Processing math: 100%

基于电催化疏水膜的新型膜接触臭氧氧化工艺

李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
引用本文: 李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
Citation: LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007

基于电催化疏水膜的新型膜接触臭氧氧化工艺

    作者简介: 李魁岭(1989—),男,博士研究生。研究方向:膜及膜分离技术。E-mail:klli_st@rcees.ac.cn
    通讯作者: 王军(1975—),男,博士,研究员。研究方向:功能膜制备及应用等。E-mail:junwang@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(51978651);环境模拟与污染控制国家重点联合实验室专项经费(18L01ESPC)
  • 中图分类号: X703

Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane

    Corresponding author: WANG Jun, junwang@rcees.ac.cn
  • 摘要: 膜接触臭氧氧化(MCO)工艺以疏水膜为臭氧提供丰富的气液接触界面,具有较高臭氧传质效率。然而,MCO工艺以臭氧直接氧化为主,对废水中有机污染物的去除有较强的选择性,氧化能力有待提高。通过电催化疏水膜将MCO工艺与电化学技术相结合,构建了新型的膜接触电催化臭氧氧化(ECMCO)工艺。ECMCO工艺以高级氧化过程为主,对水中硝基苯的去除效率明显增强,同步提高了臭氧传质效率和体系的氧化能力。ECMCO工艺对酒厂废水的生化出水进行深度处理后,水中COD降至50 mg·L−1以下,色度完全脱除,总运行能耗明显低于MCO和MCO+H2O2工艺。针对臭氧工艺在水处理应用中传质效率低、矿化能力差、运行能耗高的问题,ECMCO技术提供了可行的解决方案,有较好的研究价值和应用前景。
  • 活性染料具有颜色鲜艳、均染性好、应用简便、染色牢度高、价格低廉等特点,是我国染料工业中第2大类染料品种[1]。对位脂(对氨基苯基-ß-羟乙基砜硫酸)含有重氮化组分的氨基和能发生化学反应生成染料-纤维共价键的反应性基团,能大大提高染料的利用率,所以成为活性染料最重要的中间体,市场需求更为庞大[1-2]。目前国内对位酯产量约为1.6×105~1.8×105 t·a−1。但是生产1 t对位脂要产生30 t的废水,同时这些废水COD浓度高,可生化性差[3],因此,高效处理对位酯生产废水具有很重要的实际意义。已有研究[3-4]表明,采用Fenton-水解酸化-好氧组合工艺和铁碳微电解-Fenton-光催化联合工艺,能去除大部分的COD;但是Fenton反应作为预处理,过氧化氢和酸碱试剂消耗成本太高。在工程实践中,处理高浓度难降解有机废水时,使用厌氧工艺作为前端处理工艺,具有沼气可回收利用、可提高废水的生化性及可降低运行成本等特点。由于对位脂生产废水含有大量的硫酸盐(COD/SO24为3.58),同时对位酯属于有机硫化合物,其含有磺酰基和硫酸盐基团,容易水解(结构式见图1),因此,也间接地增加了进水硫酸盐的负荷,使COD/TSO24(总硫酸盐)降至2.4。有研究[5]表明,在进水COD/SO24 >3.3(碳硫比>10)时,产甲烷菌不会受硫酸盐被还原时所产生硫化物的抑制,这也是厌氧工艺在工程应用的基本条件。已有研究[6]采用单一的厌氧复合床处理该废水,只能运行到COD至15 000 mg·L−1,对应COD容积负荷为5.0 g·(L·d)−1,如进一步提高COD至20 000 mg·L−1,产甲烷和反硝化能力完全丧失。本研究利用微电场-零价铁,来提高UBF处理高硫酸盐和高有机硫废水中的运行负荷及同步产甲烷和反硝化的能力。结果表明,同步产甲烷反硝化过程具有一定的经济可行性,能为后续的硝态氮去除工艺减轻负担。

