Processing math: 100%

基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用

丁舒航, 周建民, 张梦瑶, 刘义青, 付永胜. 基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用[J]. 环境工程学报, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113
引用本文: 丁舒航, 周建民, 张梦瑶, 刘义青, 付永胜. 基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用[J]. 环境工程学报, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113
DING Shuhang, ZHOU Jianmin, ZHANG Mengyao, LIU Yiqing, FU Yongsheng. Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113
Citation: DING Shuhang, ZHOU Jianmin, ZHANG Mengyao, LIU Yiqing, FU Yongsheng. Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113

基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用

    作者简介: 丁舒航(1996—),女,硕士研究生。研究方向:水污染控制。E-mail:447452334@qq.com
    通讯作者: 周建民(1980—),男,博士,高级工程师。研究方向:水污染控制。E-mail:245960737@qq.com
  • 基金项目:
    四川省科技厅重点研发项目(2017SZ0175);国家重大科技专项(2018SZDZX0026);中央高校基本科研业务费科技创新项目(2682018CX32)
  • 中图分类号: X703

Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank

    Corresponding author: ZHOU Jianmin, 245960737@qq.com
  • 摘要: 以煤矸石酸浸液为原料,经过钛掺杂、聚合、熟化和浓缩干燥等过程,制备了高效无机高分子混凝剂聚合氯化铝铁钛(PTAFC)。分别考察了钛投加量、pH、聚合温度、聚合时间对PTAFC混凝性能的影响,同时研究了PTAFC对城镇污水处理厂二沉池出水浊度、COD、总磷和氨氮的去除效果,并与聚合氯化铝铁(PAFC)进行了对比。结果表明:在钛铁摩尔比0.3、pH=1.5、聚合温度60 ℃、聚合时间3 h、常温熟化24 h时,所制得的PTAFC性能最佳;在投加量70 mg·L−1、pH=7、反应温度20 ℃、慢速搅拌速度40 r·min−1的混凝条件下,对自配水的浊度、COD和UV254的去除效果最好,去除率分别为99.13%、37.25%和39.9%。PTAFC对城镇污水处理厂二沉池出水的浊度和总磷有极好的去除效果,同时对COD和氨氮有一定去除能力,污染物去除能力明显优于PAFC。上述研究成果对有效减少煤矸石的堆存量、拓宽煤矸石利用渠道,实现混凝剂的低成本、高效率工业化生产和应用具有重要的意义。
  • 随着我国规模化畜禽养殖业的快速发展,畜禽粪便对环境的污染问题日益凸显。目前,畜禽粪便污染物总量已达近40×108 t[1-3],有效处理量不到50%,开展无害资源化处理与合理利用迫在眉睫[4-5]。同时,我国在农业生产过程中产生了大量的农业废弃物—作物秸秆,年产生总量在10.4×108 t,可收集资源量约9×108 t[6],秸秆综合利用率在一些区域较低,缺乏有效的资源化利用手段,导致的随意丢弃或焚烧等问题较为严重[7]

    厌氧消化技术可以将粪便和秸秆等有机废弃物转化为沼气[8],沼气通过提纯净化后可进一步提质为生物天然气[9-11],而发酵残余物可以生产有机肥料[12]。因其具有解决污染、产生可再生能源和促进农业可持续发展等优点,越来越受到重视,已是解决农业面源污染的重要综合防治技术之一,也是农业部门实现“一控、二减、三基本”的重要手段。更重要地是,2016年12月习近平总书记在中央财经领导小组第14次会议中提出“以沼气和生物天然气为主要处理方向解决农业污染和资源化问题”,为解决农业面源污染和沼气工程发展指明了方向。

    传统大中型沼气工程在建设、运营、技术及管理水平上存在较多问题,国家和地方虽然投入大量扶持资金但还成效不明显[13-15]。为此2015年至2017年连续3 a,国家有关部门着手大中型沼气工程的转型升级,鼓励发展日产10 000 m3以上规模化生物天然气(BNG)工程,共支持了64座中央预算内投资计划项目,本项目由此孕育而生。规模化生物天然气项目作为沼气工程的转型升级,体现了国家对农业环保前所未有的支持力度。然而,64座项目进展非常不乐观,至2019年6月,运行及试运行仅22座(约1/3),严重打击了行业发展积极性。究其原因为缺乏盈利模式,而其已成为行业能否持续健康发展的核心推动因素。为此,建设单位高台县方正节能科技服务有限公司在项目建成后整合畜禽污染整县推进战略(高台县畜禽粪污资源化利用项目)和高台县现代农业示范园区绿色生态循环发展(沼液)项目,从全局角度解决县域内的畜禽粪便和秸秆等废弃物,探索治污费和“气-肥并举”联合盈利模式,示范效应明显。

    项目基本方案单位为北京化工大学,联合设计单位为北京金宇蓝天生态能源科技开发有限公司(工艺部分)和农业农村部规划设计研究院(土建部分)。2015年8月列为中央预算内投资计划项目,2015年底启动建设,2017年6月全部建成并开始联合试运行,历时约18个月。随着盈利模式日趋成熟,至2019年中期,项目正式进入良性运行循环轨道。

    项目位于甘肃省张掖市高台县南华镇工业园,祁连山北麓,紧邻兰新高铁线高台站,卫星图见图1。工程设计规模:主发酵容积为4×7 500 m3,日产20 000 m3生物天然气、年产5万t有机肥,占地10万m2(含二期预留区域),总投资1.2×108元。设计原料为畜禽粪污和干玉米秸秆的混合原料,原料基本情况(设计值)见表1,年可消纳处理干秸秆2.52万t、畜禽粪污14万t。收集半径控制在项目周边25 km范围内,覆盖南华镇、骆驼城镇、巷道镇、宣化镇等乡镇。畜禽粪污通过和当地规模化肥牛、猪、羊养殖场签署代消纳处理协议获得,干玉米秸秆采用农牧合作社代购与专业收割公司自行收集结合方式,合作社分布网络见图2

