-
抗生素是一类能够抑制或杀死病原菌的有机化合物,因而被广泛用于人和动物感染性疾病的治疗与预防[1]。四环素(tetracycline, TC)作为一种广谱抗生素被大量使用,由于难生物降解,经常在地表水、地下水或土壤中被检测到[2]。此外,四环素过度使用导致其在环境中积累,从而促进多种耐药病原体形成,最终对动物和人体造成严重危害[3]。因此,亟需探索高效经济去除四环素的方法。
近年来,高级氧化技术(advanced oxide processes, AOP)因其可高效降解四环素类抗生素而被广泛使用[4-5]。过一硫酸盐(peroxymonosulfate, PMS),与其他氧化剂相比,具有价格便宜、pH适用范围广、半衰期长等特点[6],因而得到大量研究。目前,主要使用过渡金属(Co2+、Ce3+、Fe2+、Ni2+、Ru3+、Mn2+)和金属氧化物[7-8](铁氧化物、锰氧化物、钴氧化物、锌氧化物)等物质活化PMS,产生
${\rm{SO}}_4^ - $ ·和 HO·等自由基,从而达到快速降解有机污染物的目的。然而,上述活化方法均会导致重金属离子泄露到水体中,造成二次污染。因此,寻找绿色经济的助催化剂活化PMS降解有机污染物尤显重要。高岭土是一种典型且不含重金属的二维层状矿物,是由一层硅氧四面体叠加一层铝氧八面体组成[8]。为提高活性和增加活性位点,通过热处理高岭土,脱掉结合水并改变晶型而形成煅烧高岭土(calcined kaolin, CK)[9]。经过精心提炼,煅烧高岭土的颜色变白、惰性杂质去除和颗粒变小[10-11],有利于提高催化活性。鉴于高岭土价格低廉且不含重金属,刘建立[12]发现高岭土能催化臭氧高效降解对硝基苯酚,LI等[8]也发现,使用高岭土活化PMS用于降解阿特拉津具有较好的效果。然而,目前关于煅烧高岭土活化PMS用以降解四环素的研究还鲜有报道。
本研究以TC为目标污染物,分析煅烧高岭土活化PMS的特性。考察了PMS投加量、pH、煅烧高岭土投加量、四环素浓度、阴离子等对煅烧高岭土/PMS降解TC效果的影响,并采用各种表征手段对煅烧高岭土进行了表征。探讨了CK活化PMS催化降解TC的机理,并对TC的降解产物进行了分析,探索了TC的降解途径,从而对黏土类矿物催化降解四环素类抗生素提供参考。
煅烧高岭土活化过一硫酸盐去除废水中的四环素
Removal of tetracycline from wastewater by activated peroxymonosulfate using calcined kaolin
-
摘要: 煅烧高岭土(calcined kaolin, CK)是一种含量丰富且绿色环保的材料,因其具有催化活性高且活性位点较多的优点,故将其用以活化过一硫酸盐(peroxymonosulfate, PMS)以去除四环素(tetracycline, TC)。结果表明,CK活化PMS去除TC的过程包括吸附和催化降解。溶液初始pH=6、0.5 mmol·L−1投加量的PMS和0.2 g·L−1投加量的CK为CK活化PMS去除TC的最佳条件。Cl−、
${\rm{NO}}_3^ - $ 、${\rm{HCO}}_3^ - $ 的浓度在0~10 mmol·L−1时对CK活化PMS去除TC体系基本没有影响,而${{\rm{H}}_2}{\rm{PO}}_4^ - $ 对其体系有较大的抑制作用。自由基淬灭实验结果表明,HO·是CK活化PMS去除TC体系中的主要活性基团。通过液相-质谱联用仪检测出12种产物,阐述了4条可能的降解途径。以上结果表明,CK是一种极具潜力且含量丰富的绿色催化剂,其活化PMS后可应用于净化含有机污染物废水。Abstract: Calcined kaolin (CK) is an abundant and green material and was used to activate peroxymonosulfate (PMS) for tetracycline (TC) removal due to its high catalytic activity and many active sites. The results showed that the removal process of TC by activated PMS using CK included adsorption and catalytic degradation. The optimal conditions for TC removal were pH=6, the dosages of 0.5 mmol·L−1 PMS and 0.2 g·L−1 CK. Cl−,${\rm{NO}}_3^ - $ and${\rm{HCO}}_3^ - $ with the concentration range of 0~10 mmol·L−1 had slight effect on the TC removal system, while${{\rm{H}}_2}{\rm{PO}}_4^ - $ had a great inhibitory effect on the system. The active radical trapping experiments demonstrated that HO· was the main active species responsible for TC removal. TC was attacked and decomposed by HO· formed the CK surface due to CK activation toward PMS according to the analysis of material characterization. Twelve intermediates were detected by liquid chromatograph-mass spectrometer and four degradation pathways were proposed. This study shows that CK is a green catalyst with great potential and can be applied to purify wastewater containing organic pollutants.-
Key words:
- calcined kaolin /
- peroxymonosulfate /
- catalysis /
- tetracycline /
- radical /
- degradation
-
表 1 四环素的降解产物
Table 1. Degradation products of tetracycline
产物 停留时间/min 质荷比 化学式 来源 TC 0.68 445.0 C22H24N2O8 本研究 P1 10.60 417.0 C20H20N2O8 [30] P2 13.23 378.3 C19H23NO7 [31] P3 14.73 362.2 C19H23NO6 [31] P4 14.79 319.1 C17H18O6 [31] P5 0.67 214.8 C14H14O2 [31] P6 0.67 345.1 C18H16O7 [32] P7 19.44 301.1 C17H16O5 [32] P8 10.19 202.7 C13H14O2 [32] P9 0.67 474.8 C22H22N2O10 [30] P10 6.46 479.0 C22H26N2O10 [3] P11 10.60 377.1 C19H20O8 [3] P12 0.69 220.7 C12H12O4 [3] -
[1] 何锦垚, 魏健, 张嘉雯, 等. 臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报, 2019, 13(10): 2385-2392. doi: 10.12030/j.cjee.201902043 [2] CHEN H, LUO H, LAN Y, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192(1): 44-53. [3] HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123532. doi: 10.1016/j.cej.2019.123532 [4] LI Z, WANG M, JIN C, et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 392: 123789. doi: 10.1016/j.cej.2019.123789 [5] JI Y, SHI Y, DONG W, et al. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution[J]. Chemical Engineering Journal, 2016, 298: 225-233. doi: 10.1016/j.cej.2016.04.028 [6] 冯善方, 邓思萍, 杜嘉雯, 等. 三维有序介孔Co3O4非均相活化单过硫酸氢钾降解罗丹明B[J]. 