-
近年来,抗生素的广泛使用导致其以不同的方式大量流入环境[1-2],其中包括盐酸土霉素。盐酸土霉素属于一种广谱抗菌素,在养殖业和农业中作为杀虫剂普遍使用,但是其很难被生物体完全吸收,盐酸土霉素的部分代谢产物及大量的残留会进入环境中,危害环境并给人类带来危害风险[3]。目前,针对抗生素的废水处理方法有水解、生物降解、高级氧化法等,其中,水解和生物降解均有耗时长、耗资大等缺点。高级氧化法是目前研究最为广泛一种废水处理方法,包括有芬顿氧化法[4-5]、光催化氧化法[6]和电化学氧化法[7-8]等。
高级氧化法主要利用具有强氧化性功能的羟基自由基(·OH)或硫酸根自由基(
$ {\rm{SO}}_4^{ \cdot - }$ )与废水中的目标污染物发生反应,氧化降解污染物并使其矿化。近年来,运用$ {\rm{SO}}_4^{ \cdot - }$ [9]的高级氧化技术逐渐成为热门,跟·OH[10-11]比较发现,$ {\rm{SO}}_4^{ \cdot - }$ 具有较低的氧化还原电势(2.60 V),而且$ {\rm{SO}}_4^{ \cdot - }$ 的使用寿命比·OH要更长久,能在降解污染物的同时保持节能和高效[12-14]。常规的高级氧化催化剂的催化活性较低,其中,一种新颖的金属-有机骨架材料(metal-organic frameworks, MOFs)引起人们广泛的关注。MOFs因其具有高比表面积、高稳定性和高孔隙率的特点被频繁运用。如PENG等[15]和ZHANG等[16]研究基于MOFs的新型材料MIL-53(Al)和H-UiO-66s对各类废水有机污染物的捕获时发现,MIL-53(Al)和H-UiO-66s均对有机污染物产生高效的吸附和去除,这表明MOFs具备去除污染物的性能。另外,MON等[17]和胡龙兴等[18]研究MOFs对水体污染的修复效果的结果表明,MOFs能有效的降解有机污染物。本研究采用水热法制备Co-MOF催化剂,并对其物化性质进行了表征。同时,考察了Co-MOF活化PS降解盐酸土霉素的性能及重复利用效果,并进一步对该降解反应的机理进行分析,以期为新型高效降解体系的开发及其在水环境污染控制领域的应用提供参考。
钴金属-有机骨架活化过硫酸钠降解废水中的盐酸土霉素
Cobalt metal-organic framework activated sodium persulfate for the oxytetracycline hydrochloride degradation in wastewater
-
摘要: 采用新制备的钴金属-有机骨架(Co-MOF)和过硫酸钠(PS)分别作为催化剂和氧化剂,并通过Co-MOF活化PS降解废水中的盐酸土霉素,考察Co-MOF浓度、PS浓度、pH及温度对降解盐酸土霉素的影响。SEM、TEM、XRD及XPS等结果证明,Co-MOF成功地被合成。降解实验结果表明,与单独的Co-MOF、PS相比,Co-MOF/PS的降解性能有大幅度的提高。当pH=5、温度30 ℃、Co-MOF为200 mg·L−1以及PS为2 000 mg·L−1时,5 min后对20 mg·L−1盐酸土霉素的降解率最高达到97.1%。在催化剂的重复使用实验中,Co-MOF第4次运行对盐酸土霉素的降解率由97.1%(第1次)降低至82.1%,这表明Co-MOF材料可以重复利用降解盐酸土霉素。Co-MOF降解盐酸土霉素实验反应前后的XRD和XPS数据表明Co-MOF具备良好的稳定性。以上研究结果可为新型高效降解体系的开发及其在水环境污染控制领域的应用提供参考。Abstract: The newly prepared cobalt metal-organic framework (Co-MOF) and sodium persulfate (PS) were taken as catalyst and oxidant, respectively, and oxytetracycline hydrochloride in wastewater was degraded by Co-MOF activated PS, the effects of Co-MOF concentration, PS concentration, pH and temperature on the degradation were investigated. The results of SEM, TEM, XRD and XPS proved that Co-MOF was successfully synthesized. The degradation experiment results show that the degradation performance of Co-MOF/PS was greatly higher than Co-MOF and PS alone. At pH=5, 30 ℃, Co-MOF dosage of 200 mg·L−1 and PS dosage of 2 000 mg·L−1, the degradation rate of 20 mg·L−1 oxytetracycline hydrochloride reached 97.1% after 5 min. In the repeated use experiment of the catalyst, the degradation rate of oxytetracycline hydrochloride in the 4th run of Co-MOF decreased from 97.1% (in the 1st run) to 82.1%, which shows that the Co-MOF material could be reused to degrade oxytetracycline hydrochloride. The XRD and XPS data before and after the oxytetracycline hydrochloride degradation reaction with Co-MOF showed its good stability. This study can provide a reference for the development of new and high efficient degradation systems and their application in the field of water pollution.