    图 1  项目卫星图
    Figure 1.  Satellite map of the project
    表 1  项目设计原料情况表
    Table 1.  Table of raw materials for the project design
    原料属性原料含水率/%设计用量/(t·d−1)原料干物质TS占总干物质TS比/%设计每t TS产气量/(m3·t−1)年处理/万t
    玉米秸秆自然干107261.83802.52
    畜禽粪污牛、羊、猪鲜粪及污水90*40038.225014
      注:*为到厂鲜粪和污水综合含水率。
     | Show Table
    DownLoad: CSV
    图 2  合作社分布网络
    Figure 2.  Cooperative distribution network

    1)工艺流程简介。工艺流程如图3所示。根据2种原料的物性特点,采用了2条进料路径,其中干秸秆采用皮带+螺旋机械输送,畜禽粪污采用除砂后直接泵送。干秸秆原料因其由纤维素、半纤维素与木质素形成的复杂结构,需要经过一定尺寸程度的粉碎和合适的改性预处理才能改善其厌氧降解性能,同时秸秆混合液体泵送的方式能耗大且易造成设备损坏,因此,秸秆原料采用皮带+螺旋机械输送以别于畜禽粪污的泵送。畜禽粪污厌氧前处理重点在于沉砂除杂,避免泵送过程中的设备损耗与发酵罐内的沉砂积累。

    图 3  工艺流程
    Figure 3.  Process flow

    预处理后秸秆和除砂后的粪污在厌氧发酵罐内进行高浓度联合厌氧消化,此为项目工艺核心,根据物料特性调控发酵控制条件,实现高效降解有机质的目的。厌氧消化后沼渣沼液固液分离后沼渣进入肥料生产线生产有机肥料(标准NY 525-2012),分离后的沼液部分回流进入秸秆预处理环节,多余沼液管输至20 km外的现代农业示范园。沼气少部分锅炉燃烧后提供工艺自身所需热量,主要部分提纯为生物天然气BNG,采用的提纯技术为压力水洗工艺,设计提纯指标达到车用压缩天然气(GB 18074-2017)中规定的组分含量要求。

    项目生产阶段现场图见图4。其中包括畜禽粪污接收、干秸秆预处理、厌氧发酵、肥料生产、沼气贮气/天然气储气、沼气提纯和BNG加气等关键工艺环节。工艺环节中涉及的关键设备和参数见表2

    图 4  生产现场
    Figure 4.  Production work site
    表 2  关键工艺设备与参数
    Table 2.  key process equipment and parameters
    关键工艺环节名称性能或参数说明
    秸秆粉碎、预处理与进料粉碎与预处理设备粉碎处理量8 t·h−1,出料粒径10 mm左右,含输送机、粗切碎机、细粉碎机、粉碎设备除尘器和预处理混料机等
    进料设备进料能力75 t·h−1,含螺旋加料机、斜皮带机、水平螺旋机和入罐螺旋机等
    联合厌氧发酵厌氧发酵罐公称容积7 500 m3,罐外直径30.6 m,竖向14.5 m(含球面顶)。物料水力停留时间HRT:秸秆40 d、粪便20 d
    搅拌设备采用立、侧组合式,立式搅拌选多层、大桨径、三叶CBY长薄叶螺旋桨、低速运行(<22 r·min−1),侧式搅拌选单层、小桨径、折叶桨、高速运行(150~200 r·min−1)。运行频率与时间:立、侧间断运行,2~5 min·h−1
    肥料生产肥料生产线年产5万t,包括条垛翻抛机、配料机、破碎机、筛分机、造粒机、烘干机、冷却机、打包机、热风炉和除尘器等
    贮气与提纯贮气设备贮气柜:干式双膜气柜,公称容积4 000 m3,操作压力1.0 kPa;储气罐:物理容积200 m3,设计压力1.1 MPa
    沼气提纯设备采用压力水洗提纯技术,处理量1 250 Nm3·h−1,含沼气压缩机(排气压1.0~1.2 MPa)、吸收塔(吸收CO2)、闪蒸塔(回收CH4)、解吸塔(解吸CO2)、高压循环水泵(循环吸收液)、制冷系统(提供工艺水降温冷源)和分子筛深脱水装置(产品气露点降至-30 ℃以下)等
     | Show Table
    DownLoad: CSV

    2) 关键工艺技术-干秸秆预处理。秸秆主要由木质素、纤维素和半纤维素组成,三者以多种化学键连接在一起,以木质素-碳水化合物复合体(LCC)的形式存在,很难被厌氧分解,干秸秆尤为明显,选择合适的预处理方式是厌氧发酵前的关键工艺。表3对比了几种预处理技术的优缺点,预处理目的在于改变木质纤维原料中细胞壁的结构,破坏木质素与纤维素、半纤维素之间的化学键联结,把纤维素和半纤维素从木质素的包裹中释放出来;同时,降低纤维素的晶体结构,增大内部反应的表面积,把复杂大分子成分预先降解成小分子等,从而显著提高木质纤维原料的生物降解性能和厌氧生物消化效率。根据项目干秸秆原料情况和对环保、节能的要求,采用了无化学药剂、可利用沼液余热的沼液预处理技术[16],其中的预处理设备通过计量、混合、参数控制实现精确的自动化预处理过程。同时,为了克服沼液预处理生物过程较缓慢的缺点,适当添加N、P、K类无机肥料来增强化学作用,无机肥料具有较强碱性,添加后起到了化学碱性预处理作用,如膨胀纤维结构、去除木质素和降解纤维素氢键等。这种做法可以降低预处理时间、减少预处理空间,添加N源又可克服纯秸秆原料C/N比过高的缺点,并可为后端肥料生产提供了部分养分元素,实现了多重作用的目的。

    表 3  几种秸秆预处理技术对比
    Table 3.  Comparison of several straw pretreatment technologies
    预处理技术化学(酸或碱)物理(汽爆)生物(沼液)青贮
    基本原理化学方法破坏其分子结构高压蒸汽使秸秆内部结构断裂通过沼液中水解酸化微生物实现对结构的破坏通过乳酸菌在厌氧条件下分解秸秆
    原料干秸秆干秸秆干秸秆或青秸秆青秸秆
    优点处理速度快处理速度快利用沼液中对纤维素分解有优势的微生物利用自然微生物
    缺点成本较高,大量使用时存在腐蚀和污染风险高温高压、设备投资高、能耗高需要对时间、温度等工艺条件进行精确控制收集和存储困难,导致原料成本不可控
    备注较适合国内秸秆收集情况较适合国外,如德国应用较多
     | Show Table
    DownLoad: CSV

