-
垃圾在堆放和填埋过程中经历发酵、雨水冲刷、淋溶和地表水及地下水浸泡等过程,会产生大量的垃圾渗滤液[1],其氨氮浓度会随填埋龄延长而逐年增高。老龄化垃圾渗滤液为典型的高氨氮、低C/N比废水[2-3],对其进行高效脱氮处理是亟需攻克的难题。
对氨氮废水的处理,一般需要物化法与生物法[4]的紧密结合。常见的物化脱氮方法主要有吸附法[5]、离子交换法[6]、折点氯化法[7]、化学沉淀法(又称磷酸铵镁(magnesium ammonium phosphate)沉淀法,简称MAP法)[8]等。这些方法大多只适合中低浓度氨氮废水的处理,对高氨氮垃圾渗滤液而言,即使加大吸附剂、交换树脂使用剂量或化学药剂投加量,也难以达到理想效果,出水氨氮仍然很高,导致后续生物脱氮压力极大,无法解决脱氮难题。传统吹脱法由于水气界面作用不充分,氨逸出速率低及设备易结垢的问题,导致吹脱效率不高,分离效果差[9-10]。目前,在实践中广泛采用的“双膜”[11]处理工艺,由于维护费用和浓缩液处理的问题,受到业界诸多诟病。
动力波(dynawave)洗涤装置是美国杜邦公司于20世纪70年代开发的一种高效分离专利技术,主要应用于废酸回收、冶炼烟气处理、硫酸净化、粉煤锅炉尾气处理等40多个不同生产领域[12]。本课题组以老龄化垃圾渗滤液为处理对象,研究利用动力波泡沫区气液两相接触面积大且接触表面不断迅速更新的极大优势,对垃圾渗滤液进行氨分离,为后续生化处理创造有利条件。本研究探讨吹脱时间、pH、气液比、温度、进水氨氮浓度等多种因素对氨氮吹脱效能的影响,在单因素实验的基础上,通过正交实验考察最优工艺条件,为垃圾渗滤液中氨氮的高效分离提供创新方法。
中试规模动力波吹脱技术分离老龄化垃圾渗滤液中的高浓度氨氮
Separation of high concentration ammonia nitrogen from aged-landfill leachate by pilot-scale dynamic wave stripping
-
摘要: 为解决老龄化垃圾渗滤液的脱氨难题,采用动力波吹脱技术对老龄化垃圾渗滤液进行氨氮吹脱分离,探究了吹脱时间、pH、气液比、温度和进水氨氮浓度对吹脱效能的影响。单因素实验结果表明:前3 h吹脱去除率增长最快,5 h后吹脱去除率变化较小;高pH下游离氨占比增大,对吹脱更为有利,pH为10.5左右时的工艺最为经济;动力波吹脱适用温度范围广,在10 ℃和25 ℃时,去除率可达72.62%和90.68%;增加气液比可提高吹脱效率,但当气液比超过129后,吹脱效果增幅不明显;氨氮浓度对吹脱去除率的影响较小。正交实验结果显示:温度方差最大,pH、气液比方差次之,进水氨氮浓度方差最小,即表明温度对动力波吹脱脱氨影响最为显著;pH、气液比也是重要影响因素;初始氨氮浓度对吹脱效率影响不显著。在25 ℃、pH=10.5、气液比为129时,吹脱5 h的最优条件下,氨氮去除率约91.25%~94.15%。相比传统吹脱工艺,动力波吹脱技术能大幅提高氨氮分离效率。Abstract: In order to solve the difficult problems of denitrification from aged-landfill leachate, a pilot experiment on stripping of ammonia from aged-landfill leachate was carried out by dynamic wave stripping technology. In this study, the effects of stripping time, pH, gas-liquid ratio, temperature and concentration of influent ammonia nitrogen concentration on stripping efficiency were investigated. The results of the single factor experiment showed that the stripping removal rate increased rapidly in the first 3 hours, and changed little after 5 hours. The proportion of free ammonia increased at high pH, which was more beneficial for stripping, and the most economical stripping result occurred a pH of around 10.5. The applicable temperature range of dynamic wave stripping was wide, the removel efficiencies could reach 72.62% and 90.68% at 10 ℃ and 25 ℃, respectively. The stripping efficiency could be improved by increasing the gas-liquid ratio, but when it was above 129, the insignificant increase of gas-liquid specific stripping effect occurred. The concentration of influent ammonia nitrogen concentration within the examined range had slight effect on ammonia stripping. The results of orthogonal test demonstrated that the temperature variance was the largest, the variances of pH and gas-liquid ratio were the second, and the variance of influent ammonia nitrogen concentration was the smallest. Therefore, the most influence factor on stripping was temperature, then the second ones were pH and gas-liquid ratio, and the final one was initial ammonia nitrogen concentration. Compared with traditional stripping process, the optimum conditions of stripping process were 25 ℃, pH 10.5, gas-liquid ratio of 129 and stripping time of 5 h, and the corresponding total removal rate of ammonia nitrogen could reach 91.25%~94.15% with enhanced separation efficiency of ammonia nitrogen.