-
-
[1] 李兆新, 董晓, 孙晓杰, 等. 渔业养殖环境中抗生素残留检测与控制技术研究进展[J]. 食品安全质量检测学报, 2017, 8(7): 2678-2686. doi: 10.3969/j.issn.2095-0381.2017.07.046 [2] 殷强, 付峥嵘. 我国水环境中抗生素污染的研究进展[J]. 安徽农业科学, 2017, 45(31): 50-51. doi: 10.3969/j.issn.0517-6611.2017.31.018 [3] 陈桂秀, 吴银宝. 兽药土霉素的环境行为研究进展[J]. 动物医学进展, 2011, 32(5): 102-107. doi: 10.3969/j.issn.1007-5038.2011.05.024 [4] 侯存东. 芬顿氧化处理苯并咪唑类合成废水实验研究[J]. 中国资源综合利用, 2017, 35(2): 11-14. doi: 10.3969/j.issn.1008-9500.2017.02.006 [5] 欧晓霞, 张凤杰, 王崇, 等. 芬顿氧化法处理水中酸性品红的研究[J]. 环境工程学报, 2010, 4(7): 1453-1456. [6] 梁钊, 李子富, 周晓琴, 等. 氮掺杂二氧化钛光催化氧化降解污水中四环素[J]. 环境工程, 2019, 37(3): 92-97. [7] 张坤, 肖书虎, 宋铁红, 等. TiO2纳米管电极光电催化降解四环素[J]. 环境化学, 2016, 35(7): 1438-1444. doi: 10.7524/j.issn.0254-6108.2016.07.2015112001 [8] 朱辉, 孙文全, 孙永军, 等. 复合负载型γ-Al2O3-Bi-(Sn/Sb)粒子电极电催化降解四环素废水[J]. 环境工程, 2019, 37(1): 67-72. [9] 黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5): 2461-2470. [10] 李国亭, 宋海燕, 刘秉涛. 光催化过程中羟基自由基的产生与效能[J]. 环境工程学报, 2012, 6(10): 3388-3392. [11] RICHARD J, WATT S, AMY L, et al. Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H2O2 propagation systems[J]. Water Research, 2019, 159(4): 46-54. [12] 陈晓旸, 陈景文, 杨萍, 等. 均相Co/PMS系统降解吡虫啉的影响因素及降解途径研究[J]. 环境科学, 2007, 28(12): 2816-2820. doi: 10.3321/j.issn:0250-3301.2007.12.026 [13] 高焕方, 龙飞, 曹园城, 等. 新型过硫酸盐活化技术降解有机污染物的研究进展[J]. 环境工程学报, 2015, 9(12): 5659-5664. doi: 10.12030/j.cjee.20151202 [14] 张羽, 高春阳, 陈昌照, 等. 零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃[J]. 环境工程学报, 2019, 13(4): 955-962. doi: 10.12030/j.cjee.201810110 [15] PENG Y, ZHANG Y, HUANG H, et al. Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture[J]. Chemical Engineering Journal, 2018, 333(2): 678-685. [16] ZHANG Y, RUAN Q, PENG Y, et al. Synthesis of hierarchical-pore metal-organic framework on liter scale for large organic pollutants capture in wastewater[J]. Journal of Colloid and Interface Science, 2018, 525(9): 39-47. [17] MON M, BRUNO R, FERRANDO-SORIA J, et al. Metal-organic framework technologies for water remediation: Towards a sustainable ecosystem[J]. Journal of Materials Chemistry A, 2018, 6(12): 4912-4947. doi: 10.1039/C8TA00264A [18] 胡龙兴, 邓桂花, 陆文聪, 等. Mn3O4/金属有机骨架材料活化过一硫酸盐降解水中难降解有机污染物罗丹明B[J]. 催化学报, 2017, 38(8): 1360-1372. [19] YAGHI O M, LI H, GROY T L. Construction of porous solids from hydrogen-bonded metal complexes of 1, 3, 5-benzenetricarboxylic acid[J]. Journal of the American Chemical Society, 1996, 118(38): 9096-9101. doi: 10.1021/ja960746q [20] PATTERSON J P, ABELLAN P, DENNY M J, et al. In-situ liquid transmission electron microscopy (TEM) for the analysis of metal organic frameworks (MOFs)[J]. Microscopy & Microanalysis, 2014, 20(3): 1614-1615. [21] MATSUO A, KOBAYASHI T C, SUZUKI M, et al. Magnetism of a one-dimensional array of oxygen in a micro-porous metal-organic solid[J]. Journal of Magnetism & Magnetic Materials, 2004, 272-276(5): 643-645. [22] YAGHI O M, LI H, DAVIS C, et al. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Accounts of Chemical Research, 1998, 31(8): 474-484. doi: 10.1021/ar970151f [23] 孙登荣, 李朝晖. 金属有机框架材料(MOFs)在光催化有机合成中的应用[J]. 中国材料进展, 2017, 36(10): 756-764. [24] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008, 20(9): 1433-1438. [25] SHARMA S, SINGHAL S, KUMAR V, et al. Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process[J]. Journal of Molecular Catalysis A: Chemical, 2015, 402(6): 53-63. [26] FRONTISTIS Z, ANTONOPOULOU M, KONSTANTINOU I, et al. Degradation of ethyl paraben by heat-activated persulfate oxidation: Statistical evaluation of operating factors and transformation pathways[J]. Environmental Science and Pollution Research, 2017, 24(2): 1073-1084. doi: 10.1007/s11356-016-6974-9 [27] 肖鹏飞, 姜思佳. 活化过硫酸盐氧化法修复有机污染土壤的研究进展[J]. 化工进展, 2018, 37(12): 4862-4873. [28] 刘红梅, 褚华强, 陈家斌, 等. 过硫酸盐在地下水和土壤修复中的应用[J]. 现代化工, 2015, 35(4): 42-46. [29] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908. [30] LV H, ZHAO H, CAO T, et al. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework[J]. Journal of Molecular Catalysis A: Chemical, 2015, 400(5): 81-89. [31] 陈震, 陈晓, 郑曦, 等. 溶液pH及电流浓度对电化学法生成羟基自由基降解机制的影响[J]. 环境科学研究, 2002, 15(3): 42-44. doi: 10.3321/j.issn:1001-6929.2002.03.012