Loading [MathJax]/jax/output/HTML-CSS/jax.js

基于电催化疏水膜的新型膜接触臭氧氧化工艺

李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
引用本文: 李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
Citation: LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007

基于电催化疏水膜的新型膜接触臭氧氧化工艺

    作者简介: 李魁岭(1989—),男,博士研究生。研究方向:膜及膜分离技术。E-mail:klli_st@rcees.ac.cn
    通讯作者: 王军(1975—),男,博士,研究员。研究方向:功能膜制备及应用等。E-mail:junwang@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(51978651);环境模拟与污染控制国家重点联合实验室专项经费(18L01ESPC)
  • 中图分类号: X703

Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane

    Corresponding author: WANG Jun, junwang@rcees.ac.cn
  • 摘要: 膜接触臭氧氧化(MCO)工艺以疏水膜为臭氧提供丰富的气液接触界面,具有较高臭氧传质效率。然而,MCO工艺以臭氧直接氧化为主,对废水中有机污染物的去除有较强的选择性,氧化能力有待提高。通过电催化疏水膜将MCO工艺与电化学技术相结合,构建了新型的膜接触电催化臭氧氧化(ECMCO)工艺。ECMCO工艺以高级氧化过程为主,对水中硝基苯的去除效率明显增强,同步提高了臭氧传质效率和体系的氧化能力。ECMCO工艺对酒厂废水的生化出水进行深度处理后,水中COD降至50 mg·L−1以下,色度完全脱除,总运行能耗明显低于MCO和MCO+H2O2工艺。针对臭氧工艺在水处理应用中传质效率低、矿化能力差、运行能耗高的问题,ECMCO技术提供了可行的解决方案,有较好的研究价值和应用前景。
  • 在天然气开发过程中,为防止水合物生成,通常在采气井口向集输管道喷注甲醇。气液混合物在集气站气液分离后,产生气田甲醇污水。由于甲醇的注入量大,如不经回收利用,生产成本会大幅增加,同时由于甲醇的强污染性会对环境造成较为严重的污染,因此,开展甲醇污水处理,实现甲醇循环利用,对于气田生产与环境保护的可持续发展意义重大[1-5]。目前,国内气田采用甲醇污水预处理+常压精馏工艺,达到回收甲醇的目的,塔底出水达标后用于回注。

    延长气田采气一厂甲醇污水处理装置承接780口气井、集气站34座来水的处理,随着气田的开发,气田甲醇污水量增大,年产生量近45 000 m3,2014年开始陆续出现换热器结垢、精馏塔运行不正常、出水水质不达标现象。自2016年以来,结垢问题加剧,甲醇回收率低、处理后水水质不达标,后采取一些措施后收效甚微。为了解决换热器/精馏塔板结垢严重、甲醇回收率低(再生甲醇质量分数保持在80%~90%)、处理后水水质不达标的问题(如处理后水甲醇含量0.5%,大于设计值0.3%;总铁含量高达30 mg·L−1;悬浮固体含量高达65 mg·L−1),开展了水质分析、结垢分析和工艺原因分析,并对甲醇污水预处理工艺和甲醇回收工艺进行了优化[6-7]。优化工艺现场实施后,换热器、精馏塔塔板无明显结垢现象,甲醇污水处理装置运行平稳,检修周期提升为150~180 d;再生甲醇质量稳定达标,质量分数保持在95%以上;处理后水水质持续稳定达标,可满足平均空气渗透率≤0.01 μm2地层的回注要求。

    延长气田采气一厂现有日处理量为150 m3·d−1甲醇污水处理装置1套,于2012年建成后投产,负责处理全厂及周边集气站的甲醇污水。该装置包括甲醇污水预处理装置和甲醇回收装置,预处理单元设计出水水质达到含油量小于等于10 mg·L−1,悬浮物含量小于等于5 mg·L−1进入甲醇回收单元;甲醇回收装置设计进料甲醇质量分数20%~50%,再生甲醇质量分数大于95%,供气田循环使用,精馏塔塔底出水的甲醇质量分数小于0.3%,塔底出水通过注水井回注地层。

    延长气田司采气一厂甲醇污水处理工艺包括甲醇污水预处理工艺和甲醇回收工艺,具体工艺流程见图1

    图 1  采气一厂甲醇污水处理工艺流程
    Figure 1.  Treatment process of methanol wastewater in No.1 gas production plant

    预处理工艺是后续甲醇回收装置平稳运行的重要保障,主要采用重力除油、化学氧化、混凝沉降、过滤等工艺去除污水中的油、悬浮物、机械杂质,以期达到净化污水的目的。各集气站污水由罐车拉运来进入甲醇污水罐,甲醇污水经过除油、除铁、混凝沉降、双滤料过滤净化预处理后,出水由泵吸出加热后进行精细过滤,滤后水进入精馏塔进行甲醇回收。

    甲醇回收工艺采用常压精馏工艺,利用甲醇和水的沸点差别将甲醇与水分开,塔顶甲醇蒸汽经冷凝器全冷凝至饱和液体进入回流罐,而后用泵吸出加压,部分回流进入塔顶,部分作为产品经换热冷却至40 ℃左右进入产品储罐,产品即再生甲醇,再生甲醇由罐车拉运到各集气站回用[8-9];部分水蒸汽返回塔底作为塔底产品(即净化后污水)。