    图 1  对位酯的化学结构式
    Figure 1.  Chemical structure of para-ester

    微电场-零价铁-UBF实验装置及工艺流程如图2所示。其中,复合床有效容积为6 L,材料为聚氯乙烯,内径和外径分别为100 mm和140 mm,高为80 mm。复合床下部是厌氧污泥区,污泥区上部安装有弹性填料。中部是铁区,填充的是铁刨花,电源阳极通过多个铜线和中部铁区相连,以多孔不锈钢盘作为阴极放在铁区和弹性填料中间。在工程上,补充铁粉的途径有2种:第1种方式是将铁粉和污泥混合,由潜污泵从厌氧罐底粉和罐内污泥充分混合;第2种方式是通过顶部的三相分离器投加,同时打开内循环泵,使铁粉和罐内污泥充分混合。为防止铁区与阴极直接接触引起的短路,不锈钢盘上部安装有塑料托盘和PVC球,起绝缘作用。本研究采用的是复合床的设计,弹性填料起截流污泥的作用,因此,厌氧污泥不会黏附在钢盘上。产生的沼气经过反应器上部的三相分离器,通过洗气瓶里面的3 mol·L−1氢氧化钠吸收H2S和CO2,然后再经过装有碱石灰的干燥管以吸收水蒸气,最后使用湿式流量计进行测量。废水经蠕动泵依次进入反应区、铁区、复合床底部,从而实现微电场-零价铁-UBF耦合过程。在整个反应期,利用恒温循环水浴箱控制复合床水温在35 ℃左右。回流蠕动泵回流比控制在400%左右。

    图 2  微电场-零价铁-UBF实验工艺流程
    Figure 2.  Schematic diagram of the Micro-electric field- zero-valent-iron (ZVI)-UBF

    实验进水为山东某化工厂2018年1月对位脂生产车间的出水。原水pH在7.0左右,COD约为35 000 mg·L−1。原水硫酸盐约为9 770 mg·L−1,COD/SO24约为3.58,有机硫约为4 788 mg·L−1(按硫酸盐计),所以加上有机硫水解产生的硫酸盐,原水COD/TSO24可降低至2.4。同时,检测到原水中硝态氮的含量约为77 mg·L−1。在实验中,进水硫酸盐浓度的变化是通过人工投加Na2SO4(分析纯)的方式来调节的。进水碱度按1.0 g COD投加0.3 g NaHCO3(工业级)的比例调节。厌氧反应器种泥的接种体积为3 L,种泥来自厂区附近工业园区污水处理厂的絮状干泥(含水率为80%), VSS约为20.2 g·L−1。不同阶段废水水质学参数及COD容积负荷见表1

    表 1  微电场-零价铁-UFB各个运行阶段的废水成分及COD容积负荷
    Table 1.  Water quality parameters and COD volume load of wastewater inmicro-electric field-ZVI-UBF at different stages
    阶段时间/dCOD/(mg·L−1)对位酯/(mg·L−1)硫酸盐/(mg·L−1)有机硫(以计)/(mg·L−1)硝态氮/(mg·L−1)OLR/(g·(L·d)−1)
    I1~3050010022368.41.10.167
    I31~452 000400558273.64.40.668
    I46~605 0001 0001 395684111.67
    I61~7510 0002 0002 7901 368223.34
    I76~9015 0003 0004 1852 052335.01
    I91~10520 0004 0005 5802 736446.68
    II106~12520 0004 00010 0002 736445.01
    III126~14020 0004 00020 0002 736445.01
    IV141~16020 0004 00010 0002 736445.01
     | Show Table
    DownLoad: CSV

    为期160 d的实验分4个阶段运行,阶段划分见表1。在运行过程中,微电场的电压设为0.5 V。前30 d,污泥驯化完成后,向复合床投加铁刨花100 g。因为运行过程中铁刨花不断被消耗,故每隔30 d补充50 g。进水COD用去离子水来稀释成要求的COD(见表1)。在整个实验过程中,每天进水为2 L,HRT为3 d。在第I阶段,通过逐步提高进水COD来提高容积负荷,考察复合床的运行情况。第II阶段,加入4 420 mg·L−1硫酸盐,使COD/SO24降低至2(COD/TSO24=1.57),继续考察降低碳硫比对复合床产甲烷量的影响。第III阶段,继续加入10 000 mg·L−1硫酸盐,使COD/SO24降低至1(COD/TSO24 =0.88)。第IV阶段,COD/ SO24恢复至第II阶段,考察复合床系统恢复能力。

    COD、pH、VFA(以乙酸计)、硫化物、总硫和有机硫含量的测定均参考文献中的方法[6]。产生的甲烷体积由湿式流量计(LML-1型,青岛科迅电子有限公司)来计量。硫酸盐和硝态氮含量的测定均采用离子色谱法(戴安离子色谱仪DIONEX, ICS-2100)。对位酯含量的测定采用反向离子抑制色谱法。具体色谱分析条件如下:色谱柱为Agilent公司的Zorbax Extend-C18 (150 mm× 4.6 mm, 5 µm);柱温设为室温;流动相水与甲醇的体积比为38∶62;pH调整为3.5;进样量为20 µL;流速为1.0 mL·min−1;检测波长为254 nm[7]。在对位脂浓度为1~20 mg·L−1时建立标准曲线(R2 =0.999)。

