catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation[J]. Environmental Science & Technology, 2011, 45(21): 9339-9346.
    [28] ZHANG R, ZHANG C, CHENG X, et al. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor[J]. Journal of Hazardous Materials, 2007, 142(1): 105-110.
    [29] WANG J, SUN Y B, JIANG H, et al. Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite[J]. Journal of Saudi Chemical Society, 2017, 21(5): 545-557. doi: 10.1016/j.jscs.2016.08.002
  • 加载中
图( 10) 表( 1)
计量
  • 文章访问数:  5219
  • HTML全文浏览数:  5219
  • PDF下载数:  75
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-13
  • 录用日期:  2020-06-29
  • 刊出日期:  2021-02-10
郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
引用本文: 郑雪松, 孙亚兵, 於仲清, 孙浩, 陈鸣. 湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺[J]. 环境工程学报, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062
Citation: ZHENG Xuesong, SUN Yabing, YU Zhongqing, SUN Hao, CHEN Ming. Degradation of DEET in aqueous solution with Fe-coated pumice enhanced by wetted-wall dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 512-521. doi: 10.12030/j.cjee.202005062

湿壁介质阻挡放电强化浮石载羟基氧化铁降解水中避蚊胺

    通讯作者: 孙亚兵(1964—),男,博士,副教授。研究方向:水污染控制工程。E-mail:sybnju@163.com
    作者简介: 郑雪松(1996—),男,硕士研究生。研究方向:水污染技术。E-mail:742816982@qq.com
  • 1. 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京 210046
  • 2. 南京市生态环境保护科学研究院,南京 210013
基金项目:
南京市环境保护科学研究院“功能化改性除磷吸附剂的研究”项目(0211-151662)

摘要: 以避蚊胺(DEET)为模型污染物,研究了湿壁介质阻挡放电(DBD)协同浮石载羟基氧化铁去除污染物的可行性。采用浸渍法制备了浮石载羟基氧化铁复合材料,并对其进行了SEM、XRF、XRD、FT-IR和BET表征。同时研究了放电电压、初始pH、催化剂投加量等参数对DEET的去除率的影响。结果表明:在DEET初始浓度为20 mg·L−1、初始pH=7、放电电压为15 kV、催化剂添加量为0.45 g时,反应27 min后,DEET的去除率为90.52%,且经过4次循环使用后,材料对DEET仍然具有较高的去除率;相比于单一的湿壁介质阻挡放电,DEET去除率提高了13.22%,一级动力学反应速率提高了62.26%。最后讨论了DBD强化浮石载羟基氧化铁去除DEET的可能机制。以上研究结果可为DBD技术去除水中有机污染物的应用提供参考。

English Abstract

  • 由于避蚊胺(DEET)对蚊子、苍蝇、跳蚤、蜱和其他叮咬昆虫有着显著的驱散效果,且具有成本低廉的优点,自20世纪50年代以来,被广泛的应用于军队和居民中[1]。据报道,美国平均每年要消耗1 800 t的避蚊胺[2]。随着DEET的广泛使用,其在全球的水环境中普遍可见,浓度为ng·L−1~μg·L−1[3]。例如,在美国54条河流中,其中74%的河流都可以检测到DEET,部分河流中DEET的浓度甚至高达1.1 μg·L−1[4];在中国5条主要河流流域的饮用水源中也检测到避蚊胺[5]。DEET具有毒性,在人鼻黏膜细胞中具有潜在的致癌性和遗传毒性[6],因此,对水中DEET的高效去除的研究变得极为重要。

    近年来,有研究表明,传统的水处理过程对DEET几乎没有去除效果,ROSSNER等[7]研究表明,吸附剂种类会影响DEET去除率,但整体效果并不明显。而低温等离子体技术由于其具有高效率、优良的环境兼容性等优势,逐渐被广泛用于去除水体中的污染物[8]。在之前的研究中,湿壁介质阻挡放电(DBD)被应用于DEET的降解[9],虽然该技术将产生的等离子气体导入到溶液,但并没有充分的利用等离子气体中的臭氧,因此,单一的DBD等离子体的效果存在进一步的提高。

