-
随着我国高等教育的快速发展,在校学生数量急剧扩张,原有的校园已不能满足高校教学需求。2000年后,我国大部分高校在城郊或城市临近区域新建了一大批新型校园。随着学生人数的增加,高校的新校区逐渐成为用水和污水排放大户。由于这些校园往往远离城市,园区生活污水无法就近接入城市排水管网,因此,这些校园一般自身配套规划建设了校园污水处理站,处理后的污水部分回用,剩余部分就近排入地表水体[1-2]。目前,我国对校园污水的研究主要集中在处理工艺的选择与优化和对出水水质的进一步强化[3-5],对工艺运行策略的调整与优化的研究相对较少。
与传统城镇污水处理厂不同,校园污水处理站的处理水量由于学校的寒暑假而呈现周期性变化的特征。在假期,由于园区人员大幅减少,造成进入校园污水处理站的污水水量也大幅减小,进水中的营养物质不足以维持生物反应池中的微生物正常代谢,此时生物池内微生物进行内源代谢,功能微生物将会衰减,其衰减量随进水水量及负荷的减少而加快。当假期结束后,学生又在较短时间内集中入学,造成短期内污水处理站进水水量急剧增加,处理系统又必须在短期内迅速恢复对污染物的处理能力,否则将造成出水水质超标。
针对校园污水处理面临的这一突出问题,本研究提出了低水量期间的维护策略及低水量期结束后的重新启动策略并获得了较好的效果,为校园污水的处理提供参考,并可进一步推广至旅游型城市及其他水量呈周期性变化的污水处理系统。
校园污水脱氮除磷处理系统的运行策略及其对污泥性能的影响
Operation strategies of nitrogen and phosphorus removal system for campus sewage and its influence on the performance of activated sludge
-
摘要: 校园污水具有水量变化大、水质和污染物负荷不稳定的特点,如何维持污水处理系统的正常稳定运行是校园污水处理系统运行的关键。以西安市某大学校园污水处理站间歇式A2/O工艺为研究对象,提出了低负荷下增加厌氧好氧时间比的运行策略,以减缓暑期硝化菌的衰减,加快重新启动的进程。运行结果表明,假期期间污水处理站水量仅为非假期期间的5%~10%,污泥浓度由放假前的4 500 mg·L−1降低至假期(42 d)结束后的3 200 mg·L−1,仅衰减了29%;而对应的污泥释磷吸磷活性则分别衰减了77%和85.7%,AOB和NOB活性则衰减较小,分别衰减了64%和34%;FISH测定结果表明生物种群变化与活性变化相一致。维持假期运行策略可使污泥中的功能微生物在厌氧条件下以较低的速率衰减,从而为假期后的重新快速启动创造了良好的条件。以上结果可为大学校园污水处理站假期运行方式提供参考。Abstract: Campus sewage is characterized as large change in water volume, unstable water quality and pollutant loading. It is a key for the operation of campus sewage treatment system to maintain the sewage treatment system operating in a normal and stable way. In the study, the intermittent A2/O process of a university campus sewage treatment station in Xi'an was taken as the target, and the increase of the anaerobic-aerobic time ratio under low pollutant loading was proposed as the operation strategy in order to decline the decay of nitrifying bacteria and accelerate the restart of treatment process in summer holiday. The results show that the influent of the sewage treatment station during the holiday period was only 5%~10% of the normal treatment period, and the sludge concentration decreased from 4 500 mg·L−1 before the holiday to 3 200 mg·L−1 after the holiday (42 d), only decayed by 29%. The corresponding sludge activities of phosphorus release and absorption declined by 77% and 85.7%, respectively, while the activities of AOB and NOB presented smaller decays with 64% and 34%, respectively. FISH measurement showed that the community structure analysis corresponded to the change in activities. The strategy in summer holiday allowed the functional microorganisms in the sludge to maintain a lower decay rate under anaerobic conditions, the nitrifying bacteria had a lower decay rate than PAOs, which was more conducive to the rapid restart of the activated sludge system after holiday. The results of the study can be used as a technical reference for the holiday operation strategy of the university campus wastewater treatment station.