    自2016年以来,由于甲醇污水预处理药剂加量不合理、加药工艺不合适、甲醇污水原料水的甲醇质量分数偏低等原因,甲醇污水处理装置陆续出现结垢严重、运行不稳定等问题,存在的主要问题如下:

    1) 换热器、精馏塔塔板等高温部位结垢严重,影响装置正常运行;

    2) 甲醇回收率低,再生甲醇质量分数保持在80%~90%,低于设计的95%;

    3) 处理后水水质不达标,不能满足回注要求。

    1) 水质分析。参照SY/T5523-2006《油气田水分析方法》,对现场所取的水样进行水质分析,分析结果如表1表2所示。

    表 1  水样污染特性检测结果
    Table 1.  Test results of water sample pollution characteristics
    水样名称颜色pH溶解氧/(mg·L−1)甲醇/%总铁/(mg·L−1)硫化物/(mg·L−1)含油量/(mg·L−1)悬浮物/(mg·L−1)粒径中值/(mg·L−1)平均腐蚀率/mm·a−1SRB/(个·mL−1)TGB/(个·mL−1)IB/(个·mL−1)
    污水罐水深黄6.25未检出13.0160未检出5.07752.10.054002.5×100
    沉降罐出水深黄6.09未检出12.2150未检出03981.80.049000
    双滤料过滤器出水浅黄5.98未检出11.8110未检出0771.50.023000
    换热器出水深黄5.74未检出11.4170未检出01351.60.0370.6×1002.5×100
    处理后水深黄5.55未检出0.5030未检出0651.40.08100.6×1000
    SY/T5329-2012≤0.1≤1.0≤1.0≤5.0≤0.076≤10≤1 000≤1 000
      注:“—”表示“未作要求”;SY/T5329-2012指平均空气渗透率≤0.01 μm2地层的注水水质指标。
     | Show Table
    DownLoad: CSV
    表 2  水样离子成分检测结果
    Table 2.  Detection results of ion composition in water sample
    水样名称ClNa+K+Mg2+Ca2+Sr2+Ba2+矿化度
    污水灌水94 641521136117 9455891 72119 8003 6121 856154 910.16
    沉降罐出水76 98750831815 1804871 45618 0243 1551 922126 398.79
    双滤料过滤器出水79 626481336316 7145441 44918 5693 5501 720130 736.50
    换热器出水77 71559732215 4386121 41617 1573 2171 997127 966.85
    处理后水74 5435699415 3875431 42717 4393 4581 986122 151.61
     | Show Table
    DownLoad: CSV

    表1表2可知,采气一厂甲醇污水具有如下特点:处理装置不同出口出水pH在5.50~6.25范围,呈弱酸性;不含硫化物,不含溶解氧,矿化度高,达到(1.2~1.6)×105 mg·L−1;细菌含量低,硫酸盐还原菌和腐生菌几乎为零;结垢性离子含量高,水中Ca2+高达19 800 mg·L−1,Mg2+、Ba2+、Sr2+含量也很高,这种水进入精馏塔在高温下随着碳酸氢根离子的分解,很容易产生碳酸盐结垢物附着在塔板上;总铁含量高(100~200 mg·L−1),从处理位置不同出口出水的总铁含量来看,目前的水处理工艺存在除铁效果不佳的问题;处理后水的甲醇含量、悬浮物含量、总铁含量、悬浮物粒径中值均不达标,不能满足平均空气渗透率≤0.01 μm2地层的回注要求。

    2) 结垢分析。采用X射线衍射仪分析装置垢物的组成及其含量,实验结果见表3。由表3可知,换热器垢物主要为氢氧化铁,垢物形成的主要原因是甲醇污水中的除铁效果不佳,水中总铁含量高生成氢氧化铁引起的;精馏塔塔板垢物主要为碳酸钙,垢物形成的主要原因是高温精馏条件下污水中的HCO3分解生成CO23CO23与Ca2+生成碳酸钙沉淀。

    表 3  垢物组成分析 (质量分数)
    Table 3.  Analysis of composition of scale(mass fraction)
    垢物名称Fe(OH)3CaCO3SrCO3
    换热器垢物78.329.5012.18
    精馏塔塔板垢物7.1991.531.28
     | Show Table
    DownLoad: CSV

    1) 甲醇污水预处理效果差。预处理效果差是造成换热器、精馏塔塔板结垢严重,塔底出水水质不达标的主要原因,而造成预处理效果差的影响因素主要有:甲醇污水组成复杂,处理难度大;预处理过程中,药剂加量不合理,存在药剂加量不够或超标现象;氧化反应时间、絮凝反应时间、沉降时间短,造成药剂与污水的反应不充分,使得处理效果变差;现场使用pH调节剂、氧化剂、无机絮凝剂、有机助凝剂时,4种药剂同时加药,未考虑不同药剂之间的加药间隔时间对处理效果的影响[10]

    2) 精馏塔分离效果差。精馏塔分离效果差是造成再生甲醇浓度低、塔底出水甲醇浓度高的主要原因,而造成精馏塔分离效果差的影响因素主要有:现场处理过程中,甲醇污水原料水的甲醇质量分数基本保持在10%~20%,低于设计要求的20%~50%,导致精馏塔中的甲醇、水的热量平衡及浓度分布被打破,分离效果变差;精馏塔塔板结垢严重会大大削弱精馏塔塔板的传质能力,从而降低精馏塔的分离效果。