    在第I阶段(1~105 d),运行参数见表1。这个阶段COD/SO24为3.58(COD/TSO24为2.4)左右,通过提高进水COD的方式来逐步提高OLR(图3)。前30 d是污泥驯化阶段,所以进水COD为500 mg·L−1(OLR为0.167 g·(L·d)−1)。可以看出,在初始COD为2 000 mg·L−1,OLR为0.67 g·(L·d)−1的条件下,COD的去除率高达82%,产甲烷率为0.18 L·(L·d)−1。逐步提高进水COD至15 000 mg·L−1(OLR为5.0 g·(L·d)−1),COD的去除率亦达74%,产甲烷率为1.23 L·(L·d)−1,对位脂的去除率为83% (图3图4)。此时进水硝态氮约为33 mg·L−1,出水硝态氮为3.2 mg·L−1,反硝化率为90.3%(图5)。进水COD提高至20 000 mg·L−1(OLR为6.67 g·(L·d)−1)时,虽然COD/TSO24只有2.4左右(远低于3.3),但COD的去除率仍能高达70%,产甲烷率依然能达到1.41 L·(L·d)−1,对位脂的去除率为74%(图4),反硝化率为87%(图5)。在采用单一的UBF来处理对位脂生产废水的研究[6]中,系统中进水COD最高为15 000 mg·L−1,即OLR为5.0 g·(L·d)−1。当进水COD升高至20 000 mg·L−1时,硫酸根的浓度为5 583 mg·L−1,有机硫为2 286 mg·L−1,复合床系统很快受到严重抑制,甲烷产气很快停止,反硝化能力丧失,出水pH降至6.0。零价铁的加入明显提高了厌氧复合床在高COD运行负荷下产甲烷和反硝化的能力。零价铁能大幅提高厌氧反应器的处理效果是由多方面原因的协同作用造成的。零价铁能显著降低厌氧反应器内的氧化还原电位,中和有机酸,促进厌氧还原氛围,从而有助于厌氧微生物的生长[8]。最近的一组对比研究表明,零价铁不仅使厌氧古菌的丰度大幅提高,也增加了厌氧反应器中微生物的多样性[9]。此外,阴极产生的H2能作为产甲烷菌、硫酸盐还原菌和硝酸盐还原菌的电子供体[10]。这些都为提高产甲烷和反硝化的能力提供了基础。加入的零价铁在厌氧消化环境中还能缓慢产生Fe2+,而Fe2+能有效压缩胶体污泥的双电层,降低Zeta电位,进而促进污泥颗粒化[11]。同时,铁作为还原剂也能直接作用于某些污染物,所产生的Fe(OH)2、Fe(OH)3胶体也能沉淀污染物[12]。有研究[13]表明,采用零价铁强化厌氧工艺处理垃圾渗透液,COD的去除率达65.1%,而未加铁体系的COD去除率只有48.2%。微电场的作用一方面是能刺激微生物的代谢,另一方面是能强化零价铁的表面反应,有效解决零价铁床的板结和钝化[14]。最近的研究[15]表明,微电场-零价铁强化UASB能显著提高处理3, 4, 5-三甲氧基苯甲醛生产废水能力。本研究采用复合床设计,安装的弹性填料能拦截大部分的污泥,可避免零价铁床层被覆盖而导致的零价铁失活。

    图 3  电场-零价铁-UFB在160 d的连续运行结果
    Figure 3.  Performance of micro-electric field- zero-valent-iron UBF during continuous operation within 160 d
    图 4  UBF运行中对位酯进出水浓度
    Figure 4.  Influent and effluent of para-ester concentration during UBF continuous operation
    图 5  UBF运行中进出水硝态氮的浓度
    Figure 5.  Influent and effluent of nitrate concentration during UBF continuous operation