-
Key words:
- aged-landfill leachate /
- ammonia nitrogen /
- denitrification /
- dynamic wave /
- stripping
-
表 1 正交实验设计
Table 1. Design of orthogonal test
序号 pH 温度/℃ 气液比 进水氨氮浓度/(mg·L−1) 1 10.0 20.0 29 500 2 10.5 25.0 129 700 3 11.0 30.0 225 900 表 2 正交实验直观分析
Table 2. Range analysis of orthogonal test scheme
序号 pH 温度/℃ 气液比 进水氨氮浓/(mg·L−1) 氨氮去除率/% 1 10.0 20.0 29 500 80.26 2 10.0 25.0 129 700 85.62 3 10.0 30.0 225 900 94.62 4 10.5 20.0 129 900 84.17 5 10.5 25.0 225 500 92.36 6 10.5 30.0 29 700 91.06 7 11.0 20.0 225 700 88.68 8 11.0 25.0 29 900 90.86 9 11.0 30.0 129 500 95.58 K1 260.50 253.11 262.18 268.20 K2 267.59 268.84 265.37 265.36 K3 275.12 281.26 275.66 269.65 R 14.62 28.15 13.48 4.29 表 3 方差分析结果
Table 3. Results of analysis of variance
序号 因素 氨氮去除率/% 区组总值 区组平均值 (A) pH (B)温度/℃ (C)气液比 (D)进水氨氮浓度/(mg·L−1) 区组1 区组2 1 10.0 20 29 500 80.26 80.62 160.88 80.44 2 10.0 25 129 700 85.62 85.46 171.08 85.54 3 10.0 30 225 900 94.62 95.10 189.72 94.86 4 10.5 20 129 900 84.17 85.24 169.41 84.71 5 10.5 25 225 500 92.36 93.43 185.79 92.90 6 10.5 30 29 700 91.06 90.34 181.40 90.70 7 11.0 20 225 700 88.68 89.32 178.00 89.00 8 11.0 25 29 900 90.86 90.63 181.49 90.75 9 11.0 30 129 500 95.58 95.81 191.39 95.70 T1 521.68 508.29 523.77 538.06 803.21 805.95 1 609.16 T2 536.60 538.36 531.88 530.48 T3 550.88 562.51 553.51 540.62 ${\bar X_1}$ 86.95 84.72 87.30 89.68 ${\bar X_2}$ 89.43 89.73 88.65 88.41 ${\bar X_3}$ 91.81 93.75 92.25 90.10 表 4 正交实验资料的方差分析表
Table 4. ANOVA table for orthogonal test data
变异来源 平方和 自由度 均方差 F值 F0.05 F0.01 显著水平 A 71.06 2 35.53 197.40 4.10 7.55 显著 B 245.96 2 122.98 683.22 显著 C 78.78 2 39.39 218.84 显著 D 9.27 2 4.63 25.75 显著 区组 0.42 1 0.42 2.33 4.96 10.10 不显著 误差 1.44 8 0.18 总和 406.93 17 203.14 表 5 动力波吹脱氨氮实验处理效率与传统吹脱法对比
Table 5. Comparison of dynamic wave stripping efficiency and traditional stripping
来源 年份 pH 温度/℃ 气液比 时间/h 处理量/L 氨氮初始浓度/(mg·L−1) 氨氮去除率/% 梁良等[20] 2018 7.9 35.0 2 500 10 20 1 500~1 800 43.37 陈建[21] 2012 10.5 20.0 4 000 1 800~2 300 94.00 吴方同等[22] 2001 10.5~11.0 25.0 2 900~3 600 5 20 1 500~2 500 95.00 沈耀良等[23] 2000 11.0 22.5 666 5 2 300 82.50 吴家前等[24] 2010 11.0 25.0 2 000~2 500 2.5 5 900~1 600 90.00 傅金祥等[25] 2011 11.0 40.0 360 1 0.5 1 000 87.47 MARTTINEN等[26] 2002 11.0 20.0 1 000 24 10 1 000 89.00 代晋国等[27] 2011 10.5~11.0 25.0 3 000~3 800 5 5 1 500~2 000 90.00 倪佩兰等[28] 2001 11.0 30.0 2 347 800~1 500 90.00 张萍等[29] 2007 11.0 22.0 1 700 79.70 陈石等[30] 2000 10.8 20.0 5 000~6 000 80.00 刘文龙等[31] 2008 11.5 80.0 300 2 0.2 4 300 99.20 本研究 2020 10.5 10.0 129 5 42 986.58 74.00 本研究 2020 10.5 25.0 129 5 42 995.97 91.25 本研究 2020 10.5 30.0 129 5 42 528.26 94.55 -