    3) 关键工艺技术-高浓度联合厌氧发酵。厌氧发酵是沼气及生物天然气工程的核心,高浓度负荷、多原料适应性和优势菌群稳定性是高效发酵的重要表现[17],有利于提高单位原料干物质TS产气率、容积产气率、甲烷浓度以及降低水力停留时间HRT、减少发酵容积及缩减工程造价等。设计发酵温度36~42 ℃,设计进料浓度>12%,罐内发酵浓度8%~10%,属于中温、高浓度发酵。如图5所示,针对2种原料的物性特点,重点控制2方面的联合厌氧发酵因素:罐内物质、温度的均匀化和精确化,发酵液指标、产气性能的稳定化。

    图 5  高浓度联合厌氧发酵控制因素
    Figure 5.  Control factors of high-concentration joint anaerobic fermentation

    4) 关键工艺技术-压力水洗沼气提纯。沼气提纯应用技术有多种,如压力水洗、化学吸收、膜分离、醇胺法等技术,本项目采用了压力水洗沼气提纯技术,主要基于该技术的以下性能优点[18-20]:吸收剂为水,而水可以循环使用,安全环保;采用传统塔器类设备,运行稳定可靠,分离指标高(CH4浓度达到99.7%)且指标稳定性好;对原料沼气中的H2S含量几乎无要求,并可同时去除H2S;低温有利于吸收,低温外界环境条件有利于降低能耗,特别适合高台县所处的高寒地区。

    1) 布局特点。总体布局以实现工艺功能、便于运行维护为目的,围绕4座厌氧发酵罐(核心工艺功能,成组模块化)布置附属工艺区域,包括粉碎与预处理、集粪除砂、固液分离、肥料生产、气体贮存、沼气提纯、沼液存储、公用设施及生活办公等功能区划。布局总体符合《建筑设计防火规范》(GB 50016)要求,危险性大的天然气区域同时执行《石油化工企业设计防火规范》(GB 50160)相关防护要求。针对工艺管道种类复杂的特点,在管道集中区域设计地下综合管廊,将除可燃气体管外的所有工艺性管道及电缆按功能分层敷设于管廊内(图6),这种工艺设计对日常管路线路维修及日后功能升级改造带来了极大的便利。

    图 6  综合工艺管廊截面示意图
    Figure 6.  Cross section of comprehensive process pipes

    2) 寒冷区域考虑。高台县位于西北河西走廊中部,低温期长、极端低温可达-30 ℃,低温特别容易发生发酵罐热损失大、产气效率下降、所产沼气大量自用等工艺问题,这给冬季沼气工程的运行带了巨大挑战。这也是我国很多北方寒冷地区,如东北西北内蒙,对大型沼气工程持否定态度的重要原因。为了克服这一关键工程技术问题,通过工艺运行和工程设计2种手段综合达到工艺节能的目的。

    秸秆预处理采用固液分离后沼液,沼液先储存在具有保温功能的池体内,利用了发酵液的余热和预处理过程中自行产生的热量;冬季原料以秸秆为主,避免进入大量粪污而导致的进罐低温源,秸秆水力停留时间HRT长,每日出料体积小、带出热量少。

    采用特大型罐体(国内首座罐侧钢砼+罐顶钢结构特大型发酵罐体)降低比表面积,罐体底部增加抗压保温层;采用罐外加热与罐内增温2套温升系统精确保证罐内恒温,防止任一系统出现故障。

    自2017年6月试生产以来,工程未有大的设备更换或调整,关键设备如进料输送、搅拌、提纯和肥料等均一次性调试成功并稳定运行。夏秋季节以处理畜禽粪污为主,干秸秆为辅;冬春寒冷期则以干秸秆为主,畜禽粪污为辅。根据现场操作经验,最冷季节单罐每日温降最大不超过0.2 ℃(未进出料情况下),未出现因不能维持温度而导致的停产,表现出较好的工程设计和施工效果。根据产品后端市场需求的波动,投料量(直接影响BNG产品量)和肥料加工量需随之进行调整,加上季节性原料因素,厌氧发酵罐产气波动很大,单罐每年日产量为3 000~8 000 Nm3。进料浓度最低TS负荷为4%(粪污),最高TS负荷为15%(干秸秆),发酵罐2 a来未发生罐顶结壳、罐底集砂、pH异常等不利现象,表现出优异的系统稳定性。

    如引言所述现状,缺乏盈利模式是影响规模化生物天然气行业健康发展的关键性因素。为此,本项目自2018年起积极探索符合区域特点的盈利模式,总结为粪污治理费+气(BNG)-肥并举的综合盈利模式(表4,其中产品品质见表中检测数据),通过粪污治理费和BNG产品维持项目的运行成本,盈利部分则完全依赖肥料产品的深挖掘。根据建设单位近1年来粪污治理费到厂20元·t−1(按4%TS)、车用BNG(自有加气站)3.5~4.0元·Nm−3和固态有机肥销售价1 000~1 500元·t−1的销售情况,年产值达到3 300万元。考虑原料、电耗、人工和折旧等成本后,年运行综合平均成本:BNG 2.5~3.0元·Nm−3和固态有机肥600~800元·t−1。项目正式步入良性盈利循环轨道,并且二期工程也正在开展中。

    表 4  盈利运行模式
    Table 4.  Profitable operation mode
    项目主收入项主要特征产品说明盈利出发点
    原料端治污费畜禽粪污(按4%TS)到厂处理费用(粪污治理费)维持运营
    产品端车用BNGCH4为99.7%;CO2为0.3%;H2S为0%执行标准GB 18074-2017,瓶组运输至加气站或集中居民社区+管输至附近用气企业(图7)
    固态有机肥有机质质量分数为64%;总养分(N+P2O5+K2O)为5.9%;水分为16%执行标准NY 525-2012,根据地方蔬菜等植物需求,配合生产专用有机肥料,参与有机肥替代化肥政府性采购增加效益
    液态有机肥有机质质量分数为0.7%;总氮N为0.2%;磷P2O5为0.1%;钾K2O为0.2%将沼液管输至现代农业示范园,管输距离20 km,沼液接入点37处(图8)
     | Show Table
    DownLoad: CSV
    图 7  生物天然气销售网络
    Figure 7.  Sale network of BNG
    图 8  沼液管输网络
    Figure 8.  Pipeline network of biogas liquid