    在第II阶段(106~125 d),保持进水COD 20 000 mg·L−1不变(即COD容积负荷不变),加入4 420 mg·L−1硫酸盐,使COD/SO24降低至2(图6),此时COD/TSO24降低至1.57,产生的硫化物(以S-SO24计)为1 000 mg·L−1(图7)。但这个体系中COD的去除率依然能稳定在60%,产甲烷率为1.21 L·(L·d)−1,反硝化率为79%(图4)。所投加的零价铁能起到去除部分硫化物的作用,从而降低硫化物对产甲烷菌的抑制[16]。本实验中COD/TSO24为1.57,这远远低于COD/SO24>3.3(碳硫比>10)的厌氧工艺要求的极限。最近的研究[17]表明,在COD/SO24为0.5时,单一的UASB依然取得了满意的COD去除率和甲烷产率。但是,UASB所处理的是很容易生物降解的乙酸和乙醇混合废水,不能代表典型工业废水。在第III阶段(126~140 d),继续加入10 000 mg·L−1硫酸盐,使COD/SO24降低至1.0(COD/TSO24=0.88),硫化物(以S-SO24计)达到1 580 mg·L−1,产生的硫化物对产甲烷菌和硝酸盐还原菌产生了中等程度的抑制,出水pH和产甲烷率持续下滑,VFA大幅提高至3 600 mg·L−1(见图3),而反硝化率只有25%(图4)。在第IV阶段,COD/SO24恢复至第2阶段,在7 d内,系统产甲烷率和反硝化能力基本恢复,说明微电场-零价铁-UASB反应器系统在产生高硫化物条件下也有很强的恢复能力。值得关注的是,虽然一直有硫化物的产生(见图6),但出水中的硫酸盐浓度却一直高于进水(见图5),这是由于对位脂中的有机硫容易水解而产生额外的硫酸盐。另外,在整个运行过程中,出水pH一直比进水pH高(见图2),这是因为硫酸盐还原菌在还原硫酸盐的过程中以及硝态氮在反硝化过程中会产生一定的碱度[18-19]导致的。

    图 6  UBF运行中进出水硫酸盐浓度的变化
    Figure 6.  Changes in sulfate concentrations in influent and effluent during UBF continuous operation
    图 7  UBF运行中出水硫化物的变化
    Figure 7.  Change of sulfide concentration in effluent during UBF continuous operation

    实验结果表明,在原水COD/SO24约为3.58(COD/TSO24低至2.4)时,即使进水COD高达20 000 mg·L−1(OLR为6.67 g·(L·d)−1),耦合复合床体系的COD去除率也能达到70%,相应的产甲烷率达1.41 L·(L·d)−1,反硝化率达87%,对位脂降解率达74%。

    2)第II阶段实验结果表明,联合系统能忍受更低的碳硫比,在COD/TSO24低至1.57时,系统依然能够稳定运行。

    3)第III和第IV阶段实验表明,在COD/TSO24降低至0.88时,产甲烷菌受到中等程度的抑制;COD/TSO24恢复至1.57后,耦合复合床系统展示了很强的恢复能力,在5 d后即恢复正常。

  • 图 1  ECMCO工艺示意图

    Figure 1.  Schematic diagram of the ECMCO process

    图 2  ECMCO、MCO和电解过程对硝基苯去除效果对比

    Figure 2.  Removal efficiency of nitrobenzene in ECMCO, MCO and electrolysis processes

    图 3  气室通入不同气体时体系中H2O2含量变化

    Figure 3.  Concentration of H2O2 when different gases were charged in the gas chamber

    图 4  体系中·OH的ESR图谱

    Figure 4.  ESR spectrum of the ·OH in this system

    图 5  ECMCO和MCO工艺中臭氧传质速率

    Figure 5.  Mass transfer of O3 in ECMCO and MCO processes

    图 6  气室通入不同气体时的LSV曲线

    Figure 6.  LSV curves when different gases were charged in gas chamber

    图 7  运行工艺参数对酒厂废水生化出水COD去除的影响

    Figure 7.  Effects of operation parameters on COD removal of biochemical treatment effluent of the winery wastewater