    根据2016年甲醇污水处理装置运行存在的问题,对甲醇污水预处理工艺进行优化,具体的优化措施如下[11-13]

    1) 加药量优化。污水的pH对氧化反应、混凝反应、沉淀反应有着重要的影响,综合考虑氧化效果及药剂成本,确定将甲醇污水的pH调节到8.0左右(对应的pH调节剂加量为450 mg·L−1)。氧化剂的加入,会使污水中的Fe2+变为Fe3+,进而形成Fe(OH)3沉淀,从而达到除铁效果;实验以污水除铁率为考察指标,确定氧化剂的投加量为1 100 mg·L−1。无机絮凝剂通过压缩扩散双电层、降低Zeta电位以及电中和作用能使污水中的溶质、胶体或悬浮颗粒稳定性降低,达到除悬的目的,具有见效快、成本低等优点;实验以污水透光率为考察指标,确定无机絮凝剂的加量为300 mg·L−1。经无机絮凝剂处理后,污水中会产生大量的絮体,但絮体较小,沉降时间较长,加入适量的有机助凝剂可有效提高絮凝强度并促进沉降;实验以污水透光率和沉降时间为考察指标,确定有机助凝剂的加量为3.0 mg·L−1。化学阻垢是气田甲醇污水处理中主要采用的一种方法,以水样中的离子含量变化情况为指标,考察不同加量阻垢剂的阻垢效果,确定阻垢剂的加量为100 mg·L−1。通过模拟甲醇污水预处理装置实际运行情况,室内评价现场所用水处理药剂效果,确定甲醇污水预处理药剂的最佳加药量,实验结果见表4

    表 4  甲醇污水预处理加药量
    Table 4.  Dosage of methanol wastewater pretreatment
    加药工艺pH调节剂氧化剂无机絮凝剂有机助凝剂阻垢剂
    优化前46060085080130
    优化后4501 1003003.0100
     | Show Table
    DownLoad: CSV

    2) 加药工艺优化。在污水氧化处理过程中,氧化反应需要一定的时间,同时pH调节剂与氧化剂的加药间隔时间对处理效果的影响很大,二者同时投加时,生成的絮体小,沉降速度慢,且除铁效果差;当二者的间隔时间大于60 s时,生成的絮体大,沉降速度快,且除铁效果好。因此,pH调节剂与氧化剂加药间隔时间大于60 s,氧化反应30 min。在污水混凝处理过程中,加入药剂生成絮体需要一定的时间,因此,复合使用无机絮凝剂和有机助凝剂时,应考虑絮体的生成时间、加药间隔时间、沉降时间等[14-15]。当时间间隔在30 s以上时,时间间隔越大,絮体越大;当时间间隔大于60 s时,由于不断搅拌,之前生成的小絮体被搅破重新絮凝,导致胶体发生再稳定现象,不能更好的与有机助凝剂结合,絮体粒径变小,沉降效果变差。因此,无机絮凝剂和有机助凝剂的加药间隔时间为30~60 s,絮凝反应30 min,沉降60 min(表5)。

    表 5  甲醇污水预处理加药工艺
    Table 5.  Dosing process of methanol wastewater pretreatment
    加药工艺类别氧化反应时间/s絮凝反应时间/s沉降时间/spH调节剂与氧化剂的加药间隔时间/s无机絮凝剂和有机助凝剂的加药间隔时间/s
    优化前15153000
    优化后303060≥6030~60
     | Show Table
    DownLoad: CSV

    在现有工艺设备条件下,在保证塔顶塔底产品控制指标的前提下,打破甲醇污水进塔温度须达到泡点温度的硬性要求,根据污水甲醇质量分数的不同采用不同的进塔温度:污水的甲醇质量分数为10%~20%时,进塔温度控制在50 ℃以下即可;污水的甲醇质量分数为20%~50%时,进塔温度采取泡点温度即可。同时定期检修清理塔板垢物,保证塔板正常传质能力,从而保证精馏塔塔顶塔底产品达到质量要求。

    通过采取一系列改进措施后,甲醇污水预处理效果有了显著的改善,甲醇回收装置运行平稳,再生甲醇质量达标,处理后水满足回注要求,具体表现为以下几点。

    1) 换热器、精馏塔塔板无明显结垢现象,甲醇污水处理装置运行平稳。

    2) 再生甲醇质量稳定达标,质量分数保持在95%以上,实现了安全环保(表6)。

    表 6  工艺优化后甲醇回收装置运行效果
    Table 6.  Operation effect of methanol recovery equipment after process optimization
    日期原料水甲醇浓度/%再生甲醇浓度/%塔底出水甲醇浓度/%
    2017-03-1028.8996.120.00
    2017-03-2528.1395.570.01
    2017-04-1027.6595.340.03
    2017-04-2529.5795.120.01
    2017-05-1026.3295.690.00
    2017-05-2525.4996.080.02
    2017-06-1024.3595.030.01
    2017-06-2525.6897.210.00
    2017-07-1026.1196.520.01
    2017-07-2524.4497.190.00
     | Show Table
    DownLoad: CSV