    1)回流沼液+无机肥料对干秸秆进行预处理结合了生物和化学预处理的特点,其能在快速高效预处理干秸秆的同时增加后续肥料生产所需的养分。高浓度联合厌氧发酵控制的关键因素在于罐内物质、温度的均匀化、精确化和发酵液指标、产气性能的稳定化。

    2)针对原料波动,根据秸秆/粪污物性特点设计2路进料通道是非常有必要的。在寒冷区域实施工程时,工艺方案考虑季节性调节主/辅原料、多回流沼液利用余热、增加水力停留时间等节能性措施。工程设计角度,考虑加强罐底保温和设计罐内/罐外2套温升系统。

    3)生物天然气工程作为沼气工程的规模化转型升级版本,建立符合地域特点的良性循环盈利模式是项目及行业成败关键。实践证明,“粪污治理费+气-肥并举”的综合盈利模式是可参考的,生物天然气工程不应止步于早期设想和规划,应在工艺功能首先能正常运行的基础上,从污染处理环保角度和生态循环经济角度积极参与公益性社会竞争。

  • 图 1  煤矸石的XRD图谱

    Figure 1.  XRD pattern of coal gangue

    图 2  PTAFC制备工艺流程

    Figure 2.  PTAFC preparation process flow

    图 3  钛铁摩尔比对浊度、UV254、COD去除率和PTAFC碱化度的影响

    Figure 3.  Effect of molar ratio of Ti to Fe on turbidity, UV254, COD removal rates and the basicity of PTAFC

    图 4  pH对浊度、UV254、COD去除率和PTAFC碱化度的影响

    Figure 4.  Effect of pH on the turbidity, UV254, COD removal rates and the basicity of PTAFC

    图 5  聚合温度对浊度、UV254、COD去除率和PTAFC碱化度的影响

    Figure 5.  Effect of polymerization temperature on turbidity, UV254, COD removal rates and the basicity of PTAFC

    图 6  聚合时间对浊度、UV254、COD去除率和PTAFC碱化度的影响

    Figure 6.  Effect of Polymerization time on turbidity, UV254, COD removal rates and the basicity of PTAFC

    图 7  PTAFC、PAFC投加量对混凝效果和Zeta电位的影响

    Figure 7.  Effect of PTAFC、PAFC dosage on coagulation performance and Zeta potential

    图 8  初始pH对PTAFC、PAFC混凝效果和Zeta电位的影响

    Figure 8.  Effect of initial pH on coagulation performance and Zeta potential of PTAFC and PAFC

    图 9  沉降时间对PTAFC和PAFC混凝效果的影响

    Figure 9.  Effect of settling time on the coagulation performance of PTAFC and PAFC

    图 10  搅拌速度对PAFC、PTAFC混凝效果的影响

    Figure 10.  Effect of stirring speed on the coagulation performance of PAFC and PTAFC

    图 11  不同慢搅速度对絮体再生的影响

    Figure 11.  Effect of different slow stirring speeds on floc regeneration

    图 12  反应温度对PTAFC混凝效果的影响

    Figure 12.  Effect of reaction temperature on the coagulation performance of PTAFC

    表 1  PAFC和PTAFC对二沉池出水的处理效果的对比

    Table 1.  Comparison of the treatment effect of effluent from secondary sedimentation tank between PAFC and PTAFC