    水中的臭氧可通过铁基材料催化,天然浮石是一种自然界中大量存在的多孔性火山岩,其成本低廉,是理想的天然原料。目前,对于浮石在水处理中应用的研究主要在于其吸附性能或作为一种催化剂载体[10-13]。同时为了进一步提高浮石的性能[14-15],通常负载铁。一些研究结果表明,羟基氧化铁能够催化臭氧,这是因为其表面的羟基官能团能促进臭氧分解并产生羟基自由基[16-17]。然而,纯浮石的催化效率比较有限,且羟基氧化铁的分离又比较困难,YUAN等[18]成功的制备了一种用于催化臭氧的材料α-FeOOH,提高了浮石的催化能力。其作用原理是:该负载材料通过羟基氧化铁催化了臭氧分解。DBD产生的等离子气体中含有较高浓度的臭氧,这些进入溶液的臭氧能否被该材料催化,尚未有相关的研究报道。

    基于此,本文对湿壁介质阻挡放电(DBD)协同铁负载浮石降解水中DEET进行了研究。并对影响降解体系的因素进行了研究,分析浮石载羟基氧化铁在反应体系中的作用,并初步探究了DBD协同浮石载羟基氧化铁处理DEET的机制,以期为DEET降解的应用提供参考。

  • DEET购于上海阿拉丁试剂有限公司,通过将DEET溶解在超纯水中来模拟废水,实验中所用的浮石(pumice)产地为河北省行唐县。用于HPLC与LC-MS分析的试剂都是高效液相色谱级别。其他化学试剂均是分析纯。

    天然浮石粉末都是经过300目标准检验筛(江苏省南京市雄晨筛网厂)的筛分后的颗粒,本研究通过将浮石浸渍在碱性的铁溶液中来制备浮石载羟基氧化铁(Fe-coated pumice)[14,18]。首先,将天然浮石粉末用蒸馏水超声清洗2次,然后在80 ℃下干燥12 h。其次,将经过上述预处理的浮石浸渍于0.1 mol·L−1的硝酸铁溶液中,用10 mol·L−1的氢氧化钠调节溶液pH到11,并室温下静置72 h。最后用超纯水冲洗直到pH和电导率维持稳定,并在80 ℃下烘干48 h,烘干后材料在真空下保存。

  • 与之前的研究[9]相同,实验装置如图1所示,主要包括同轴线筒式双介质阻挡等离子体反应器、等离子体电源和液体循环系统。圆筒反应器由2个内径分别为6 mm和25 mm的石英管组成。内外石英管厚度均为2 mm,内管插入直径为5 mm的铝杆,外管用长120 mm的铜弹簧紧密包裹。等离子体发生器的高压电极与铝棒连接,接地电极与铜弹簧连接,内外石英管的中间区域为放电区域,本研究使用的等离子体电源(CTP-2000 K,南京苏曼电子有限公司,中国)是一种高压交流电源。

  • 图1所示,向进料水箱中加入300 mL 20 mg·L−1的DEET溶液,并加入一定量的浮石载羟基氧化铁,DEET溶液通过蠕动泵循环输送,从进料水箱到反应池,然后在外石英管内壁形成一层遍及整个放电区域的湿壁流,同时生成的等离子气体通过气泵输送到DEET溶液中,待溶液在反应器内均匀循环流动时,开启等离子电源对水样进行处理,每隔3 min取一次样,使用H2SO4和NaOH调节pH。

    DEET浓度分析采用高效液相色谱法(HPLC, Agilent 1200,USA),流动相为30%超纯水和70%的甲醇,流速为1 mL·min−1,柱温25 ℃,进样量为20 μL,色谱柱为安捷伦C18柱(4.6 mm×150 mm,5 μm),保留时间为3.41 min,检测波长为230 nm。

    水溶液中的臭氧浓度采用靛蓝褪色法进行测定;催化剂溶出总铁离子(Fe2+/Fe3+)浓度采用石墨炉原子吸收光谱仪(Thermo Solaar M6, USA)配备空心阴极灯(Thermo Fe, USA)进行测定;样品材料中元素的组成使用ARL-9800型X射线荧光光谱进行测定分析;使用Swiss ARL X’TRA型X射线衍射仪测定样品存在的晶型结构进行物相分析;Hitachi S-3400N II型扫描电镜观察样品的表面形貌和微观结构;样品的官能团由USA NICOLET NEXUS 870型傅里叶红外光谱仪检测;样品的孔径分布和比表面积由ASAP 2020型比表面积分析仪测定。

