-
高盐含油废水是一种典型的工业废水,主要是指油气田开采过程中产生的废水。油气田开采是通过向储油/气的地层中注液以采出石油和伴生天然气的过程。页岩气作为一种油气田开采的非常规天然气资源,具有清洁、高效、资源总量丰富等优势,近年来开采量逐渐增加[1-3]。目前,页岩气的开采使用水力压裂技术。该过程耗水量高,同时产生大量的压裂液返排至地面[4]。页岩气压裂返排液是水力压裂完成初期从页岩气井中返排的混合液。根据压裂液以及页岩层的特点,返排液含有大量溶解性盐类、有机物和各种化学添加剂,并携带一些油类、表面活性剂和悬浮物等污染物,呈现出污染物种类繁多、成分复杂、高COD、高矿化度、高稳定性等特点[5-8]。若页岩气压裂返排液直接外排,不仅会造成严重的水资源浪费,还会带来严重的环境污染和生态破坏等问题,如导致土壤板结盐碱化,地表水系污染等,进而威胁到人类生存和人体健康[9-10]。因此,这类高盐含油废水的有效处理是油气田开采,特别是页岩气开采过程中亟需解决的问题。
膜蒸馏(membrane distillation,MD)是一种新兴的膜技术,采用热驱动实现分离的过程。在温度差产生的蒸汽压差的作用下,蒸汽跨越多孔疏水膜到达冷侧并冷凝,从而实现水与污染物的分离[11-14]。与其他膜技术相比,MD具有理论截盐率可达100%、对盐度不敏感、低品位废热再利用、操作条件温和、设备简单等优势[15-19],因此,MD在页岩气压裂返排液处理领域具有较好的应用前景[20]。然而,MD技术的应用仍受到传统疏水膜长期运行易润湿这一特性的限制[21-22]。由于页岩气压裂返排液中含有大量表面活性剂和油类物质,而表面活性剂可能对膜材料产生润湿作用,油类物质会通过疏水-疏水作用黏附疏水膜造成膜污染[23],所以要解决MD技术在页岩气压裂返排液处理中的应用问题,还应开发适宜的膜材料。
双疏膜的制备是基于荷叶效应提出的。这类膜对表面活性剂表现出良好的耐润湿性,但在水下易被油类物质污染。本课题组基于双疏膜的优势,制备了可同时抗润湿和抗膜污染作用的新型Janus膜。Janus膜的亲水表面可以防止油污黏附;底膜采用双疏膜,可以抵抗表面活性剂的润湿作用。本研究将Janus膜应用在MD系统中以处理高盐含油废水,研究其对低表面能污染物(如乳化油)的抗润湿和抗污染性能,为MD工艺处理页岩气压裂返排液的工业化应用提供有益参考。
新型Janus膜的制备及其在高盐含油废水膜蒸馏处理中的应用
Development of a novel Janus membrane and its application in treatment of hypersaline oily wastewater by direct contact membrane distillation
-
摘要: 采用表面蚀刻-电喷雾协同技术制备了具有微/纳凹槽表面结构的亲水/疏水型Janus膜,并系统考察了Janus膜的脱盐性能及耐润湿、抗污染功能。Janus膜具有水相超疏油的性能,对原油、正己烷、甲苯和汽油的水下油接触角分别为152.7°、150.1°、146.7°和151.1°。直接接触式膜蒸馏应用实验表明:在连续50 h的运行过程中,Janus膜对盐的截留率可达100%、膜通量稳定在10.18 kg·(m2·h)−1;对于不同浓度(0.1、0.2和0.3 mmol·L−1等)的十二烷基硫酸钠,Janus膜均表现出优异的抗润湿效果。在处理高盐含油废水过程中,Janus膜未发生膜润湿和膜污染的现象,膜通量及盐截留率也保持稳定;油滴力学探针测试结果定量阐释了Janus膜强健的抗油污能力。制备的新型Janus膜兼具耐润湿与抗污染特性,拓展了膜蒸馏技术在高浓度难降解废水处理领域的应用。Abstract: A novel hydrophilic-hydrophobic Janus membrane was developed through constructing a hydrophilic layer on an omniphobic substrate via electrospraying. The anti-wetting and anti-fouling performances associated with the fabricated Janus membrane during membrane distillation (MD) of hypersaline wastewater was systematically investigated. The results of SEM, ATR-FTIR and XPS indicated that the micro-nano reentrant structures were successfully constructed in the Janus membrane, and the anti-wettability of the Janus membrane was obviously enhanced. The experiments reflected that the Janus membrane was underwater superoleophobic, with the underwater contact angles for crude oil, n-hexane, toluene and gasoline being of 152.7°, 150.1°, 146.7° and 151.1°, respectively. The anti-wetting and anti-fouling performances were verified via the MD experiments. The Janus membrane maintained the salt rejection of about 100% with a stable permeate flux of 10.18 kg·(m2·h)−1 in the MD process for 50 h. Meanwhile, the Janus membrane showed excellent anti-wetting performance when treating hypersaline wastewaters with sodium dodecyl sulfonate as high as 0.3 mmol·L−1. During DCMD processing of hypersaline oily wastewater, no wetting and fouling phenomena happened on the Janus membrane. Additionally, the oil-droplet probe test further quantitatively verified the strong oil resistance of the developd Janus membrane. In conclusion, the fabricated Janus membrane had great potential to promote MD dealing with challenging wastewaters enriched with salts and hydrophobic organics, owning to its robust anti-wetting and anti-fouling performances.