    3) 处理后水甲醇浓度低于0.05%,水质持续稳定达标,可满足平均空气渗透率≤0.01 μm2地层的回注要求(表7)。

    表 7  工艺优化后处理后水的水质特性
    Table 7.  Water quality characteristics of the treated wastewater after process optimization
    日期pH总铁/(mg·L−1)硫化物/(mg·L−1)悬浮物/(mg·L−1)粒径中值/μm含油量/(mg·L−1)平均腐蚀率/(mm·a−1)SRB/(个·mL−1)TGB/(个·mL−1)FB/(个·mL−1)
    2017-03-106.850.3未检出0.40.0800.039000
    2017-04-106.360.2未检出0.50.0600.04500.60
    2017-05-106.170.2未检出0.60.0700.04602.50
    2017-06-106.590.3未检出0.50.0700.06106.00
    2017-07-107.120.2未检出0.50.0600.05102.50
    2017-07-256.430.3未检出0.60.0500.0570100
    SY/T5329-2012————≤1.0≤1.0≤5.0≤0.076≤10≤1 000≤1 000
      注:“—”表示“未作要求”;SY/T5329-2012指平均空气渗透率≤0.01 μm2地层的注水水质指标。
     | Show Table
    DownLoad: CSV

    4) 优化工艺在现场自2017年3月实施以来,甲醇污水处理装置稳定运行时间显著增长。改进工艺实施前,装置每30 d检修一次,员工检修劳动强度大;改进工艺实施后,装置运行稳定,检修周期为150~180 d,大大减小了员工的检修工作量;

    5) 优化工艺实施后,精馏塔塔顶塔底产品的一次性合格率大幅提升,甲醇污水处理装置处理量大大增加,预计每年可节约水电气、购买甲醇等费用50 余万元。

    1) 采气一厂甲醇污水处理装置存在预处理药剂加量不合理、加药工艺不合适、甲醇污水原料水的甲醇质量分数偏低等问题,这些问题导致了换热器/精馏塔塔板等高温部位结垢严重、甲醇回收率低、处理后水水质不达标;

    2) 甲醇污水预处理效果直接影响甲醇污水的处理效果。若预处理效果不好,精馏塔分离效果将大大降低,甲醇回收率低且处理后水水质不能满足回注标准要求,因此应加强预处理操作管理水平,保证预处理效果达标;

    3) 现场实验表明,通过优化甲醇污水预处理工艺及甲醇回收工艺,换热器、精馏塔塔板结垢问题得到解决,甲醇污水处理装置运行平稳,再生甲醇质量分数稳定达标,处理后水水质满足回注要求。

  • 图 1  ECMCO工艺示意图

    Figure 1.  Schematic diagram of the ECMCO process

    图 2  ECMCO、MCO和电解过程对硝基苯去除效果对比

    Figure 2.  Removal efficiency of nitrobenzene in ECMCO, MCO and electrolysis processes

    图 3  气室通入不同气体时体系中H2O2含量变化

    Figure 3.  Concentration of H2O2 when different gases were charged in the gas chamber

    图 4  体系中·OH的ESR图谱

    Figure 4.  ESR spectrum of the ·OH in this system

    图 5  ECMCO和MCO工艺中臭氧传质速率

    Figure 5.  Mass transfer of O3 in ECMCO and MCO processes

    图 6  气室通入不同气体时的LSV曲线

    Figure 6.  LSV curves when different gases were charged in gas chamber

    图 7  运行工艺参数对酒厂废水生化出水COD去除的影响

    Figure 7.  Effects of operation parameters on COD removal of biochemical treatment effluent of the winery wastewater