[1] RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment: Review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. doi: 10.1016/j.jhazmat.2007.09.077 [2] JUNG C, DENG Y, ZHAO R, et al. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation[J]. Water Research, 2017, 108: 260-270. doi: 10.1016/j.watres.2016.11.005 [3] DENG Y, ENGLEHARDT J D. Treatment of landfill leachate by the Fenton process[J]. Water Research, 2006, 40(20): 3683-3694. doi: 10.1016/j.watres.2006.08.009 [4] OULEGO P, COLLADO S, LACA A, et al. Impact of leachate composition on the advanced oxidation treatment[J]. Water Research, 2016, 88: 389-402. doi: 10.1016/j.watres.2015.09.048 [5] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J. Enhanced removal of nitrate from water using surface modification of adsorbents: A review[J]. Journal of Environmental Management, 2013, 131: 363-374. [6] REIS P M, MARTINS P J M, MARTINS R C, et al. Integrating Fenton’s process and ion exchange for olive mill wastewater treatment and iron recovery[J]. Environmental Technology, 2018, 39(3): 308-316. doi: 10.1080/09593330.2017.1299797 [7] 宋卫锋, 骆定法, 王孝武, 等. 折点氯化法处理高NH3-N含钴废水试验与工程实践[J]. 环境工程, 2006, 24(5): 12-13. doi: 10.3969/j.issn.1000-8942.2006.05.003 [8] XIU-FEN L, BARNES D, JIAN C. Performance of struvite precipitation during pretreatment of raw landfill leachate and its biological validation[J]. Environmental Chemistry Letters, 2011, 9(1): 71-75. doi: 10.1007/s10311-009-0248-4 [9] 徐峰, 黄海, 杨勇, 等. 挥发性有机物污染地下水吹脱处理的中小试研究[J]. 环境工程技术学报, 2017, 7(4): 457-462. doi: 10.3969/j.issn.1674-991X.2017.04.062 [10] OZTURK I, ALTINBAS M, KOYUNCU I, et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates[J]. Waste Management, 2003, 23(5): 441-446. doi: 10.1016/S0956-053X(03)00061-8 [11] AHMED F N, LAN C Q. Treatment of landfill leachate using membrane bioreactors: A review[J]. Desalination, 2012, 287: 41-54. doi: 10.1016/j.desal.2011.12.012 [12] 李秋萍, 邵国兴, 程建伟. 湿式动力波洗涤器的工业应用[J]. 化工装备技术, 2006(1): 17-20. doi: 10.3969/j.issn.1007-7251.2006.01.006 [13] 国家环境保护总局, 中国国家标准化管理委员会.水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399-2007[S].