-
Key words:
- membrane distillation /
- Janus membrane /
- anti-wetting /
- anti-fouling
-
表 1 膜结构特征
Table 1. Characteristics of membrane structural
膜样品 平均孔径/μm 孔隙率/% 膜厚度/μm PVDF膜 0.71 68.7 122 双疏膜 0.72 68.9 128 Janus膜 0.64 61.9 151 -
[1] 刘一才, 樊森清, 肖泽仪. 页岩气压裂返排液膜蒸馏处理[J]. 化学工程与装备, 2019, 2(2): 134-136. [2] 刘宇程, 吴东海, 袁建梅, 等. 膜蒸馏处理页岩气井压裂返排液[J]. 环境工程学报, 2017, 11(1): 48-54. doi: 10.12030/j.cjee.201509096 [3] BILGEN S. New horizon in energy: Shale gas[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 637-645. doi: 10.1016/j.jngse.2016.09.014 [4] SHAH M, SHAH S, SIRCAR A. A comprehensive overview on recent developments in refracturing technique for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 350-364. doi: 10.1016/j.jngse.2017.07.019 [5] SHAFFER D L, CHAVES L H A, BEN-SASSON M, et al. Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47(17): 9569-9583. [6] ZOLFAGHARI A, DEHGHANPOUR H, NOEL M, et al. Laboratory and field analysis of flowback water from gas shales[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 113-127. doi: 10.1016/j.juogr.2016.03.004 [7] AHMADUN F, PENDASHTEH A, ABDULLAH L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. [8] 王兵, 王佩洁, 祝伟, 等. 混凝-吸附联用预处理页岩气压裂返排液[J]. 环境工程学报, 2019, 13(10): 2475-2481. doi: 10.12030/j.cjee.201811198 [9] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348. [10] KARGBO D M, WILLHELM R G, CAMPBELL D J. Natural gas plays in the marcellus shale: Challenges and potential opportunities[J]. Environmental Science & Technology, 2010, 44(15): 5679-5684. [11] ALKHUDHIRI A, DARWISH N, HILAL N. Membrane distillation: A comprehensive review[J]. Desalination, 2012, 287: 2-18. doi: 10.1016/j.desal.2011.08.027 [12] TIJING L D, WOO Y C, CHOI J, et al. Fouling and its control in membrane distillation: A review[J]. Journal of Membrane Science, 2015, 475: 215-244. doi: 10.1016/j.memsci.2014.09.042 [13] SU C, HORSEMAN T, CAO H, et al. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance[J]. Environmental Science & Technology, 2019, 53(20): 11801-11809. [14] NAIDU G, PENG Y, JI S, et al. Review of thermal efficiency and heat recycling in membrane distillation processes[J]. Desalination, 2015, 367: 223-239. doi: 10.1016/j.desal.2015.04.013 [15] NAIDU G, TIJING L, JOHIR M A H, et al. Hybrid membrane distillation: Resource, nutrient and energy recovery[J]. Journal of Membrane Science, 2020, 599: 117832. doi: 10.1016/j.memsci.2020.117832 [16] 田苗苗, 李雪梅, 殷勇, 等. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化工进展, 2015, 27(8): 1033-1041. [17] NAIDU G, JEONG S, CHOI Y, et al. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential[J]. Journal of Membrane Science, 2017, 524: 565-575. doi: 10.1016/j.memsci.2016.11.068 [18] CHRISTIE K S S, YIN Y, LIN S, et al. Distinct behaviors between gypsum and silica scaling in membrane distillation[J]. Environmental Science & Technology, 2020, 54(1): 568-574. [19] DOW N, GRAY S, LI J, et al. Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment[J]. Desalination, 2016, 391: 30-42. doi: 10.1016/j.desal.2016.01.023 [20] BOO C, LEE J, ELIMELECH M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation[J]. Environmental Science & Technology, 2016, 50(22): 12275-12282. [21] REZAEI M, WARSINGER D M, LIENHARD V J H, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention[J]. Water Research, 2018, 139: 329-352. doi: 10.1016/j.watres.2018.03.058 [22] KIM H W, YUN T, HONG S, et al. Retardation of wetting for membrane distillation by adjusting major components of seawater[J]. Water Research, 2020, 175: 115677. doi: 10.1016/j.watres.2020.115677 [23] ISRAELACHVILI J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature, 1982, 300: 341-342. doi: 10.1038/300341a0 [24] ZHU Z, LIU Y, HOU H, et al. Dual-bioinspired design for constructing membranes with superhydrophobicity for direct contact membrane distillation[J]. Environmental Science and Technology, 2018, 52: 3027-3036. doi: 10.1021/acs.est.7b06227 [25] JIA K, CHEN Y, CHUNG T. Design of omniphobic interfaces for membrane distillation: A review[J]. Water Research, 2019, 162: 64-77. doi: 10.1016/j.watres.2019.06.056 [26] TUTEJA A, CHOI W, MA M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1623. doi: 10.1126/science.1148326 [27] DING D, MAO H, CHEN X, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. Journal of Membrane Science, 2018, 565: 303-310. doi: 10.1016/j.memsci.2018.08.035 [28] WANG K, HOU D, WANG J, et al. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation[J]. Applied Surface Science, 2018, 450: 57-65. doi: 10.1016/j.apsusc.2018.04.180 [29] WANG K, HOU D, QI P, et al. Development of a composite membrane with underwater-oleophobic fibrous surface for robust anti-oil-fouling membrane distillation[J]. Journal of Colloid and Interface Science, 2019, 537: 375-383. doi: 10.1016/j.jcis.2018.11.040 [30] AERTS T, CLAUWAERT J. Thermodynamic parameters involved in hydrophobic interaction[J]. Journal of Chemical Education, 1986, 63(11): 993-995. doi: 10.1021/ed063p993 [31] ZHOU H, GUO Z. Superwetting Janus membranes: Focusing on unidirectional transport behaviors and multiple applications[J]. Journal of Materials Chemistry A, 2019, 7: 12921-12950. doi: 10.1039/C9TA02682G