    图 8  运行能耗对比

    Figure 8.  Comparison of operation energy consumption

  • [1] SHARMA V K. Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics assessment[J]. Chemosphere, 2008, 73(9): 1379-1386. doi: 10.1016/j.chemosphere.2008.08.033
    [2] JANKNECHT P, WILDERER P A A, PICARD C, et al. Ozone-water contacting by cermanic membranes[J]. Separation and Purification Technology, 2001, 25(1/2/3): 341-346.
    [3] GOTTSCHALK C, LIBRA J A, SAUPE A. Ozonation of Water and Wastewater: A Practical Guide to Understaning Ozone[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
    [4] CHAN W K, JOUËT J, HENG S, et al. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water[J]. Journal of Solid State Chemistry, 2012, 189: 96-100. doi: 10.1016/j.jssc.2012.01.023
    [5] 张勇, 侯得印, 赵长伟, 等. 膜接触反应器臭氧传质及其对模拟印染废水降解研究[J]. 环境工程学报, 2017, 11(8): 4453-4458. doi: 10.12030/j.cjee.201607215
    [6] PINES D S, MIN K N, ERGAS S J, et al. Investigation of an ozone membrane contactor system[J]. Ozone: Science and Engineering, 2005, 27(3): 209-217. doi: 10.1080/01919510590945750
    [7] GABELMAN A, HWANG S-T. Hollow fiber membrane contactors[J]. Journal of Membrane Science, 1999, 159(1/2): 61-106.
    [8] 张勇. 水处理新型膜接触工艺及其功能膜制备研究[D]. 北京: 中国科学院大学, 2017.
    [9] SEIN M M, ZEDDA M, TUERK J, et al. Oxidation of diclofenac with ozone in aqueous solution[J]. Environmental Science & Technology, 2008, 42(17): 6656-6662.
    [10] POCOSTALES J P, SEIN M M, KNOLLE W, et al. Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): The role of ozone consumption by dissolved organic matter[J]. Environmental Science & Technology, 2010, 44(21): 8248-8253.
    [11] SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate[J]. The Analyst, 1980, 105(1255): 950-954. doi: 10.1039/an9800500950
    [12] ZHAO H Y, CHEN Y, PENG Q S, et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and ·OH generation in solar photo-electro-Fenton process[J]. Applied Catalysis B: Environmental, 2017, 203: 127-137. doi: 10.1016/j.apcatb.2016.09.074
    [13] LI K, XU L, ZHANG Y, et al. A novel electro-catalytic membrane contactor for improving the efficiency of ozone on wastewater treatment[J]. Applied Catalysis B: Environmental, 2019, 249: 316-321. doi: 10.1016/j.apcatb.2019.03.015
    [14] LI K, ZHANG Y, XU L, et al. Mass transfer and interfacial reaction mechanisms in a novel electro-catalytic membrane contactor for wastewater treatment by O3[J]. Applied Catalysis B: Environmental, 2020, 264: 118512. doi: 10.1016/j.apcatb.2019.118512
    [15] ZHAO L, MA J, SUN Z. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution[J]. Applied Catalysis B: Environmental, 2008, 79(3): 244-253. doi: 10.1016/j.apcatb.2007.10.026
  • 加载中
图( 8)
计量
  • 文章访问数:  7677
  • HTML全文浏览数:  7677
  • PDF下载数:  256
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-01
  • 录用日期:  2020-06-13
  • 刊出日期:  2020-08-10
李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
引用本文: 李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
Citation: LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007

基于电催化疏水膜的新型膜接触臭氧氧化工艺

    通讯作者: 王军(1975—),男,博士,研究员。研究方向:功能膜制备及应用等。E-mail:junwang@rcees.ac.cn
    作者简介: 李魁岭(1989—),男,博士研究生。研究方向:膜及膜分离技术。E-mail:klli_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院生态环境研究中心,高浓度难降解有机废水处理技术国家工程实验室,北京 100085
  • 3. 中国科学院大学,北京 100049
基金项目:
国家自然科学基金资助项目(51978651);环境模拟与污染控制国家重点联合实验室专项经费(18L01ESPC)

摘要: 膜接触臭氧氧化(MCO)工艺以疏水膜为臭氧提供丰富的气液接触界面,具有较高臭氧传质效率。然而,MCO工艺以臭氧直接氧化为主,对废水中有机污染物的去除有较强的选择性,氧化能力有待提高。通过电催化疏水膜将MCO工艺与电化学技术相结合,构建了新型的膜接触电催化臭氧氧化(ECMCO)工艺。ECMCO工艺以高级氧化过程为主,对水中硝基苯的去除效率明显增强,同步提高了臭氧传质效率和体系的氧化能力。ECMCO工艺对酒厂废水的生化出水进行深度处理后,水中COD降至50 mg·L−1以下,色度完全脱除,总运行能耗明显低于MCO和MCO+H2O2工艺。针对臭氧工艺在水处理应用中传质效率低、矿化能力差、运行能耗高的问题,ECMCO技术提供了可行的解决方案,有较好的研究价值和应用前景。

English Abstract

  • 臭氧的氧化还原电位(2.07 V)较高,具有较强的氧化、杀菌、消毒等能力,是水处理领域公认的一种绿色氧化剂和消毒剂[1-2]。然而,臭氧氧化技术在工程应用过程中普遍存在臭氧利用率低和能耗高的问题[3]。为提高臭氧氧化功效,可采取以下两方面措施:1)增大气液接触面积,提高臭氧与液相间的传质效率;2)通过臭氧分解产生·OH的方法提高臭氧的反应速率和氧化能力。

    为提高臭氧气液间的传质效率,研究者将多孔疏水膜应用于臭氧传质,开发了新型的膜接触器。多孔疏水膜既可作为气、液两相的分隔界面,又在膜孔处提供丰富的气液接触界面[4-5]。与填充塔、鼓泡塔和射流负压投加器等传统接触工艺相比,膜接触工艺具有以下优点:1)单位体积内气液接触面积可以提高1~2个量级[6];2)气、液两相独立流动,便于控制;3)气相中分子通过扩散方式直接溶于液相,而不是在压力作用下以气泡形式进入液相,避免了液泛、乳液、雾沫夹带等棘手问题;4)可将膜组件作为模块化组合单元,便于工业应用放大[7-8]