  • 浮石和浮石载羟基氧化铁催化剂通过SEM、XRF、XRD、FT-IR和BET等技术进行了表征分析。图2是浮石和浮石载羟基氧化铁的SEM图。由图2可知,纯浮石呈现为块状结构,表面比较光滑,宽度在20 μm左右。当引入羟基氧化铁后,浮石的块状结构遭受破坏,可能是被高浓度氢氧化钠腐蚀所致,且表面变得粗糙,有许多不规则分布的孔道,与纯浮石结构明显不同。

    为了进一步研究样品的表面形貌和孔容,对样品进行BET分析,浮石和浮石载羟基氧化铁催化剂的物理吸附等温线如图3所示。浮石及浮石载羟基氧化铁的吸附等温线呈现出具有磁滞回线的Ⅳ型特点,这说明其均是介孔材料。表1展示了浮石和浮石载羟基氧化铁的比表面积和孔容,相比于纯浮石,浮石载羟基氧化铁的比表面积由0.56 m2·g−1提高到9.56 m2·g−1,孔容变大3.66倍。而浮石载羟基氧化铁的作用主要是催化臭氧氧化,是一种表面反应[19-20]。增加的比表面积和孔容也为臭氧提供更多的活性位点,从而提高其催化臭氧氧化效率。

    XRF的表征结果表明浮石主要由O(35.1%)、Si(17.9%)、Ca(11.7%)、Mg(5.9%)、Al(4.5%)和Fe(1.8%)构成。与之相比,浮石载羟基氧化铁含有的元素包括O(35.1%)、Si(17.4%)、Ca(11.2%)、Mg(5.8%)、Al(4.3%) 和Fe(3.3%)。浮石与浮石载羟基氧化铁的XRD的表征结果如图4所示。浮石的主要物相为结晶长石和硅铝酸盐。而浮石载羟基氧化铁催化剂与纯浮石却不相同,铁的负载导致浮石表面生成了与铁元素有关的α-FeOOH晶体[18]

    表面羟基在红外光谱中常于3 200~3 650 cm−1处出现峰值。由图5可知,浮石载羟基氧化铁和浮石在3 450 cm−1处均有吸收峰,主要为水分子和表面羟基(Si—OH、Ca—OH、Mg—OH或Fe—OH)的拉伸运动[18],而1 620 cm−1处的波峰对应于羟基的弯曲模式[21]。浮石载羟基氧化铁表面羟基官能团峰高的增加,表明α-FeOOH含量的增加。1 020 cm−1处附近的峰代表Si—O—Al键的伸缩振动[15],880 cm−1处的峰可能是由于Al—OH的振动[22],Fe—OH键的弯曲振动和Fe—O键的伸缩振动导致催化剂在500~800 cm−1出现吸收峰[23],这些结果与以前的研究结果[18]相一致。

  • 催化剂的投加量会影响DEET的去除速率和效果。DBD协同不同量的浮石载羟基氧化铁降解DEET的速率对比如图6所示,DEET的去除速率随着催化剂投加量的增加而上升,无催化剂投加的情况下,DBD降解DEET的一级动力学反应速率常数为0.053 min−1,而当浮石载羟基氧化铁投加量增加到0.45 g时,DBD协同浮石载羟基氧化铁的一级动力学反应速率常数为0.086 min−1,这可能是因为催化剂量的增加,提高了表面反应的位点数目,加速臭氧分解形成·OH。当催化剂添加量达到0.6 g时,DBD协同浮石载羟基氧化铁的一级动力学反应速率常数为0.098 min−1,DEET的去除速率只有轻微的提升,这可能是由于当持续增加催化剂添加量时,臭氧吸附位点富余,催化剂的利用率变低。

    图7为DBD分别协同浮石、浮石载羟基氧化铁降解DEET的去除率随时间变化曲线,浮石和浮石载羟基氧化铁的添加均提高了DEET的去除率,这可能是浮石和浮石载羟基氧化铁催化DBD中产生的臭氧气体分解得到的·OH导致。同时浮石载羟基氧化铁具有更好的催化性能,该实验结果与前述的催化剂表征相匹配(更大的比表面积为臭氧提供更多的活性位点、更高的表面羟基含量)。为了去除催化剂对DEET吸附的影响,使用浮石和浮石载羟基氧化铁对DEET进行30 min的暗吸附实验,结果表明,浮石和浮石载羟基氧化铁吸附对DEET的去除率分别为3.82%和3.34%。