    样品余浊/NTU剩余COD/(mg·L−1)COD去除率/%剩余氨氮/(mg·L−1)氨氮去除率/%剩余总磷/(mg·L−1)总磷去除率/%
    PAFC0.862.2137.0011.1311.030.4256.3
    PTAFC0.248.8150.579.3825.020.1386.5
    样品余浊/NTU剩余COD/(mg·L−1)COD去除率/%剩余氨氮/(mg·L−1)氨氮去除率/%剩余总磷/(mg·L−1)总磷去除率/%
    PAFC0.862.2137.0011.1311.030.4256.3
    PTAFC0.248.8150.579.3825.020.1386.5
    下载: 导出CSV
  • [1] CHENG W P, CHI F H. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method[J]. Water Research, 2002, 36(18): 4583-4591. doi: 10.1016/S0043-1354(02)00189-6
    [2] BELL-AJY K, ABBASZADEGAN M, IBRAHIM E, et al. Conventional and optimized coagulation for NOM removal[J]. American Water Works Association, 2000, 92(10): 44-58. doi: 10.1002/j.1551-8833.2000.tb09023.x
    [3] EDZWALD J K, TOBIASON J E. Enhanced coagulation: US requirements and a broader view[J]. Water Science & Technology, 1999, 40(9): 63-70.
    [4] 黄鑫. 聚合钛盐混凝剂的研究[D]. 济南: 山东大学, 2017.
    [5] OKOUR Y, SHON H K, EL S I. Characterisation of titanium tetrachloride and titanium sulfate flocculation in wastewater treatment[J]. Water Science & Technology, 2009, 59(12): 2463.
    [6] ZHAO Y, GAO B Y, SHON H, et al. Floc characteristics of titanium tetrachloride(TiCl4) compared with aluminum and iron salts in humic acid-kaolin synthetic water treatment[J]. Separation and Purification Technology, 2011, 81: 332-338. doi: 10.1016/j.seppur.2011.07.041
    [7] GAO B Y, LIX X, WANG M, et al. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment[J]. Water Research, 2011, 45(18): 6181-6188. doi: 10.1016/j.watres.2011.09.019
    [8] CHENG W P. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution[J]. Chemosphere, 2002, 47(9): 963-969. doi: 10.1016/S0045-6535(02)00052-8
    [9] 王世林, 牛文静, 张攀, 等. 煤矸石的研究现状与应用[J]. 江西化工, 2019(5): 69-71. doi: 10.3969/j.issn.1008-3103.2019.05.024
    [10] 王鹏涛. 煤矸石综合利用的现状及存在的问题研究[J]. 科学技术创新, 2019(16): 182-183. doi: 10.3969/j.issn.1673-1328.2019.16.115
    [11] 杨喜, 崔慧霞, 郭彦霞, 等. 煤矸石中的铝、铁在高浓度盐酸中的浸出行为[J]. 环境工程学报, 2014, 8(8): 3403-3408.
    [12] CHENG F, CUI L, MILLER J, et al. Aluminum leaching from calcined coal waste using hydrochloric acid solution[J]. Mineral Processing & Extractive Metallurgy Review, 2012, 33(6): 391-403.
    [13] 张琼. 黄磷炉渣制取无机高分子聚硅酸铝铁絮凝剂的研究[D]. 昆明: 昆明理工大学, 2014.
    [14] 喻苗. 不同碱化度聚合氯化铝(PAC)混凝剂对富藻水体混凝去除效果的研究[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集(第二卷). 2017: 796-806.
    [15] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002.
    [16] 章兴华, 黄大志. 氟盐遮蔽中合法测定聚合氯化铝铁碱化度[J]. 贵州化工, 1999, 2(6): 31-33.
    [17] 刘海龙, 赵霞, 焦茹媛, 等. 聚合铝的水解形态对混凝过程中磷分布转化的影响[J]. 环境科学, 2011, 32(1): 102-107.
    [18] 柯水洲, 涂家勇, 朱佳, 等. 聚合铝水解形态对混凝效果及絮体特性的影响[J]. 环境工程学报, 2017, 11(2): 733-738. doi: 10.12030/j.cjee.201509139
    [19] CHEKLI L, ERIPRET C, PARK S H, et al. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC)compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal tubid water[J]. Separation & Purification Technology, 2017, 175: 99-106.
    [20] ZHAO Y X, GAO B Y, CAO B C, et al. Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment[J]. Chemical Engineering Jounal, 2011, 166(2): 544-550.
    [21] 高廷耀, 顾国维, 周琪. 水污染控制工程[M]. 北京: 高等教育出版社, 2006.
    [22] 徐红波, 孙挺, 姜效军. 碳酸钙和氢氧化铁共沉淀脱除碱性蚀刻液中铅砷[J]. 冶金分析, 2007(12): 46-49. doi: 10.3969/j.issn.1000-7571.2007.12.011
    [23] 康黛男. 聚合氯化铝铁絮凝剂的研制及其在废水处理中的应用[D]. 西安: 长安大学, 2008.
    [24] 马秋利, 杨浩. 化学反应速率及平衡原理应用[J]. 中学化学教学参考, 2019(20): 67-68.
    [25] 柴彬. 聚合氯化铝制备条件优化与应用研究[D]. 成都: 西南交通大学, 2017.
    [26] 劳德平. 粉煤灰与氧化铁皮制备复合型混凝剂及混凝性能研究[D]. 北京: 北京科技大学, 2019.
    [27] 于兴海. 聚硅酸钛助凝剂温控优化制备及在低温水处理中的应用[D]. 西安: 西安建筑科技大学, 2017.
    [28] 司玉成. 利用煤泥制备聚合氯化铝铁絮凝剂的试验研究[J]. 化学工程师, 2017, 31(4): 67-70.
    [29] 冯欣蕊. PAC-PDMDAAC杂化絮凝剂的制备、表征及絮凝性能研究[D]. 重庆: 重庆大学, 2014.
    [30] 李柏林, 梁亚楠, 张程琛, 等. 粉煤灰-铝土矿改性制备铝铁复合混凝剂的除磷性能及混凝机理研究[J]. 环境科学学报, 2016, 36(7): 2503-2511.
    [31] GAO B Y, CHU Q Y, YUE B J, et al. Characterization and coagulation of a polyaluminum chloride (PACl) coagulant with high Al13 content[J]. Journal of Environmental Planning and Management, 2005, 76(2): 143-147.
    [32] 高宝玉, 岳钦艳, 李振东, 等. 聚硅氯化铝混凝剂的形态及带电特性研究[J]. 环境科学, 1998, 19(3): 48-51.
    [33] 赵艳侠. 钛盐混凝剂的混凝行为、作用机制、絮体特性和污泥回用研究[D]. 济南: 山东大学, 2014.
    [34] 俞文正, 杨艳玲, 卢伟, 等. 低温条件下絮体破碎再絮凝去除水中颗粒的研究[J]. 环境科学学报, 2009, 29(4): 791-796. doi: 10.3321/j.issn:0253-2468.2009.04.018
    [35] HUANG X, SUN S L, GAO B Y, et al. Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment[J]. Journal of Environmental Sciences, 2015, 30(4): 215-222.
    [36] ISTV'AN L. On the type of bond developing between the aluminum and iron(Ⅲ) hydroxide and organic substances[J]. Water Science and Technology, 1993, 27(11): 242-252.
    [37] 罗国兵. 水体化学需氧量的检测方法[J]. 岩矿测试, 2013, 32(6): 860-874. doi: 10.3969/j.issn.0254-5357.2013.06.004
    [38] 王珊, 张克峰, 任杰, 等. 钛盐在水处理中的应用及其污泥回用研究进展[J]. 水处理技术, 2019, 45(3): 8-13.
    [39] 刘娟, 何明礼, 刘庆斌. 聚硅硫酸钛铁的特性及对乳化油的混凝性能研究[J]. 湖北理工学院学报, 2013, 29(5): 29-33. doi: 10.3969/j.issn.2095-4565.2013.05.009
    [40] 童祯恭. 给水处理工程中的强化混凝技术[J]. 华东交通大学学报, 2004, 21(1): 12-16. doi: 10.3969/j.issn.1005-0523.2004.01.003
    [41] AUVRAY F, VAN HULLEBUSCH E D, DELUCHAT V, et al. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium[J]. Water Research, 2006, 40(14): 2713-2719. doi: 10.1016/j.watres.2006.04.042
  • 加载中
图( 12) 表( 1)
计量
  • 文章访问数:  5926
  • HTML全文浏览数:  5926
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-21
  • 录用日期:  2020-04-07
  • 刊出日期:  2021-01-10
丁舒航, 周建民, 张梦瑶, 刘义青, 付永胜. 基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用[J]. 环境工程学报, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113
引用本文: 丁舒航, 周建民, 张梦瑶, 刘义青, 付永胜. 基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用[J]. 环境工程学报, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113
DING Shuhang, ZHOU Jianmin, ZHANG Mengyao, LIU Yiqing, FU Yongsheng. Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113
Citation: DING Shuhang, ZHOU Jianmin, ZHANG Mengyao, LIU Yiqing, FU Yongsheng. Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 43-56. doi: 10.12030/j.cjee.202002113

