[1] |
何锦垚, 魏健, 张嘉雯, 等. 臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报, 2019, 13(10): 2385-2392. doi: 10.12030/j.cjee.201902043
|
[2] |
CHEN H, LUO H, LAN Y, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192(1): 44-53.
|
[3] |
HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123532. doi: 10.1016/j.cej.2019.123532
|
[4] |
LI Z, WANG M, JIN C, et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 392: 123789. doi: 10.1016/j.cej.2019.123789
|
[5] |
JI Y, SHI Y, DONG W, et al. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution[J]. Chemical Engineering Journal, 2016, 298: 225-233. doi: 10.1016/j.cej.2016.04.028
|
[6] |
冯善方, 邓思萍, 杜嘉雯, 等. 三维有序介孔Co3O4非均相活化单过硫酸氢钾降解罗丹明B[J]. 环境科学, 2016, 37(11): 4247-4254.
|
[7] |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
|
[8] |
LI C, HUANG Y, DONG X, et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine[J]. Applied Catalysis B: Environmental, 2019, 247: 10-23. doi: 10.1016/j.apcatb.2019.01.079
|
[9] |
BADOGIANNIS E, KAKALI G, TSIVILIS S. Metakaolin as supplementary cementitious material[J]. Journal of Thermal Analysis and Calorimetry, 2005, 81(2): 457-462. doi: 10.1007/s10973-005-0806-3
|
[10] |
GÜNEYISI E, GESOǦLU M, ÖZTURAN T, et al. Microstructural properties and pozzolanic activity of calcined kaolins as supplementary cementing materials[J]. Canadian Journal of Civil Engineering, 2012, 39(12): 1274-1284. doi: 10.1139/cjce-2011-0586
|
[11] |
SHAFIQ N, NURUDDIN M F, KHAN S U, et al. Calcined kaolin as cement replacing material and its use in high strength concrete[J]. Construction and Building Materials, 2015, 81: 313-323. doi: 10.1016/j.conbuildmat.2015.02.050
|
[12] |
刘建立. 高岭土催化臭氧氧化难降解有机污染物的实验研究[D]. 北京: 中国石油大学, 2018.
|
[13] |
OH W D, DONG Z, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
|
[14] |
WANG H, CHEN T, CHEN D, et al. Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation[J]. Applied Catalysis B: Environmental, 2020, 260: 118203. doi: 10.1016/j.apcatb.2019.118203
|
[15] |
GENG H, CHEN W, LI Q, et al. Effect of pre-dispersing metakaolin in water on the properties, hydration, and metakaolin distribution in mortar[J]. Frontiers in Materials, 2019, 6: 99. doi: 10.3389/fmats.2019.00099
|
[16] |
LI J, XU M, YAO G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 348: 1012-1024. doi: 10.1016/j.cej.2018.05.032
|
[17] |
HU L, ZHANG G, LIU M, et al. Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016
|
[18] |
DONG X, REN B, SUN Z, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied Catalysis B: Environmental, 2019, 253: 206-217. doi: 10.1016/j.apcatb.2019.04.052
|
[19] |
XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96. doi: 10.1016/j.jhazmat.2016.01.023
|
[20] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
|
[21] |
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808
|
[22] |
JEONG J, SONG W, COOPER W J, et al. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes[J]. Chemosphere, 2010, 78(5): 533-540. doi: 10.1016/j.chemosphere.2009.11.024
|
[23] |
LIU Y, LEI S, LIN M, et al. Assessment of pozzolanic activity of calcined coal-series kaolin[J]. Applied Clay Science, 2017, 143: 159-167. doi: 10.1016/j.clay.2017.03.038
|
[24] |
SU S Q, YANG J, MA H W, et al. Preparation of ultrafine aluminum hydroxide from coal fly ash by alkali dissolution process[J]. Integrated Ferroelectrics, 2011, 128(1): 155-162. doi: 10.1080/10584587.2011.576626
|
[25] |
SAN CRISTÓBAL A G, CASTELLÓ R, MARTÍN LUENGO M A, et al. Zeolites prepared from calcined and mechanically modified kaolins: A comparative study[J]. Applied Clay Science, 2010, 49(3): 239-246. doi: 10.1016/j.clay.2010.05.012
|
[26] |
LIEW Y M, KAMARUDIN H, MUSTAFA AL BAKRI A M, et al. Processing and characterization of calcined kaolin cement powder[J]. Construction and Building Materials, 2012, 30: 794-802. doi: 10.1016/j.conbuildmat.2011.12.079
|
[27] |
LI C, SUN Z, LI X, et al. Facile fabrication of g-C3N4/precipitated silica composite with enhanced visible-light photoactivity for the degradation of rhodamine B and congo red[J]. Advanced Powder Technology, 2016, 27(5): 2051-2060. doi: 10.1016/j.apt.2016.07.014
|
[28] |
BARR T L, SEAL S, HE H, et al. X-ray photoelectron spectroscopic studies of kaolinite and montmorillonite[J]. Vacuum, 1995, 46(12): 1391-1395. doi: 10.1016/0042-207X(95)00159-X
|
[29] |
LIU Y, HE X, FU Y, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327. doi: 10.1016/j.cej.2015.09.034
|
[30] |
CAO J, SUN S, LI X, et al. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 382: 122802. doi: 10.1016/j.cej.2019.122802
|
[31] |
LI X, CUI K, GUO Z, et al. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods[J]. Chemical Engineering Journal, 2020, 379: 122324. doi: 10.1016/j.cej.2019.122324
|
[32] |
PAN T, CHEN D, XU W, et al. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation[J]. Journal of Hazardous Materials, 2020, 393: 122366. doi: 10.1016/j.jhazmat.2020.122366
|