  • 图8反映了pH和放电电压对DEET去除率的影响。如图8(a)所示,DEET的去除率随着pH由3增加到9而降低,其原因可能是等离子放电在pH较低时能产生更多的·OH[24]。另一方面,随着OH浓度的增加,一些·OH可以与OH结合形成水,从而降低DEET的去除率[25]。而当pH 为9~11时,DEET的去除率反而提升可能是因为臭氧分解产生·OH速率随着溶液中碱性的增强而变快[26-27]。由图8(a)可知,在pH为3~11时,浮石载羟基氧化铁均能提供稳定的催化性能。

    图8(b)所示,放电电压增加也表明放电功率的增加,随着放电电压的提高,DEET的去除率也有明显增加。放电电压为18 kV时DEET的去除率为放电电压为12 kV的1.23倍。等离子体中的自由电子通过碰撞使氧和水分发生强电离产生大量的活性物种(·O、O3和·OH等)[28]。当放电电压增加时,电子在放电区域会获得更多的能量,从而增加碰撞的概率,形成更多的活性物种,进而提高DEET的去除率。

  • 为了研究浮石载羟基氧化铁的稳定性,在相同的条件下对催化剂进行4次循环实验。每次循环后的样品经过离心收集后,用超纯水洗涤、干燥以备下次使用。如图9所示,材料经过4次循环后,DEET的去除率仅有轻微的降低。同时为了进一步检测材料的稳定性,使用石墨炉原子吸收光谱仪测定每次反应液中溶出铁的浓度,每0.45 g催化剂反应一次铁的损失量在0.21~0.24 mg,相比于前述表征中催化剂中铁的含量占比较小,由此可见,合成的浮石载羟基氧化铁具有良好的催化性能,且具有较好的重复使用稳定性。

  • 使用异丙醇(IPA)作为羟基自由基的捕获剂。同时为了推测浮石载羟基氧化铁在体系中的作用,设计3种反应器运行模式:M1仅将放电区域产生的等离子气体通过气泵输送到进料水槽中,不存在液循环进入放电区域;M2存在液循环进入放电区域,但气泵停止工作;M3为上述实验方法中所述。

    在之前的研究中[9],M1中臭氧浓度最高为7.125 μmol·L−1,M3中臭氧浓度略低于M1,为4.312 μmol·L−1,而M2中臭氧浓度很低,仅有1.416 μmol·L−1图10(a)为不同模式下协同浮石载羟基氧化铁降解DEET的去除速率对比。相比于单独的介质阻挡放电,M2协同浮石载羟基氧化铁的一级动力学反应速率几乎没有提升。而M1协同浮石载羟基氧化铁的一级动力学反应速率常数提高1.94倍。由此可知,相比于DBD,协同体系处理DEET的速率提升可能主要归因于浮石载羟基氧化铁的催化臭氧氧化作用。由图10(b)可知,在反应体系中,·OH是主要的活性物种,在纯M3体系内,·OH对DEET的去除率约36%,但在M3体系中加入了浮石载羟基氧化铁后,该复合体系中·OH对DEET的去除率约50%,由此可见,浮石载羟基化铁的加入为体系中引入了更多的·OH。

    DBD中引入浮石载羟基氧化铁提高了DEET的去除率,说明体系存在明显的协同效应,而协同效应的产生主要因为浮石载羟基氧化铁的表面羟基官能团起着催化臭氧的作用,其与臭氧反应产生HO3·和氧气[17],HO3·再分解产生·OH和氧气,同时,等离子放电过程还会在体系中产生H2O2,羟基氧化铁还能诱发类芬顿反应从而形成·OH [29],进一步加速DEET的降解。所涉及的反应过程如式(1)~式(5)所示。

  • 1)湿壁介质阻挡放电协同浮石载羟基氧化铁对DEET有着较高的去除效果和一定的协同作用,同时浮石载羟基氧化铁在初始pH为3~11时均有稳定的催化性能。协同体系去除DEET的一级动力学常数是单独等离子体系的1.62倍。在27 min实验后,协同作用去除率提高了13.74%。

    2)在一定范围内,增加浮石载羟基氧化铁的投加量,可以提升DEET的去除率。

    3)加入羟基自由基清除剂可显著降低DEET的去除率,且湿壁介质阻挡放电协同浮石载羟基氧化铁体系中,DEET的去除率要高于单一的湿壁介质阻挡放电体系。

    4)浮石载羟基氧化铁在协同体系中的主要作用是催化作用,其表面羟基官能团能促进等离子气中的臭氧最终分解成·OH,从而提高DEET的去除率。

参考文献 (29)

返回顶部

目录

/

返回文章
返回