    图 8  运行能耗对比

    Figure 8.  Comparison of operation energy consumption

  • [1] SHARMA V K. Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics assessment[J]. Chemosphere, 2008, 73(9): 1379-1386. doi: 10.1016/j.chemosphere.2008.08.033
    [2] JANKNECHT P, WILDERER P A A, PICARD C, et al. Ozone-water contacting by cermanic membranes[J]. Separation and Purification Technology, 2001, 25(1/2/3): 341-346.
    [3] GOTTSCHALK C, LIBRA J A, SAUPE A. Ozonation of Water and Wastewater: A Practical Guide to Understaning Ozone[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010.
    [4] CHAN W K, JOUËT J, HENG S, et al. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water[J]. Journal of Solid State Chemistry, 2012, 189: 96-100. doi: 10.1016/j.jssc.2012.01.023
    [5] 张勇, 侯得印, 赵长伟, 等. 膜接触反应器臭氧传质及其对模拟印染废水降解研究[J]. 环境工程学报, 2017, 11(8): 4453-4458. doi: 10.12030/j.cjee.201607215
    [6] PINES D S, MIN K N, ERGAS S J, et al. Investigation of an ozone membrane contactor system[J]. Ozone: Science and Engineering, 2005, 27(3): 209-217. doi: 10.1080/01919510590945750
    [7] GABELMAN A, HWANG S-T. Hollow fiber membrane contactors[J]. Journal of Membrane Science, 1999, 159(1/2): 61-106.
    [8] 张勇. 水处理新型膜接触工艺及其功能膜制备研究[D]. 北京: 中国科学院大学, 2017.
    [9] SEIN M M, ZEDDA M, TUERK J, et al. Oxidation of diclofenac with ozone in aqueous solution[J]. Environmental Science & Technology, 2008, 42(17): 6656-6662.
    [10] POCOSTALES J P, SEIN M M, KNOLLE W, et al. Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): The role of ozone consumption by dissolved organic matter[J]. Environmental Science & Technology, 2010, 44(21): 8248-8253.
    [11] SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate[J]. The Analyst, 1980, 105(1255): 950-954. doi: 10.1039/an9800500950
    [12] ZHAO H Y, CHEN Y, PENG Q S, et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and ·OH generation in solar photo-electro-Fenton process[J]. Applied Catalysis B: Environmental, 2017, 203: 127-137. doi: 10.1016/j.apcatb.2016.09.074
    [13] LI K, XU L, ZHANG Y, et al. A novel electro-catalytic membrane contactor for improving the efficiency of ozone on wastewater treatment[J]. Applied Catalysis B: Environmental, 2019, 249: 316-321. doi: 10.1016/j.apcatb.2019.03.015
    [14] LI K, ZHANG Y, XU L, et al. Mass transfer and interfacial reaction mechanisms in a novel electro-catalytic membrane contactor for wastewater treatment by O3[J]. Applied Catalysis B: Environmental, 2020, 264: 118512. doi: 10.1016/j.apcatb.2019.118512
    [15] ZHAO L, MA J, SUN Z. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution[J]. Applied Catalysis B: Environmental, 2008, 79(3): 244-253. doi: 10.1016/j.apcatb.2007.10.026
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 10.3 %DOWNLOAD: 10.3 %HTML全文: 79.7 %HTML全文: 79.7 %摘要: 10.0 %摘要: 10.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.0 %其他: 81.0 %Anwo: 0.0 %Anwo: 0.0 %Beijing: 11.5 %Beijing: 11.5 %Benxi: 0.0 %Benxi: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Chengdu: 0.0 %Chengdu: 0.0 %Chongqing: 0.0 %Chongqing: 0.0 %Daxing: 0.0 %Daxing: 0.0 %Frankfurt am Main: 0.0 %Frankfurt am Main: 0.0 %Fredericton: 0.0 %Fredericton: 0.0 %Guiyang: 0.0 %Guiyang: 0.0 %Gulan: 0.0 %Gulan: 0.0 %Hangzhou: 0.1 %Hangzhou: 0.1 %Hefei: 0.0 %Hefei: 0.0 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jiaozuo: 0.2 %Jiaozuo: 0.2 %Jinan: 0.6 %Jinan: 0.6 %Jinrongjie: 0.5 %Jinrongjie: 0.5 %Kunshan: 0.0 %Kunshan: 0.0 %Lausanne: 0.0 %Lausanne: 0.0 %Mountain View: 0.0 %Mountain View: 0.0 %Nanjing: 0.2 %Nanjing: 0.2 %Newark: 0.0 %Newark: 0.0 %Oldenburg: 0.1 %Oldenburg: 0.1 %Qinnan: 0.1 %Qinnan: 0.1 %San Francisco: 0.1 %San Francisco: 0.1 %Shanghai: 0.1 %Shanghai: 0.1 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.0 %Shenzhen: 0.0 %Taichung City: 0.1 %Taichung City: 0.1 %Taiyuan: 0.0 %Taiyuan: 0.0 %Tuen Mun: 0.2 %Tuen Mun: 0.2 %Wuhan: 0.1 %Wuhan: 0.1 %Xi'an: 0.1 %Xi'an: 0.1 %Xiamen: 0.0 %Xiamen: 0.0 %Xiangtan: 0.0 %Xiangtan: 0.0 %Xinzhuang: 0.1 %Xinzhuang: 0.1 %XX: 2.9 %XX: 2.9 %Yancheng: 0.1 %Yancheng: 0.1 %Yuncheng: 0.1 %Yuncheng: 0.1 %丽水: 0.0 %丽水: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.2 %北京: 0.2 %桂林: 0.0 %桂林: 0.0 %深圳: 0.2 %深圳: 0.2 %福州: 0.0 %福州: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.1 %郑州: 0.1 %阳泉: 0.0 %阳泉: 0.0 %其他AnwoBeijingBenxiChang'anChengduChongqingDaxingFrankfurt am MainFrederictonGuiyangGulanHangzhouHefeiHyderabadJiaozuoJinanJinrongjieKunshanLausanneMountain ViewNanjingNewarkOldenburgQinnanSan FranciscoShanghaiShenyangShenzhenTaichung CityTaiyuanTuen MunWuhanXi'anXiamenXiangtanXinzhuangXXYanchengYuncheng丽水内网IP北京桂林深圳福州邯郸郑州阳泉Highcharts.com
图( 8)
计量
  • 文章访问数:  7897
  • HTML全文浏览数:  7897
  • PDF下载数:  258
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-01
  • 录用日期:  2020-06-13
  • 刊出日期:  2020-08-10
李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
引用本文: 李魁岭, 刘泓锌, 刘烈, 汪志永, 郭菁菁, 张勇, 王军. 基于电催化疏水膜的新型膜接触臭氧氧化工艺[J]. 环境工程学报, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007
Citation: LI Kuiling, LIU Hongxin, LIU Lie, WANG Zhiyong, GUO Jingjing, ZHANG Yong, WANG Jun. Development of a novel membrane contact ozonation process based on electro-catalytic hydrophobic membrane[J]. Chinese Journal of Environmental Engineering, 2020, 14(8): 2030-2036. doi: 10.12030/j.cjee.202006007

基于电催化疏水膜的新型膜接触臭氧氧化工艺

    通讯作者: 王军(1975—),男,博士,研究员。研究方向:功能膜制备及应用等。E-mail:junwang@rcees.ac.cn
    作者简介: 李魁岭(1989—),男,博士研究生。研究方向:膜及膜分离技术。E-mail:klli_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院生态环境研究中心,高浓度难降解有机废水处理技术国家工程实验室,北京 100085
  • 3. 中国科学院大学,北京 100049
基金项目:
国家自然科学基金资助项目(51978651);环境模拟与污染控制国家重点联合实验室专项经费(18L01ESPC)