-
Key words:
- activated sludge /
- campus sewage /
- PAO /
- AOB /
- NOB /
- fluorescence in situ hybridization (FISH)
-
表 1 各运行阶段对应策略
Table 1. Corresponding strategies for each operation phase
运行阶段 运行时间/d (厌氧+缺氧)时间∶好氧时间 假期前(第I阶段) 1~28 1∶2 假期(第II阶段) 29~70 2∶1 假期后(第III阶段) 71~100 1∶2 表 2 荧光原位杂交实验中所用探针
Table 2. Probes used in FISH experiments
探针 标记菌属 探针序列(5'~3') 甲酰胺浓度/% 来源 EUB338 Eubacteria GCTGCCTCCCGTAGGAGT 35 [11-14] EUB338-II Planctom ycetales GCAGCCACCCGTAGGTGT 35 [11-14] EUB338-III Verrucomicrobiales GCTGCCACCCGTAGGTGT 35 [11-14] PAO462 Accumulibacter CCGTCATCTACWCAGGGTATTAAC 35 [11-14] PAO651 Accumulibacter CCCTCTGCCAAACTCCAG 35 [11-14] PAO846 Accumulibacter GTTAGCTACGGCACTAAAAGG 35 [11-14] GB Competibacter CGATCCTCTAGCCCACT 35 [11-14] Nso1225 Betaproteobacterial ammonia-oxidizing bacteria CGCCATTGTATTACGTGTGA 35 [15] NEU Most halophilic and halotolerant Nitrosomonas spp. CCCCTCTGCTGCACTCTA 35 [15] Cluster6a192 Nitrosomonas oligotropha lineage CTTTCGATCCCCTACTTTCC 35 [15] Ntspa712 Phylum Nitrospirae CGCCTTCGCCACCGGCCTTCC 35 [15] Ntspa662 Genus Nitrospira GGAATTCCGCGCTCCTCT 35 [15] NIT3 Genus Nitrobacter CCTGTGCTCCATGCTCCG 40 [15] 表 3 污泥中聚磷菌和聚糖菌的占比
Table 3. Proportion of PAOs and GAOs in activated sludge during different phases
运行阶段 PAOs占比/% GAOs占比/% 第I阶段(15 d) 22.15 2.21 第II阶段(40 d) 17.89 1.37 第II阶段(65 d) 12.24 1.78 第III阶段(90 d) 15.60 1.92 表 4 污泥中硝化菌的占比
Table 4. Proportion of nitrifying bacteria in activated sludge during different phases
运行阶段 AOBs占比/% NOBs占比/% 第I阶段(15 d) 4.56 1.75 第II阶段(40 d) 3.24 未检出 第II阶段(65 d) 3.02 1.21 第III阶段(90 d) 4.33 2.07 表 5 污泥中各菌的衰减速率
Table 5. Decay rate of functional bacteria in activated sludge
微生物 衰减速率/d−1 活性降低/% 总菌 0.12 — PAO 0.10 77 AOB 0.06 64 NOB 0.03 34 表 6 不同条件下微生物衰减速率
Table 6. Decay rate of functional bacteria under different conditions
微生物名称 好氧衰减速率/d−1 缺氧衰减速率/d−1 厌氧衰减速率/d−1 备注 20 ℃ 10 ℃ 20 ℃ 10 ℃ 20 ℃ 10 ℃ 异养菌 0.6 0.2 — — — — ASM1[16] 0.4 0.2 — — — — ASM2、ASM2d[16] 0.2 0.1 0.1 0.05 — — SIEGRIST等[17] 聚磷菌 0.2 0.1 — — — — ASM2、ASM2d[16] 0.15 — — — 0.05 — LOPEZ等[8] — — — — 0.10 — 本研究 硝化菌 0.15 0.05 — — — — ASM2[16] 0.15 0.05 0.05 0.02 — — ASM2d[16] AOB 0.21 — 0.10 — 0.05 — SALEM等[18] 0.15 — 0.02 — — — MANSER等[19] — — — — 0.06 — 本研究 NOB 0.22 — 0.13 — 0.06 — SALEM等[18] 0.15 — 0.02 — — — MANSER等[19] — — — — 0.03 — 本研究 注:“—”表示未测定。 -