    臭氧在废水处理过程中可与有机污染物直接反应。反应主要通过氧化还原、环加成以及亲电取代等途径进行,具有选择性较强、有机污染物矿化效率低等特点。臭氧间接反应通过臭氧的分解产物(如羟基自由基,·OH)进行,具有反应速率快、无选择性和矿化程度高[9-10]等特点。膜接触臭氧氧化(membrane contact ozonation,MCO)工艺以臭氧直接氧化为主,因而存在反应速率慢、矿化效率低的问题。为了在臭氧高效传质的基础上强化臭氧工艺的氧化能力,有必要将臭氧间接反应与MCO工艺耦合,构建新型的膜接触臭氧氧化工艺。

    本研究制备了具有电催化功能的疏水膜,并通过MCO与电化学反应结合构建了膜接触电催化臭氧氧化(electro-catalytic membrane contact ozonation,ECMCO)工艺。电催化疏水膜可将气相中多余的氧气电催化还原为过氧化氢(H2O2);H2O2催化臭氧分解转化为·OH,可明显提升系统的氧化能力。以硝基苯为特征污染物,考察了ECMCO工艺对臭氧难降解污染物的降解效果,明确了高级氧化的反应途径,探究了膜接触传质和电化学反应之间的协同效应。最后,以对酒厂废水的生化出水深度处理为例,评估了ECMCO工艺对实际废水的处理效果,以期为工程应用实践提供参考。

  • 本实验所用主要试剂包括:硫酸钠(AR)、二水合草酸钛钾(AR)、硝基苯(AR)、过氧化氢(30%)、甲醇(HPLC)、乙腈(HPLC)等。以上试剂均购自国药试剂公司。以热压法将多孔碳纤维纸负载于聚四氟乙烯疏水膜表面,制得电催化疏水膜。实验所用酒厂废水生化出水来自某酒厂废水处理站。

  • 硝基苯浓度采用液相色谱法进行检测,液相色谱仪为1260 Infinity(安捷伦),流动相为超纯水和甲醇,流动相比例30∶70,检测波长262 nm,保留时间7 min。过氧化氢浓度采用草酸钛钾显色法进行检测[11]。应用电子自旋共振波谱(ESR)仪对体系中·OH进行定性分析[12]。应用电化学工作站进行伏安特性扫描,表征体系中的电化学反应。

  • ECMCO工艺的设计原理如图1所示。电催化疏水膜将气、液两相分隔,疏水层与气相接触,可作为氧气和臭氧的传输通道,氧气和臭氧通过扩散方式进入液相,传质过程无泡;电催化层与液相接触,并作为电化学反应的阴极。氧气通过疏水层扩散至电催化层,以2电子途径还原为H2O2(反应式(1));H2O2催化扩散至电催化层的臭氧分解转化为·OH(反应式(2));·OH与有机污染物快速反应,实现污染物的高效去除[13-14]

    各组实验中硝基苯初始浓度均为30 mg·L−1,电解质为50 mmol·L−1 Na2SO4溶液,液量为120 mL。臭氧通过臭氧发生器制备,以氧气为气源;臭氧浓度为40 mg·L−1,气相流量为60 mL·min−1。阳极为钛钌板状电极,阴极为电催化疏水膜;阴阳极有效面积均为5 cm × 5 cm,电流强度为25 mA。

    为了考察ECMCO工艺对实际废水的处理效果,对酒厂废水生化出水进行了深度处理。液量为180 mL,臭氧浓度为40 mg·L−1,气相流量为20~80 mL·min−1,槽压为1.9~2.5 V,无电解质添加。COD相对含量为反应过程中某时刻COD与反应前COD之比,其变化表征可反映各工艺对COD的去除效果。

  • 打开电源,关闭臭氧发生器,此时气室内为纯氧气,考察电解作用对硝基苯的去除效果;关闭电源,打开臭氧发生器,此时气室内为氧气和臭氧的混合气体,设定臭氧浓度40 mg·L−1,考察MCO工艺对硝基苯的去除效果;同时打开电源和臭氧发生器,考察ECMCO工艺对硝基苯的去除效果。ECMCO、MCO和电解过程对硝基苯的去除率分别为82.7%、35.6%和26.5%(见图2)。硝基苯与臭氧反应速率较慢,反应速率常数仅为(0.09 ± 0.02) L·(mol·s)−1[15],故臭氧直接氧化对硝基苯的去除效果不佳,MCO工艺对硝基苯去除率较低。电解过程对硝基苯的去除主要为阳极氧化作用,去除率最低。而ECMCO工艺对硝基苯的去除率明显提高,并且超过MCO和电解两者对硝基苯去除率之和,这说明ECMCO工艺处理功效并不是MCO与电解工艺的简单叠加。

