-
垃圾渗滤液是生活垃圾在卫生填埋或堆放过程中,由于垃圾内有机物分解、自身水分、以及落在垃圾上的大气降水所形成的一种高浓度废水。垃圾渗滤液水质受垃圾的组成、填埋时间、地质情况、温度和含水量等多种因素影响而变化[1],但其一般特点是高氨氮(氨氮质量浓度为1 000~3 000 mg·L−1)、低碳氮比(老龄垃圾渗滤液COD/N<0.1),有机物种类多且复杂等。垃圾渗滤液若不经处理或处理不当排放至自然环境中,将严重威胁填埋场区域水、土环境的安全[2]。
目前,垃圾渗滤液处理主要采用物化法与生化法相结合的方式,通过预处理、生化处理、深度处理等系列工序达到排放标准[3-4]。吹脱法脱氨效果稳定、氨去除率高,常被用作垃圾渗滤液预处理工艺[5-6]。但吹脱法亦存在明显的缺点[7-8]:操作过程需要大幅度调节 pH、耗费大量酸碱调节药剂、增加成本;使用石灰药剂产生水垢,增大设备维护难度;吹脱产生气态氨,易造成大气污染等。而生物法因为其操作简单、工艺成本低、脱氮高效稳定等特点,逐渐成为国内外填埋场渗滤液脱氮的核心处理技术。但由于垃圾渗滤液碳氮比低,直接采用传统硝化反硝化脱氮工艺处理时,存在碳源投加量大、运行能耗高、脱氮效率低等问题[9-10]。短程硝化反硝化(PND)工艺是指将硝化过程控制在亚硝态氮阶段,再利用反硝化作用直接将亚硝态氮转化为氮气的过程[11]。与传统硝化反硝化相比,理论上可节约25%的耗氧量和40%的碳源量[12]。尽管一些研究者对短程硝化反硝化处理垃圾渗滤液进行了大量研究,通过控制pH、温度、溶解氧、FNA(游离亚硝酸)、FA(游离氨)、污泥龄等条件[13-18]实现亚硝态氮的积累,但研究多为实验室小试实验,大规模应用研究还鲜见报道。
本研究针对深圳市某垃圾渗滤液处理厂氨吹脱预处理工艺存在的脱氮效果不佳、运行费用较高等实际问题,开展了基于短程硝化反硝化的垃圾渗滤液预处理的中试研究。中试处理水量最高可达200 m3·d−1,相当于小型垃圾渗滤液处理厂规模。由于垃圾渗滤液处理厂大多采用膜生物反应器(MBR)多级硝化反硝化技术,为方便渗滤液处理厂进行技术改造,本研究选用AO-SBR反应器开展中试实验。考察了短程硝化反硝化垃圾渗滤液预处理工艺启动及稳定运行控制的影响因素,解析了典型反应周期氮素平衡关系,探讨了短程硝化反硝化作为垃圾渗滤液预处理工艺的可行性。本研究将为垃圾渗滤液处理厂预处理工艺的升级改造提供实验基础与经验参考。
AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用
Pilot-scale test of partial nitrification-denitrification-based AO-SBR process for landfill leachate pretreatment
-
摘要: 针对某垃圾渗滤液处理厂现有氨吹脱预处理工艺存在的脱氮效果不佳、运行费用高、易产生二次污染等问题,开展了基于短程硝化反硝化的AO-SBR垃圾渗滤液预处理中试研究,考察了反应系统的脱氮效能,分析了氮素的迁移转化途径,计算长期稳定时预处理工艺的主要运行成本。在中试实验中,垃圾渗滤液进水氨氮浓度为1 000~2 500 mg·L−1,控制SBR池pH为 6.5~7.5、DO为 1.0~1.5 mg·L−1,投加甲醇调节进水碳氮比为1.4~2.0,通过FNA抑制实现了短程硝化反硝化中试系统的启动和稳定运行。稳定阶段系统中的亚硝化率为90%以上,氨氮去除率为80%以上,总氮去除率为50%左右。典型周期氮元素平衡分析结果表明,通过短程硝化反硝化途径和硝化反硝化途径去除的总氮负荷分别占据总氮去除负荷的74.8%和13.5%。AO-SBR短程硝化反硝化作为垃圾渗滤液预处理工艺可以满足后续工艺流程进水要求,最终出水达到纳管标准,该垃圾渗滤液预处理工艺运行成本比氨吹脱降低约30%。短程硝化反硝化工艺替代氨吹脱工艺进行垃圾渗滤液预处理具有技术及经济可行性。以上研究结果可为垃圾渗滤液处理厂预处理工艺的升级改造提供技术支持。Abstract: When ammonia stripping is used as pretreatment process of a landfill leachate treatment plant, the problems such as poor denitrification effect, high operation cost and secondary pollution will occur. A pilot study of partial nitrification-denitrification based AO-SBR process for landfill leachate pretreatment was carried out to solve the above problems. Its nitrogen removal efficiency was investigated, the nitrogen migration and transformation path of a typical cycle in the reactor was analyzed, the final effluent water quality and operation costs of pretreatment process were also calculated. The results showed that when the influent ammonia was 1000~2500 mg·L−1, the pH of SBR tank was 6.5~7.5, DO was 1~1.5 mg·L−1, the ratio of carbon to nitrogen was adjusted to 1.4~2.0 by adding methanol, the start-up and stable operation of the partial nitrification-denitrification pilot system were realized. At the stable stage, the nitrification rate of the system reached above 90%, the removal rates of ammonia and total nitrogen were above 80% and around 50%, respectively. The nitrogen balance analysis indicated that 74.8% and 13.5% nitrogen loads were removed by the partial nitrification-denitrification and the complete nitrification-denitrification pathways, respectively. The effluent of partial nitrification-denitrification-based AO-SBR can meet the water inlet requirements of the subsequent processes, and the final water output can meet the pipe receiving standard. The main operating cost of AO-SBR was about 30% less than that of ammonia stripping process. It is technically and economically feasible to pretreat landfill leachate by partial nitrification-denitrification instead of ammonia stripping. This study provides technical support for upgrading the pretreatment process of landfill leachate treatment plant.