基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用

    通讯作者: 周建民(1980—),男,博士,高级工程师。研究方向:水污染控制。E-mail:245960737@qq.com
    作者简介: 丁舒航(1996—),女,硕士研究生。研究方向:水污染控制。E-mail:447452334@qq.com
  • 西南交通大学地球科学与环境工程学院,成都 611756
基金项目:
四川省科技厅重点研发项目(2017SZ0175);国家重大科技专项(2018SZDZX0026);中央高校基本科研业务费科技创新项目(2682018CX32)

摘要: 以煤矸石酸浸液为原料,经过钛掺杂、聚合、熟化和浓缩干燥等过程,制备了高效无机高分子混凝剂聚合氯化铝铁钛(PTAFC)。分别考察了钛投加量、pH、聚合温度、聚合时间对PTAFC混凝性能的影响,同时研究了PTAFC对城镇污水处理厂二沉池出水浊度、COD、总磷和氨氮的去除效果,并与聚合氯化铝铁(PAFC)进行了对比。结果表明:在钛铁摩尔比0.3、pH=1.5、聚合温度60 ℃、聚合时间3 h、常温熟化24 h时,所制得的PTAFC性能最佳;在投加量70 mg·L−1、pH=7、反应温度20 ℃、慢速搅拌速度40 r·min−1的混凝条件下,对自配水的浊度、COD和UV254的去除效果最好,去除率分别为99.13%、37.25%和39.9%。PTAFC对城镇污水处理厂二沉池出水的浊度和总磷有极好的去除效果,同时对COD和氨氮有一定去除能力,污染物去除能力明显优于PAFC。上述研究成果对有效减少煤矸石的堆存量、拓宽煤矸石利用渠道,实现混凝剂的低成本、高效率工业化生产和应用具有重要的意义。

English Abstract

  • 混凝/絮凝是去除水中悬浮物常用的水处理方法。19世纪末,人类就开始使用含铝混凝剂进行水质净化,但对于铝可能对人类健康和环境造成的不利影响却一直存在争议[1]。为避免残余铝潜在的生物毒性,铁混凝剂越来越多地被开发和应用,铁混凝剂对溶解有机碳(DOC)的去除率高于铝混凝剂,对人类健康的不利影响较小[2]。但使用铝、铁混凝剂在混凝-絮凝过程中会产生大量的污泥,增加后续污泥处理成本[3]。近年来,钛盐因其具有绿色、低毒、高效的特点,在水处理上的应用及研究发展迅速[4],利用钛盐制备混凝剂也成为水处理药剂的研究热点之一。据报道[5-6],钛盐混凝剂水解迅速,在处理低温低浊度水方面表现出比铁盐、铝盐混凝剂更好的混凝效果和对污染物的去除能力。但对于在混凝过程中的传统钛盐混凝剂,钛水解导致大量的H+释放,导致处理水样pH过低,从而需要增加碱的投加量。有研究[7-8]表明,传统钛混凝剂引起水样pH降低的问题可以通过聚钛混凝来解决。聚钛混凝剂通过预水解的方式,使钛离子在制备过程中将H+释放,进而使其在混凝过程中对水样pH的影响降到最低。此外,聚钛混凝剂在有机物去除和对pH的依赖性方面也比传统钛混凝剂更佳。

    煤矸石是采煤和洗煤过程中排放的固体废物。在我国,煤矸石已成为一种排出量和储存量最大的工业废弃物[9],且煤矸石在放置过程中易被风化,能够产生大量有毒物质及有害气体,对人体、生态都造成极大的危害[10]。煤矸石既是固体废物,也是难得的矿物资源,其富含Al2O3、Fe2O3、CaO和MgO等金属氧化物,以煤矸石为原料来制备含铝、铁等产品是煤矸石资源化利用的一个重要途径[11-12]

    国内外关于无机高分子混凝剂的研究较多,但如何降低混凝剂的成本、提高混凝效率并解决原料不足的问题依然是目前研究的热点。煤矸石作为一种含有益矿物的资源型矿物,以其为原料制备的混凝剂已有大量研究和应用,但以煤矸石为原料制备钛掺杂聚合氯化铝铁还鲜有报道。本研究在煤矸石制备聚合氯化铝铁的基础上进行钛掺杂的尝试,研究了制备条件对混凝性能的影响规律,确定了聚合氯化铝铁钛(PTAFC)的最佳制备条件,并将其应用到城镇污水处理厂中二沉池出水的深度处理研究,以期为有效减少煤矸石的堆存量、拓宽煤矸石利用渠道并实现聚钛混凝剂的低成本、高效率工业化生产及应用提供参考。

  • 本实验煤矸石取自宜宾市鲁班山北矿矸石山,主要化学成分为SiO2、Al2O3、Fe2O3、CaO和TiO2,相对含量分别为43.97%、18.43%、14.75%、12.11%和4.45%,主要矿相为石英、高岭土、方解石和高蒙混层(图1)。

    在进行煤矸石酸浸液的制备时,将160目的煤矸石粉末在马弗炉中于800 ℃焙烧2 h,自然冷却后,设置盐酸浓度为8 mol·L−1,按固液比为1∶7于100 ℃的恒温水浴锅搅拌反应3 h后取出,离心取上清液得到煤矸石酸浸液,其主要化学成分为Al2O3、Fe2O3、CaO和TiO2,相对含量分别为1.27%、1.54%、0.046%和0.008%。主要实验试剂有盐酸、硫酸、氧化钙、高岭土、四氯化钛等,除高岭土外,试剂均为分析纯。

    实验所用主要仪器设备有SHJ-A4恒温磁力搅拌水浴锅、101-3AB型电热鼓风干燥箱、FA224电子天平、UpHW-IV-90T优普系列超纯水器、XA-2固体样品粉碎机、TD-420台式低速离心机、JC-101W微波消解仪、WFZ UV-4802H型紫外可见分光光度计、SGZ-1A数显浊度仪、JJ-4六联数显电动搅拌器、smartlab 9kw X射线衍射仪、PANalytical Epsilon 3XLE能量色散X射线荧光光谱仪、Zetasizer3000HSa型Zeta电位分析仪和Mastersizer2000型激光粒度仪等。