摘要: 膜接触臭氧氧化(MCO)工艺以疏水膜为臭氧提供丰富的气液接触界面,具有较高臭氧传质效率。然而,MCO工艺以臭氧直接氧化为主,对废水中有机污染物的去除有较强的选择性,氧化能力有待提高。通过电催化疏水膜将MCO工艺与电化学技术相结合,构建了新型的膜接触电催化臭氧氧化(ECMCO)工艺。ECMCO工艺以高级氧化过程为主,对水中硝基苯的去除效率明显增强,同步提高了臭氧传质效率和体系的氧化能力。ECMCO工艺对酒厂废水的生化出水进行深度处理后,水中COD降至50 mg·L−1以下,色度完全脱除,总运行能耗明显低于MCO和MCO+H2O2工艺。针对臭氧工艺在水处理应用中传质效率低、矿化能力差、运行能耗高的问题,ECMCO技术提供了可行的解决方案,有较好的研究价值和应用前景。

English Abstract

  • 臭氧的氧化还原电位(2.07 V)较高,具有较强的氧化、杀菌、消毒等能力,是水处理领域公认的一种绿色氧化剂和消毒剂[1-2]。然而,臭氧氧化技术在工程应用过程中普遍存在臭氧利用率低和能耗高的问题[3]。为提高臭氧氧化功效,可采取以下两方面措施:1)增大气液接触面积,提高臭氧与液相间的传质效率;2)通过臭氧分解产生·OH的方法提高臭氧的反应速率和氧化能力。

    为提高臭氧气液间的传质效率,研究者将多孔疏水膜应用于臭氧传质,开发了新型的膜接触器。多孔疏水膜既可作为气、液两相的分隔界面,又在膜孔处提供丰富的气液接触界面[4-5]。与填充塔、鼓泡塔和射流负压投加器等传统接触工艺相比,膜接触工艺具有以下优点:1)单位体积内气液接触面积可以提高1~2个量级[6];2)气、液两相独立流动,便于控制;3)气相中分子通过扩散方式直接溶于液相,而不是在压力作用下以气泡形式进入液相,避免了液泛、乳液、雾沫夹带等棘手问题;4)可将膜组件作为模块化组合单元,便于工业应用放大[7-8]

    臭氧在废水处理过程中可与有机污染物直接反应。反应主要通过氧化还原、环加成以及亲电取代等途径进行,具有选择性较强、有机污染物矿化效率低等特点。臭氧间接反应通过臭氧的分解产物(如羟基自由基,·OH)进行,具有反应速率快、无选择性和矿化程度高[9-10]等特点。膜接触臭氧氧化(membrane contact ozonation,MCO)工艺以臭氧直接氧化为主,因而存在反应速率慢、矿化效率低的问题。为了在臭氧高效传质的基础上强化臭氧工艺的氧化能力,有必要将臭氧间接反应与MCO工艺耦合,构建新型的膜接触臭氧氧化工艺。

    本研究制备了具有电催化功能的疏水膜,并通过MCO与电化学反应结合构建了膜接触电催化臭氧氧化(electro-catalytic membrane contact ozonation,ECMCO)工艺。电催化疏水膜可将气相中多余的氧气电催化还原为过氧化氢(H2O2);H2O2催化臭氧分解转化为·OH,可明显提升系统的氧化能力。以硝基苯为特征污染物,考察了ECMCO工艺对臭氧难降解污染物的降解效果,明确了高级氧化的反应途径,探究了膜接触传质和电化学反应之间的协同效应。最后,以对酒厂废水的生化出水深度处理为例,评估了ECMCO工艺对实际废水的处理效果,以期为工程应用实践提供参考。

  • 本实验所用主要试剂包括:硫酸钠(AR)、二水合草酸钛钾(AR)、硝基苯(AR)、过氧化氢(30%)、甲醇(HPLC)、乙腈(HPLC)等。以上试剂均购自国药试剂公司。以热压法将多孔碳纤维纸负载于聚四氟乙烯疏水膜表面,制得电催化疏水膜。实验所用酒厂废水生化出水来自某酒厂废水处理站。

  • 硝基苯浓度采用液相色谱法进行检测,液相色谱仪为1260 Infinity(安捷伦),流动相为超纯水和甲醇,流动相比例30∶70,检测波长262 nm,保留时间7 min。过氧化氢浓度采用草酸钛钾显色法进行检测[11]。应用电子自旋共振波谱(ESR)仪对体系中·OH进行定性分析[12]。应用电化学工作站进行伏安特性扫描,表征体系中的电化学反应。

  • ECMCO工艺的设计原理如图1所示。电催化疏水膜将气、液两相分隔,疏水层与气相接触,可作为氧气和臭氧的传输通道,氧气和臭氧通过扩散方式进入液相,传质过程无泡;电催化层与液相接触,并作为电化学反应的阴极。氧气通过疏水层扩散至电催化层,以2电子途径还原为H2O2(反应式(1));H2O2催化扩散至电催化层的臭氧分解转化为·OH(反应式(2));·OH与有机污染物快速反应,实现污染物的高效去除[13-14]