-
表 1 典型周期反应器进出水水质情况
Table 1. Water quality of influent and effluent in a typical cycle
mg·L−1 水样 碱度 COD 总氮 氨氮 亚硝态氮 硝态氮 反应器进水 10 023.50 2 486 2 442 2 160.41 0 0 反应器出水 1 006 1 356.42 1 015 269 597 36 表 2 系统各工艺段出水水质
Table 2. Water quality of effluent from each process section of the system
mg·L−1 工艺段名称 COD 氨氮 亚硝态氮 硝态氮 总氮 原水 1 442±536 1 735±426 0 0 1 950±430 AO-SBR 1 759±411 234±106 524±126 15±5 835±210 EGSB 1 145±506 232±110 49±14 5±1 354±152 AO-MBR 837±522 12±7 0 6±4 45±12 NF 65±18 3±2 0 1.5±1 25±9 表 3 AO-SBR与氨吹脱工艺的主要运行费用比较
Table 3. Comparison of main operating costs between AO-SBR and ammonia stripping
工艺 名称 数量 单价 费用/(元·m−3) 费用合计/(元·m−3) AO-SBR 甲醇 1.2 kg·m−3 4元·kg−1 4.800 9.571 电费 5 kWh·m−3 0.732元·(kWh)−1 3.660 人工费 定员1人 4 000元·月−1 1.111 氨吹脱 石灰 18 kg·m−3 0.3元·kg−1 5.400 13.669 98%硫酸 8 kg·m−3 0.3元·kg−1 2.400 电费 6.5 kWh·m−3 0.732元·(kWh)−1 4.758 人工费 定员1人 4 000元·月−1 1.111 -
[1] MORO G D, PRIETO-RODRIGUEZ L, SANCTIS M D, et al. Landfill leachate treatment: Comparison of standalone electrochemical degradation and combined with a novel biofilter[J]. Chemical Engineering Journal, 2016, 288: 87-98. doi: 10.1016/j.cej.2015.11.069 [2] LUO H, ZENG Y, CHENG Y, et al. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment[J]. Science of the Total Environment, 2020, 703: 135468. doi: 10.1016/j.scitotenv.2019.135468 [3] 王凯, 武道吉, 彭永臻, 等. 垃圾渗滤液处理工艺研究及应用现状浅析[J]. 北京工业大学学报, 2018, 44(1): 1-12. [4] MONTUSIEWICZ A, BIS M, PASIECZNA-PATKOWSKA S, et al. Mature landfill leachate utilization using a cost-effective hybrid method[J]. Waste Management, 2018, 76: 652-662. doi: 10.1016/j.wasman.2018.03.012 [5] 刘华, 李静, 孙丽娜, 等. 蒸氨/氨吹脱两级工艺处理高浓度氨氮废水[J]. 中国给水排水, 2013, 29(20): 96-99. [6] 雷芳, 冯新, 熊春晖. 垃圾渗滤液吹脱预处理联合城市污水厂处理生产性研究[J]. 水处理技术, 2018, 44(1): 88-90. [7] HASAR H, UNSAL S A, IPEK U, et al. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 309-317. [8] EI-GOHARY F A, KAMEL G. Characterization and biological treatment of pre-treated landfill leachate[J]. Ecological Engineering, 2016, 94: 268-274. doi: 10.1016/j.ecoleng.2016.05.074 [9] 杜昱, 李洪君, 李大利, 等. 垃圾渗滤液处理亟需解决的问题及发展方向[J]. 中国给水排水, 2015, 31(22): 33-36. [10] GONG L, JUN L, YANG Q, et al. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage[J]. Bioresource Technology, 2012, 119: 277-284. doi: 10.1016/j.biortech.2012.05.067 [11] VOETS J P, VANSTAEN H, VERSTRAETE W. Removal of nitrogen from highly nitrogenous wastewaters[J]. Journal of Water Pollution Control Federation, 1975, 47(2): 394-398. [12] ZHANG Z, ZHANG Y, CHEN Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application[J]. Bioresource Technology, 2020, 298: 122444. doi: 10.1016/j.biortech.2019.122444 [13] TOMASZEWSKI M, CEMA G, ZIEMBINSKA -BUCZYNSKA A. Influence of temperature and pH on the anammox process: A review and meta-analysis[J]. Chemosphere, 2017, 182: 203-214. doi: 10.1016/j.chemosphere.2017.05.003 [14] 赵群英, 赵炎. 低C/N垃圾渗滤液短程硝化最佳DO与温度的研究[J]. 西安工业大学学报, 2014, 34(12): 1002-1006. doi: 10.3969/j.issn.1673-9965.2014.12.012 [15] WANG Z, PENG Y, MIAO L, et al. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate[J]. Bioresource Technology, 2016, 214: 514-519. doi: 10.1016/j.biortech.2016.04.118 [16] 吴莉娜, 史枭, 张杰, 等. UASB1-A/O-UASB2深度处理垃圾渗滤液[J]. 环境科学研究, 2015, 28(8): 1331-1336. [17] DUAN H, GAO S, LI X, et al. Improving wastewater management using free nitrous acid (FNA)[J]. Water Research, 2020: 171.115382. [18] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039 [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025