  • 影响无机高分子混凝剂混凝性能的制备条件很多,如聚合温度、聚合时间、搅拌方式、搅拌速度、pH、原料配比、混凝剂种类、熟化温度、熟化时间、碱化度等[13]。碱化度是影响以预水解方式制备出来的混凝剂混凝效果的一个重要因素,碱化度的大小影响混凝剂的聚合度。有研究[14]表明,混凝剂的碱化度有其最佳的范围,其他制备条件对碱化度的影响将直接影响到混凝剂的聚合度。其中,pH、原料配比、聚合时间、聚合温度对碱化度的影响较大,因此,本研究选pH、钛铁摩尔比、聚合时间、聚合温度为制备的影响因子,考察其对PTAFC混凝效果的影响规律。由于所用的煤矸石中钛含量不高,且钛的溶出条件较为苛刻,因此,需要补充钛源以考察钛铁摩尔比对混凝性能的影响。

    以煤矸石为原料制备聚合氯化铝铁钛的过程主要包括酸浸、钛掺杂、调节pH、聚合、熟化、浓缩干燥等。具体工艺流程如图2所示。

    首先根据预先设定的钛铁摩尔比(0.1、0.3、0.5、0.7、0.9、1.1、1.3、1.5),用移液管吸取20 mL最佳条件制得的酸浸液,移入烧杯,置于低温磁力搅拌水浴锅冰水浴中,加入四氯化钛,加盖表面皿,搅拌至四氯化钛完全溶解;接着根据预先设定的初始pH (0.5、1、1.5、2、2.5、3、3.5、4),用氧化钙对钛掺杂后的酸浸液进行pH调节;将其置于适宜的聚合温度(30、40、50、60、70、80、90、100 ℃)下,持续搅拌一定时间(1、2、3、4、5、6、7、8 h)后取出,常温熟化24 h,即制备出聚合氯化铝铁钛PTAFC。

  • 影响混凝剂混凝效果的因素除混凝剂本身的性质外,还有操作条件和环境因子,如投加量、pH、混凝时间、反应温度和搅拌速度等。为了考察环境因子和操作条件对混凝剂混凝效果的影响,本实验采用最佳制备工况下制备的PTAFC及市购PAFC,选择对混凝过程影响较大的投加量、pH、沉淀时间、反应温度和搅拌速度等因素,分别研究其对混凝效果的影响。

    在进行自配水混凝实验时,采用去离子水、高岭土、邻苯二甲酸氢钾配制成COD为500 mg·L−1、UV254 为2.738、浊度为100 NTU的原水。在150 mL原水加入10、30、50、70、90、110、130、150 mg·L−1的混凝剂,使用0.1 mol·L−1氢氧化钠溶液和盐酸溶液调节pH至5、6、7、8、9、10,使用六联数显电动搅拌器在温度为10、20、30 ℃的条件下,快搅(300 r·min−1) 1 min,中搅(150 r·min−1)3 min,慢搅(0、40、50、70、90、110、130、150 r·min−1) 8 min,取出搅拌桨。静置沉降0.25、0.5、1、3、5、10、15、30 min后,使用虹吸法吸取上清液(液面下1~2 cm处),分析其浊度、COD和UV254

    取实际污水对PTAFC的性能进行验证,并与市购传统聚合氯化铝铁(PAFC)进行对比。所取水样为四川省德阳广汉某镇污水处理厂二沉池出水,水样显轻微黄色,无味,浊度为7.8 NTU、氨氮为12.51 mg·L−1、COD为98.75 mg·L−1、总磷为0.96 mg·L−1,分别在PAFC、PTAFC的最佳混凝条件下进行效果对比,具体混凝操作同自配水混凝实验。

  • 本研究中主要的检测指标为浊度、UV254、COD、氨氮和总磷,检测方法参考文献中的方法[15]。浊度测定采用SGZ-1A数显浊度仪;采用WFZ UV-4802H型紫外可见分光光度计测定UV254,将混凝出水经过0.45 µm的滤膜过滤后,测定其在254 nm处的吸光度;采用重铬酸钾法测定COD;采用纳氏试剂分光光度法测定氨氮;采用过硫酸钾消解-钼锑抗分光光度法测定总磷;采用smartlab 9 kW X射线衍射仪分析煤矸石物相;采用PANalytical Epsilon 3XLE能量色散射线荧光光谱仪分析煤矸石化学成分;采用Zetasizer3000HSa型Zeta电位分析仪测定原水及出水水样中的絮体Zeta电位;采用Mastersizer2000型激光粒度仪监测混凝动态过程。

    酸浸液中各金属离子的检测方法参考《高岭土及其试验方法》(GB/T 14563~14565-1993)。Fe2O3、Al2O3和CaO的测定采用络合滴定法,采用分光光度法测定TiO2;采用氟盐遮蔽中和法[16]测定碱化度。

  • 钛铁摩尔比对PTAFC的碱化度和污染物去除性能的影响如图3所示。可以看出,PTAFC对浊度、UV254、COD的去除率在开始时随着钛铁摩尔比的升高而升高,在钛铁摩尔比为0.3时,浊度去除率最高达98.67%,碱化度为71.36%,UV254去除率为23.05%,COD去除率为25.15%。之后随着Ti∶Fe(摩尔比)的升高,浊度去除率逐渐下降。因为随着PTAFC中Ti(Ⅳ)浓度的升高,反应体系中形成更多中高聚合度的钛配合物,从而使PTAFC 具有一定的链网状结构,提高了混凝过程中架桥与网捕作用。当继续增加钛铁摩尔比时,混凝效果降低,一方面,如果钛离子含量过高,其较强的水解性导致水体pH降低,不利于混凝[17];另一方面,随着钛铁摩尔比的增加,在反应体系中Ti(Ⅳ)含量逐渐增加,Al(Ⅲ)、Fe(Ⅲ)含量相对减少,Ti(Ⅳ)水解同Al(Ⅲ)、Fe(Ⅲ)水解存在对OH的竞争作用。由于钛元素价态高于铝、铁的价态,Ti(Ⅳ)对OH竞争作用强于Al(Ⅲ)、Fe(Ⅲ),Ti(Ⅳ)水解形态倾向于中高聚合度的钛配合物,而Al(Ⅲ)、Fe(Ⅲ)水解形态倾向于自由离子、单体和初聚物[18],抑制了水解聚合物之间的协同作用,故钛含量过高反而造成混凝效果降低。因此,确定最佳钛铁摩尔比为0.3。