    各组实验中硝基苯初始浓度均为30 mg·L−1,电解质为50 mmol·L−1 Na2SO4溶液,液量为120 mL。臭氧通过臭氧发生器制备,以氧气为气源;臭氧浓度为40 mg·L−1,气相流量为60 mL·min−1。阳极为钛钌板状电极,阴极为电催化疏水膜;阴阳极有效面积均为5 cm × 5 cm,电流强度为25 mA。

    为了考察ECMCO工艺对实际废水的处理效果,对酒厂废水生化出水进行了深度处理。液量为180 mL,臭氧浓度为40 mg·L−1,气相流量为20~80 mL·min−1,槽压为1.9~2.5 V,无电解质添加。COD相对含量为反应过程中某时刻COD与反应前COD之比,其变化表征可反映各工艺对COD的去除效果。

  • 打开电源,关闭臭氧发生器,此时气室内为纯氧气,考察电解作用对硝基苯的去除效果;关闭电源,打开臭氧发生器,此时气室内为氧气和臭氧的混合气体,设定臭氧浓度40 mg·L−1,考察MCO工艺对硝基苯的去除效果;同时打开电源和臭氧发生器,考察ECMCO工艺对硝基苯的去除效果。ECMCO、MCO和电解过程对硝基苯的去除率分别为82.7%、35.6%和26.5%(见图2)。硝基苯与臭氧反应速率较慢,反应速率常数仅为(0.09 ± 0.02) L·(mol·s)−1[15],故臭氧直接氧化对硝基苯的去除效果不佳,MCO工艺对硝基苯去除率较低。电解过程对硝基苯的去除主要为阳极氧化作用,去除率最低。而ECMCO工艺对硝基苯的去除率明显提高,并且超过MCO和电解两者对硝基苯去除率之和,这说明ECMCO工艺处理功效并不是MCO与电解工艺的简单叠加。

    考察了ECMCO工艺体系中H2O2的变化情况,结果如图3所示。当气室中通入氮气时,液相中H2O2含量非常少;当气室中通入氧气时,液相中H2O2浓度急剧升高,可达24.4 mg·L−1。这说明气室中的氧气通过疏水层扩散至电催化层,并以2电子途径还原为H2O2(式(1))。当气室中通入氧气和臭氧的混合气体时,液相中H2O2含量明显下降,并且H2O2浓度随臭氧浓度升高而降低。这说明臭氧已通过电催化疏水膜的疏水层扩散进入液相,并在电催化层内消耗了大量的H2O2。此外,实验还通过ESR检测到了ECMCO体系中·OH的存在(见图4)。以上结果表明,ECMCO工艺中氧气和臭氧已通过电催化疏水膜的疏水层扩散进入电催化层,氧气得电子原位生成H2O2,H2O2催化臭氧分解产生·OH。·OH与硝基苯反应速率较快,反应速率常数为2.2 × 108 L·(mol·s)−1[15],因此ECMCCO工艺对硝基苯的去除效果明显提升。

  • 臭氧传质和臭氧反应紧密相关,相互促进。一方面,液相中臭氧快速反应有利于增大臭氧传质的化学势差,促进臭氧传质;另一方面,高效的臭氧传质可以提高液相中臭氧浓度,提升氧化效果。对比了ECMCO和MCO工艺中臭氧传质速率,结果见图5。MCO工艺在各时间点臭氧传质速率均约为100 mg·(m2·min)−1;ECMCO工艺在各时间点均约为300 mg·(m2·min)−1,约为MCO工艺的3倍。在ECMCO工艺中,电催化层内产生的H2O2与臭氧反应较快,可将液相中臭氧快速分解转化,增大臭氧的传质驱动力,因此ECMCO工艺的臭氧传质速率可以达到MCO工艺的3倍。

    同样,臭氧传质速率的提升,也有利于消耗电催化层内产生的H2O2。当气室内通入氮气,以电势−0.80 V为临界点,相对电势逐渐升高时,几乎无还原电流;相对电势逐渐降低时,开始发生析氢反应。当气室通入纯氧气,电势为−0.37 V时即有较大的还原电流产生,此时氧气以2电子途径原位还原为H2O2(见图6)。当气室通入浓度为40 mg·L−1的臭氧(氧气与臭氧的混合气体),电势为−0.37 V时同样发生了原位产H2O2的反应;随着电势更负,还原电流明显增强。这可能是因为臭氧存在的条件下,电极表面产生的H2O2快速从活性位点脱附,促进了原位产H2O2的电化学过程。

    ECMCO工艺中臭氧传质和臭氧分解转化为·OH的过程相互促进,具有明显的协同效应。这表明臭氧快速分解提高了臭氧传质效率,更多的臭氧扩散进入液相产生了更多了·OH,使得硝基苯的去除率获得明显提升。ECMCO工艺中的协同效应是硝基苯高效降解的主要原因。协同效应可以保证臭氧高效利用,并将其转化为·OH,提升系统的氧化能力。因此,ECMCO技术可以同步提高臭氧工艺的经济性和高效性,具有较好的研究价值和应用前景。

  • 实际废水中有机污染物和无机离子都可能会影响臭氧氧化反应的氧化效果。为了考察ECMCO工艺对实际废水的处理效果,对某酒厂废水的生化出水进行了深度处理,并对比了ECMCO工艺与传统工艺的运行能耗。