[1] 李安峰, 潘涛, 李箭. 某高校污水处理及再生回用工程[J]. 中国给水排水, 2013, 29(22): 127-129. [2] 何钰, 肖肖, 唐颖等. 高等院校校区建设污水处理站的可行性研究[J]. 节能环保, 2013(3): 3-4. [3] 张晓玮, 张磊, 刘春, 等. 臭氧微气泡曝气生物膜反应器深度处理校园污水运行性能[J]. 环境污染与防治, 2018, 40(7): 789-793. [4] 张 皓, 李绍平, 李宗明, 等. 微氧水解酸化-SBR工艺处理校园生活污水的研究[J]. 绿色科技, 2019(22): 76-78. doi: 10.3969/j.issn.1674-9944.2019.14.027 [5] 吴子平, 王竹梅. 新型人工湿地用于校园生活污水强化氨氮、磷及有机物的去除[J]. 环境与发展, 2019(7): 115-117. [6] 高廷耀, 顾国维, 周琪.水污染控制工程[M].北京: 高等教育出版社, 2007. [7] RUIZ-MARTINEZA A, CLAROS J, SERRALTA J, et al. Modeling the decay of nitrite oxidizing bacteria under different reduction potential conditions[J]. Process Biochemistry, 2018, 71: 159-165. doi: 10.1016/j.procbio.2018.05.021 [8] LOPEZ C, PONS M, MORGENROTHA E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal[J]. Water Research, 2006, 40(8): 1519-1530. doi: 10.1016/j.watres.2006.01.040 [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [10] 常蝶, 彭党聪. 进水C/P比对EBPR反应器中高温聚磷菌除磷性能的影响[J]. 中国给水排水, 2019, 35(3): 83-86. [11] AMANN R. In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes// AKKEMANS A, VAN ELSAS J, DE BRUIJN F. Molecular Microbial Ecology Manual. The Netherlands, Dordrecht: Kluwer Academic Publications, 1995. [12] AMANN R, LUDWIG W, SCHLEIFER K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Review, 1995, 59: 143-169. doi: 10.1128/MMBR.59.1.143-169.1995 [13] SAUDERS A, OEHMEN A, BLACKALL L L, et al. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants[J]. Water Science and Technology, 2003, 47(11): 37-43. doi: 10.2166/wst.2003.0584 [14] JANSSEN P, MEINEMA K, VAN DER ROEST H. Biological Phosphorus Removal: Manual for Design and Operation[M]. London: IWA Publishing, 2008. [15] NIELSEN P, DAIMS H, LEMMER H. FISH Handbook for Biological Wastewater Reatment[M]. London: IWA Publishing, 2009. [16] HAO X D, WANG Q L, CAO Y L, et al. Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model 2d[J]. Water Research, 2011, 45(16): 2416-2426. [17] SIEGRIST H, BRUNNER I, KOCH G. Reduction of biomass decay rate under anoxic and anaerobic conditions[J]. Water Science and Technology, 1999, 39(1): 129-137. doi: 10.2166/wst.1999.0028 [18] SALEM S, MOUSSA M S, VAN LOOSDRECHT M C M. Determination of the decay rate of nitrifying bacteria[J]. Biotechnology and Bioengineering, 2006, 94(2): 252-262. doi: 10.1002/bit.20822 [19] MANSER R, GUJER W, SIEGRIST H. Decay processes of nitrifying bacteria in biological wastewater treatment systems[J]. Water Research, 2006, 40(12): 2416-2426. doi: 10.1016/j.watres.2006.04.019 [20] 杜兴治, 吴志超, 周振, 等. A2/O工艺重新启动试验的污泥活性恢复研究[J]. 环境污染与防治, 2009, 31(1): 69-73. doi: 10.3969/j.issn.1001-3865.2009.01.019