    考察了ECMCO工艺体系中H2O2的变化情况,结果如图3所示。当气室中通入氮气时,液相中H2O2含量非常少;当气室中通入氧气时,液相中H2O2浓度急剧升高,可达24.4 mg·L−1。这说明气室中的氧气通过疏水层扩散至电催化层,并以2电子途径还原为H2O2(式(1))。当气室中通入氧气和臭氧的混合气体时,液相中H2O2含量明显下降,并且H2O2浓度随臭氧浓度升高而降低。这说明臭氧已通过电催化疏水膜的疏水层扩散进入液相,并在电催化层内消耗了大量的H2O2。此外,实验还通过ESR检测到了ECMCO体系中·OH的存在(见图4)。以上结果表明,ECMCO工艺中氧气和臭氧已通过电催化疏水膜的疏水层扩散进入电催化层,氧气得电子原位生成H2O2,H2O2催化臭氧分解产生·OH。·OH与硝基苯反应速率较快,反应速率常数为2.2 × 108 L·(mol·s)−1[15],因此ECMCCO工艺对硝基苯的去除效果明显提升。

  • 臭氧传质和臭氧反应紧密相关,相互促进。一方面,液相中臭氧快速反应有利于增大臭氧传质的化学势差,促进臭氧传质;另一方面,高效的臭氧传质可以提高液相中臭氧浓度,提升氧化效果。对比了ECMCO和MCO工艺中臭氧传质速率,结果见图5。MCO工艺在各时间点臭氧传质速率均约为100 mg·(m2·min)−1;ECMCO工艺在各时间点均约为300 mg·(m2·min)−1,约为MCO工艺的3倍。在ECMCO工艺中,电催化层内产生的H2O2与臭氧反应较快,可将液相中臭氧快速分解转化,增大臭氧的传质驱动力,因此ECMCO工艺的臭氧传质速率可以达到MCO工艺的3倍。

    同样,臭氧传质速率的提升,也有利于消耗电催化层内产生的H2O2。当气室内通入氮气,以电势−0.80 V为临界点,相对电势逐渐升高时,几乎无还原电流;相对电势逐渐降低时,开始发生析氢反应。当气室通入纯氧气,电势为−0.37 V时即有较大的还原电流产生,此时氧气以2电子途径原位还原为H2O2(见图6)。当气室通入浓度为40 mg·L−1的臭氧(氧气与臭氧的混合气体),电势为−0.37 V时同样发生了原位产H2O2的反应;随着电势更负,还原电流明显增强。这可能是因为臭氧存在的条件下,电极表面产生的H2O2快速从活性位点脱附,促进了原位产H2O2的电化学过程。

    ECMCO工艺中臭氧传质和臭氧分解转化为·OH的过程相互促进,具有明显的协同效应。这表明臭氧快速分解提高了臭氧传质效率,更多的臭氧扩散进入液相产生了更多了·OH,使得硝基苯的去除率获得明显提升。ECMCO工艺中的协同效应是硝基苯高效降解的主要原因。协同效应可以保证臭氧高效利用,并将其转化为·OH,提升系统的氧化能力。因此,ECMCO技术可以同步提高臭氧工艺的经济性和高效性,具有较好的研究价值和应用前景。

  • 实际废水中有机污染物和无机离子都可能会影响臭氧氧化反应的氧化效果。为了考察ECMCO工艺对实际废水的处理效果,对某酒厂废水的生化出水进行了深度处理,并对比了ECMCO工艺与传统工艺的运行能耗。

    1) 酒厂废水生化出水水质概况。该酒厂原水总COD≤10 000 mg·L−1,色度≤200。目前采用的处理流程为:酒厂混合废水经微滤、调节池后依次通过GF-UASB反应池、A/O反应池和MBR膜池,然后排放。该工艺的出水COD为200 mg·L−1,色度为500,未达到设计出水标准(COD≤50 mg·L−1,色度≤200度)。拟采用ECMCO工艺对该酒厂废水的生化出水进行深度处理,使出水COD和色度达到设计出水标准。

    2) 工艺参数对COD去除的影响。考查了槽压对COD去除的影响(见图7(a)),施加电压为0时,为MCO工艺对COD去除效果,300 min时体系中COD相对含量为0.56。施加电压1.9~2.5 V、反应300 min时COD相对含量明显减少。当槽压为2.3 V时,COD相对含量为0.24,去除效果最佳,可以达到设计出水标准;槽压为1.9 V时,电流强度较小,电催化层内H2O2产量较低,因此体系中产生的·OH量较少,COD去除较少;槽压为2.5 V时,可能发生了较多的析氢反应(图6),导致产H2O2的电流效率较低,COD去除率也较低。