    1) 酒厂废水生化出水水质概况。该酒厂原水总COD≤10 000 mg·L−1,色度≤200。目前采用的处理流程为:酒厂混合废水经微滤、调节池后依次通过GF-UASB反应池、A/O反应池和MBR膜池,然后排放。该工艺的出水COD为200 mg·L−1,色度为500,未达到设计出水标准(COD≤50 mg·L−1,色度≤200度)。拟采用ECMCO工艺对该酒厂废水的生化出水进行深度处理,使出水COD和色度达到设计出水标准。

    2) 工艺参数对COD去除的影响。考查了槽压对COD去除的影响(见图7(a)),施加电压为0时,为MCO工艺对COD去除效果,300 min时体系中COD相对含量为0.56。施加电压1.9~2.5 V、反应300 min时COD相对含量明显减少。当槽压为2.3 V时,COD相对含量为0.24,去除效果最佳,可以达到设计出水标准;槽压为1.9 V时,电流强度较小,电催化层内H2O2产量较低,因此体系中产生的·OH量较少,COD去除较少;槽压为2.5 V时,可能发生了较多的析氢反应(图6),导致产H2O2的电流效率较低,COD去除率也较低。

    考查了气相流量对COD去除的影响(见图7(b))。气相流量从20增大到60 mL·min−1时,反应300 min后,COD相对含量逐渐减少。这是由于臭氧浓度的增加增大了臭氧传质驱动力,更多的臭氧通过电催化疏水膜扩散进入液相,分解转化为·OH,体系的氧化能力增强,故COD去除量逐渐升高。当气相流量增大至80 mL·min−1时,COD相对含量与气相流量为60 mL·min−1时无明显变化。这说明臭氧传质可能受到膜内部和液相边界传质阻力的制约,继续增大气相流量并不能提高体系的氧化能力。当槽压为2.3 V,气相流量为60 mL·min−1时,酒厂废水的生化出水在反应120 min时可实现完全脱色,反应300 min时出水COD低于50 mg·L−1,可以达到设计出水标准。

    3)运行能耗对比。为了评估ECMCO工艺的应用前景,将其与MCO工艺进行了运行能耗对比;同时,为了考察气液界面原位产H2O2对体系氧化能力的影响,将其与MCO+H2O2(H2O2为外部投加,而非电化学过程原位产生)工艺也一并进行了对比(见图8)。对比发现,外加H2O2浓度为30 mg·L−1时,COD去除效果最佳;继续增加H2O2投加量,COD去除量无明显变化。因此,MCO+H2O2工艺选定H2O2投加量为30 mg·L−1进行对比。此外,各工艺条件采用气相流量60 mL·min−1,臭氧浓度40 mg·L−1,运行能耗为COD降至50 mg·L−1时的电解能耗和产臭氧能耗。

    MCO工艺运行能耗最高,为245.3 kWh·m−3。MCO工艺以臭氧直接氧化为主,反应速率较慢,具有较强的选择性,同时臭氧传质驱动力较弱,臭氧利用率较低。故将COD降至50 mg·L−1时需要较长的反应时间,臭氧投加量明显高于ECMCO和MCO+H2O2过程。由于产臭氧过程能耗较高,所以MCO工艺需消耗更多的电能。H2O2的投加可以促进液相中臭氧的分解,从而增大臭氧传质驱动力,并将臭氧转化为氧化能力更强的·OH,从而使COD降解速率有较高提升,因而MCO+H2O2工艺对臭氧的能耗明显较少;通过计算同时发现,外加H2O2所需消耗仅为0.3 kWh·m−3。ECMCO工艺中,H2O2可以在气液界面处持续产生,将界面处臭氧快速分解转化为·OH,比外加H2O2方式产生更强的传质驱动力,产生更多的·OH,因此ECMCO工艺的臭氧能耗最低。该工艺的电解过程能耗为4.5 kWh·m−3,是臭氧能耗的8.9%。故ECMCO工艺以较低的电解能耗大大削减了臭氧的能耗,总能耗为55.1 kWh·m−3。ECMCO工艺电解产H2O2所需费用虽然高于MCO+H2O2工艺中外加H2O2的费用,但气液界面处H2O2可以更多地促进臭氧传质,从而提高体系的氧化能力,使总运行能耗低于MCO+H2O2工艺的能耗。

  • 1)与MCO和电解过程相比,ECMCO对硝基苯的去除率大幅提高。氧气和臭氧通过疏水层扩散至电催化层,氧气在电催化层内电催化还原为H2O2。H2O2催化臭氧分解产生·OH,而·OH促进了硝基苯的氧化降解。

    2)电催化层内产生的H2O2可将气液界面处臭氧快速分解,增大臭氧传质驱动力,臭氧传质为传统工艺的3倍。臭氧存在的条件下,电催化产H2O2的还原电流明显增强,可能是因为臭氧消耗部分H2O2,促进了氧气的电化学还原过程。ECMCO工艺中,臭氧传质和电化学还原过程相互促进,并以硝基苯的高级氧化为降解途径,是其氧化能力大大提升的重要原因。

    3) ECMCO工艺对酒厂废水生化出水的深度处理有明显的效果,色度全部脱除,COD降至50 mg·L−1L以下。电化学反应消耗的电能仅为臭氧能耗的8.9%,并未消耗大量能源,并且可以使臭氧用量明显减少,故ECMCO与MCO和MCO+H2O2工艺相比,具有明显的经济性。

参考文献 (15)

返回顶部

目录

/

返回文章
返回