北京: 中国环境科学出版社, 2008. [14] 国家环境保护总局, 中国国家标准化管理委员会.水质 五日生化需氧量(BOD5)的测定 稀释与接种法: HJ 505-2009[S].北京: 中国环境科学出版社, 2009. [15] 国家环境保护总局, 中国国家标准化管理委员会. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636-2012[S]. 北京: 中国环境科学出版社, 2012. [16] 国家环境保护总局, 中国国家标准化管理委员会. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010. [17] FERRAZ F M, POVINELLI J, VIEIRA E M. Ammonia removal from landfill leachate by air stripping and absorption[J]. Environmental Technology, 2013, 34(13/14): 2317-2326. [18] LI A F, NING Y Y, XU W J, et al. Air stripping of ammoniacal nitrogen from fecal sewage using a fluidized bed[J]. Advanced Materials Research, 2014, 926-930: 4209-4213. doi: 10.4028/www.scientific.net/AMR.926-930.4209 [19] 吴永明, 万金保, 熊继海, 等. 游离氨在高含氮废水生物法处理中的作用及其研究进展[J]. 工业水处理, 2010, 30(9): 1-4. doi: 10.3969/j.issn.1005-829X.2010.09.001 [20] 梁良, 王丹, 文嘉, 等. 氨吹脱工艺预处理垃圾渗滤液的试验研究[J]. 中国标准化, 2018(18): 213-214. doi: 10.3969/j.issn.1002-5944.2018.18.119 [21] 陈建. 吹脱法处理垃圾渗滤液中高浓度氨氮的主要影响因素[J]. 环境科学与管理, 2012, 37(4): 128-131. doi: 10.3969/j.issn.1673-1212.2012.04.032 [22] 吴方同, 苏秋霞, 孟了, 等. 吹脱法去除城市垃圾填埋场渗滤液中的氨氮[J]. 给水排水, 2001, 27(6): 20-24. doi: 10.3969/j.issn.1002-8471.2001.06.006 [23] 沈耀良, 张建平, 王惠民. 苏州七子山垃圾填埋场渗滤液水质变化及处理工艺方案研究[J]. 给水排水, 2000, 26(5): 22-26. doi: 10.3969/j.issn.1002-8471.2000.05.008 [24] 吴家前, 张健, 李英花. 空气吹脱法在生活垃圾渗滤液氨氮脱除中的实验研究[J]. 广西科学, 2010, 17(3): 274-276. doi: 10.3969/j.issn.1005-9164.2010.03.025 [25] 傅金祥, 张荣新, 范旭, 等. 吹脱法去除垃圾渗滤液中氨氮[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(4): 741-745. [26] MARTTINEN S K, KETTUNEN R H, SORMUNEN K M, et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates[J]. Chemosphere, 2002, 46(6): 851-858. doi: 10.1016/S0045-6535(01)00150-3 [27] 代晋国, 宋乾武, 吴琪, 等. 垃圾渗滤液中氨氮去除技术评价及应用[J]. 中国环保产业, 2011(8): 21-25. doi: 10.3969/j.issn.1006-5377.2011.08.004 [28] 倪佩兰, 郑学娟, 徐月恩, 等. 垃圾填埋渗滤液氨氮的吹脱处理工艺技术研究[J]. 环境卫生工程, 2001, 9(3): 133-135. doi: 10.3969/j.issn.1005-8206.2001.03.009 [29] 张萍, 刘强. 生活垃圾卫生填埋场渗沥液脱氮处理技术[J]. 环境卫生工程, 2007, 15(1): 28-31. doi: 10.3969/j.issn.1005-8206.2007.01.009 [30] 陈石, 王克虹, 孟了, 等. 城市生活垃圾填埋场渗滤液处理中试研究[J]. 给水排水, 2000, 26(10): 15-18. doi: 10.3969/j.issn.1002-8471.2000.10.004 [31] 刘文龙, 钱仁渊, 包宗宏. 吹脱法处理高浓度氨氮废水[J]. 南京工业大学学报(自然科学版), 2008, 30(4): 56-59. [32] WANG T F, WANG J F, YANG W G, et al. Bubble behavior in gas-liquid-solid three-phase circulating fluidized beds[J]. Chemical Engineering Journal, 2001, 84(3): 397-404.