    考查了气相流量对COD去除的影响(见图7(b))。气相流量从20增大到60 mL·min−1时,反应300 min后,COD相对含量逐渐减少。这是由于臭氧浓度的增加增大了臭氧传质驱动力,更多的臭氧通过电催化疏水膜扩散进入液相,分解转化为·OH,体系的氧化能力增强,故COD去除量逐渐升高。当气相流量增大至80 mL·min−1时,COD相对含量与气相流量为60 mL·min−1时无明显变化。这说明臭氧传质可能受到膜内部和液相边界传质阻力的制约,继续增大气相流量并不能提高体系的氧化能力。当槽压为2.3 V,气相流量为60 mL·min−1时,酒厂废水的生化出水在反应120 min时可实现完全脱色,反应300 min时出水COD低于50 mg·L−1,可以达到设计出水标准。

    3)运行能耗对比。为了评估ECMCO工艺的应用前景,将其与MCO工艺进行了运行能耗对比;同时,为了考察气液界面原位产H2O2对体系氧化能力的影响,将其与MCO+H2O2(H2O2为外部投加,而非电化学过程原位产生)工艺也一并进行了对比(见图8)。对比发现,外加H2O2浓度为30 mg·L−1时,COD去除效果最佳;继续增加H2O2投加量,COD去除量无明显变化。因此,MCO+H2O2工艺选定H2O2投加量为30 mg·L−1进行对比。此外,各工艺条件采用气相流量60 mL·min−1,臭氧浓度40 mg·L−1,运行能耗为COD降至50 mg·L−1时的电解能耗和产臭氧能耗。

    MCO工艺运行能耗最高,为245.3 kWh·m−3。MCO工艺以臭氧直接氧化为主,反应速率较慢,具有较强的选择性,同时臭氧传质驱动力较弱,臭氧利用率较低。故将COD降至50 mg·L−1时需要较长的反应时间,臭氧投加量明显高于ECMCO和MCO+H2O2过程。由于产臭氧过程能耗较高,所以MCO工艺需消耗更多的电能。H2O2的投加可以促进液相中臭氧的分解,从而增大臭氧传质驱动力,并将臭氧转化为氧化能力更强的·OH,从而使COD降解速率有较高提升,因而MCO+H2O2工艺对臭氧的能耗明显较少;通过计算同时发现,外加H2O2所需消耗仅为0.3 kWh·m−3。ECMCO工艺中,H2O2可以在气液界面处持续产生,将界面处臭氧快速分解转化为·OH,比外加H2O2方式产生更强的传质驱动力,产生更多的·OH,因此ECMCO工艺的臭氧能耗最低。该工艺的电解过程能耗为4.5 kWh·m−3,是臭氧能耗的8.9%。故ECMCO工艺以较低的电解能耗大大削减了臭氧的能耗,总能耗为55.1 kWh·m−3。ECMCO工艺电解产H2O2所需费用虽然高于MCO+H2O2工艺中外加H2O2的费用,但气液界面处H2O2可以更多地促进臭氧传质,从而提高体系的氧化能力,使总运行能耗低于MCO+H2O2工艺的能耗。

  • 1)与MCO和电解过程相比,ECMCO对硝基苯的去除率大幅提高。氧气和臭氧通过疏水层扩散至电催化层,氧气在电催化层内电催化还原为H2O2。H2O2催化臭氧分解产生·OH,而·OH促进了硝基苯的氧化降解。

    2)电催化层内产生的H2O2可将气液界面处臭氧快速分解,增大臭氧传质驱动力,臭氧传质为传统工艺的3倍。臭氧存在的条件下,电催化产H2O2的还原电流明显增强,可能是因为臭氧消耗部分H2O2,促进了氧气的电化学还原过程。ECMCO工艺中,臭氧传质和电化学还原过程相互促进,并以硝基苯的高级氧化为降解途径,是其氧化能力大大提升的重要原因。

    3) ECMCO工艺对酒厂废水生化出水的深度处理有明显的效果,色度全部脱除,COD降至50 mg·L−1L以下。电化学反应消耗的电能仅为臭氧能耗的8.9%,并未消耗大量能源,并且可以使臭氧用量明显减少,故ECMCO与MCO和MCO+H2O2工艺相比,具有明显的经济性。

参考文献 (15)

返回顶部

目录

/

返回文章
返回