环境科学, 2016, 37(11): 4247-4254. [7] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064 [8] LI C, HUANG Y, DONG X, et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine[J]. Applied Catalysis B: Environmental, 2019, 247: 10-23. doi: 10.1016/j.apcatb.2019.01.079 [9] BADOGIANNIS E, KAKALI G, TSIVILIS S. Metakaolin as supplementary cementitious material[J]. Journal of Thermal Analysis and Calorimetry, 2005, 81(2): 457-462. doi: 10.1007/s10973-005-0806-3 [10] GÜNEYISI E, GESOǦLU M, ÖZTURAN T, et al. Microstructural properties and pozzolanic activity of calcined kaolins as supplementary cementing materials[J]. Canadian Journal of Civil Engineering, 2012, 39(12): 1274-1284. doi: 10.1139/cjce-2011-0586 [11] SHAFIQ N, NURUDDIN M F, KHAN S U, et al. Calcined kaolin as cement replacing material and its use in high strength concrete[J]. Construction and Building Materials, 2015, 81: 313-323. doi: 10.1016/j.conbuildmat.2015.02.050 [12] 刘建立. 高岭土催化臭氧氧化难降解有机污染物的实验研究[D]. 北京: 中国石油大学, 2018. [13] OH W D, DONG Z, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003 [14] WANG H, CHEN T, CHEN D, et al. Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation[J]. Applied Catalysis B: Environmental, 2020, 260: 118203. doi: 10.1016/j.apcatb.2019.118203 [15] GENG H, CHEN W, LI Q, et al. Effect of pre-dispersing metakaolin in water on the properties, hydration, and metakaolin distribution in mortar[J]. Frontiers in Materials, 2019, 6: 99. doi: 10.3389/fmats.2019.00099 [16] LI J, XU M, YAO G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 348: 1012-1024. doi: 10.1016/j.cej.2018.05.032 [17] HU L, ZHANG G, LIU M, et al. Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016 [18] DONG X, REN B, SUN Z, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied Catalysis B: Environmental, 2019, 253: 206-217. doi: 10.1016/j.apcatb.2019.04.052 [19] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96. doi: 10.1016/j.jhazmat.2016.01.023 [20] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [21] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [22] JEONG J, SONG W, COOPER W J, et al. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes[J]. Chemosphere, 2010, 78(5): 533-540. doi: 10.1016/j.chemosphere.2009.11.024 [23] LIU Y, LEI S, LIN M, et al. Assessment of pozzolanic activity of calcined coal-series kaolin[J]. Applied Clay Science, 2017, 143: 159-167. doi: 10.1016/j.clay.2017.03.038 [24] SU S Q, YANG J, MA H W, et al. Preparation of ultrafine aluminum hydroxide from coal fly ash by alkali dissolution process[J]. Integrated Ferroelectrics, 2011, 128(1): 155-162. doi: 10.1080/10584587.2011.576626 [25] SAN CRISTÓBAL A G, CASTELLÓ R, MARTÍN LUENGO M A, et al. Zeolites prepared from calcined and mechanically modified kaolins: A comparative study[J]. Applied Clay Science, 2010, 49(3): 239-246. doi: 10.1016/j.clay.2010.05.012 [26] LIEW Y M, KAMARUDIN H, MUSTAFA AL BAKRI A M, et al. Processing and characterization of calcined kaolin cement powder[J]. Construction and Building Materials, 2012, 30: 794-802. doi: 10.1016/j.conbuildmat.2011.12.079 [27] LI C, SUN Z, LI X, et al. Facile fabrication of g-C3N4/precipitated silica composite with enhanced visible-light photoactivity for the degradation of rhodamine B and congo red[J]. Advanced Powder Technology, 2016, 27(5): 2051-2060. doi: 10.1016/j.apt.2016.07.014 [28] BARR T L, SEAL S, HE H, et al. X-ray photoelectron spectroscopic studies of kaolinite and montmorillonite[J]. Vacuum, 1995, 46(12): 1391-1395. doi: 10.1016/0042-207X(95)00159-X [29] LIU Y, HE X, FU Y, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327. doi: 10.1016/j.cej.2015.09.034 [30] CAO J, SUN S, LI X, et al. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 382: 122802. doi: 10.1016/j.cej.2019.122802 [31] LI X, CUI K, GUO Z, et al. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods[J]. Chemical Engineering Journal, 2020, 379: 122324. doi: 10.1016/j.cej.2019.122324 [32] PAN T, CHEN D, XU W, et al. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation[J]. Journal of Hazardous Materials, 2020, 393: 122366. doi: 10.1016/j.jhazmat.2020.122366