  • 聚合pH对PTAFC的碱化度和污染物去除性能的影响如图4所示。由图4(a)~图4(c)可知,pH对浊度、UV254、COD的去除率皆先上升后下降。随着pH的升高,样品的碱化度也逐渐升高(图4(d))。在pH=1.5时,去除效果最佳,浊度、UV254和COD的去除率分别为99.51%、31.90%和36.02%。铝、铁化合物在体系中水解聚合主要有3种形态:Al-Fea(快速络合的自由离子、单体和初聚物)、Al-Feb(慢速络合的低聚和中等聚合物)、Al-Fec(高聚物和溶胶态)。随着碱化度的增加,Al-Fea含量逐渐减少而Al-Fec含量逐渐增加,Al-Fea单位正电荷高,电中和能力强,但架桥能力弱;Al-Feb具有良好的吸附、电中和与架桥能力;Al-Fec正电性较弱、粒度大、易于沉淀,且具有良好的吸附架桥和沉淀能力[18]。有研究[19]表明,Alb、Alc对浊度的去除效果优于Ala。随着碱化度的提高,Ti(Ⅳ)由单体状态逐渐向聚合态转化,但部分高聚合度钛羟基聚合物不稳定,容易分解[20]。所以在碱化度较低时,Ti(Ⅳ)化合物水解产物聚合度低,吸附架桥能力弱;随着碱化度的增加,Ti(Ⅳ)化合物水解可形成大量多核钛羟基聚合物,具有极强电中和、吸附架桥和网捕卷扫能力,对水体中污染物进行电中和、吸附架桥与网捕卷扫作用,从而使污染物脱稳形成沉淀,达到去除水体中污染物的目的[21]。Fe(OH)3开始沉淀和完全沉淀的pH分别为1.14和3.0,Al(OH)3开始沉淀和完全沉淀的pH分别为3.0和4.7[22]。当碱化度过大时,Ti(Ⅳ)水解化合物形成的高聚合度钛羟基聚合物稳定性降低而容易分解,铁和铝随着碱化度升高而形成的不能聚合的氢氧化物(Fe(OH)3、A1(OH)3)沉淀,使PTAFC混凝性能降低。因此,确定PTAFC制备的最佳pH为1.5。

  • 聚合反应温度对PTAFC的碱化度和混凝性能的影响如图5所示。聚合反应为吸热反应,由化学平衡原理[15]可知,提高温度有利于聚合反应的进行。由图5(a)~图5(c)可知,随着反应温度的升高,PTAFC对浊度、UV254和COD去除率逐渐增加,当聚合温度为60 ℃时,碱化度为76.20%,浊度、UV254和COD的去除率达到最高,分别为98.71%、29.28%、33.68%。继续升高反应温度,浊度去除率开始逐渐降低。这是由于金属离子的水解反应为吸热反应,适当地升高反应温度,一方面可以加速水解过程,另一方面可促进反应体系朝着深层水解方向进行,从而使金属离子配合物中羟基增多,形成高聚合度羟基配合物,样品的碱化度增加(图5(d)),进而有利于污染物的去除。当温度高于60 ℃时,由于反应温度过高,Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)形成的高聚合度羟基配合物的相对稳定性有所降低,分解速率加快,羟基配合物羟基数量减少,聚合度降低[21-24],从而使PTAFC的吸附架桥、网捕卷扫效果降低,不利于颗粒间凝聚。由此确定最佳聚合温度为60 ℃。

  • 聚合时间对PTAFC的碱化度和污染物去除性能的影响如图6所示。在1~3 h内,随着反应时间的增长,PTAFC对浊度、COD和UV254的去除率均缓慢增大。当聚合时间为3 h时,浊度、COD和UV254的去除率最大,分别达到99.13%、37.25%和39.9%(图6(a)~图6(c))。随聚合时间进一步增加,浊度的去除率开始逐渐降低。这是因为聚合反应是吸热反应,在反应刚开始时,Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)不能从外界吸收足够的热量水解,此时样品的聚合度不高,反应体系中以单体和低聚体为主,聚合链较短,架桥能力较弱;随着反应时间的增长,外界提供的热量促进聚合反应向聚合的方向进行[25],样品的碱化度增加,低聚物逐渐向中聚和高聚物转变,聚合链增长,吸附架桥能力强,浊度去除率上升。当时间继续增长时,高聚合度羟基配合物会因为搅拌时间过长而断链,从而影响混凝效果[26]。因此,确定最佳聚合反应时间为3 h。

    综上所述,煤矸石制备PTAFC最佳工况为Ti∶Fe(摩尔比)=0.3、pH=1.5、聚合温度60 ℃、聚合时间3 h,在此条件下制备的PTAFC对浊度、COD和UV254的去除率分别达到99.13%,37.25%和39.9%。

  • PTAFC和PAFC的投加量对浊度去除率及Zeta电位的影响如图7所示。随着投加量的增加,浊度去除率先提高后减少(图7(a))。PTAFC投加量为70 mg·L−1时,除浊效果最好,达到99.7%,余浊仅为0.3 NTU,PAFC投加量为110 mg·L−1时达到最佳去浊效果,余浊为1.4 NTU;随着投加量的继续增加,浊度去除率开始缓慢下降。对PTAFC而言,由于在水体中加入PTAFC,Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)迅速水解生成了带正电的水解产物,在电性中和及吸附架桥作用下使得高岭土脱稳而凝聚。若混凝剂投加量过少,PTAFC中Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)水解产生的正电荷离子降低高岭土颗粒动电势有限,此外,金属离子水解生成的高分子聚合物不足,吸附架桥作用得不到很好的发挥,混凝效果不佳;当混凝剂投加过量时,一方面,原水中带负电的高岭土颗粒表面电性反转而带正电[27],另一方面,Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)生成的高分子聚合物过多,将水中胶体微粒包裹,使胶体微粒之间无法凝聚,而使混凝效果变差[28];PAFC的投加量的影响机理与PTAFC相近。因此,确定PTAFC和PAFC的最佳投加量分别为70 mg·L−1和110 mg·L−1

    絮体Zeta电位与混凝剂投加量的关系见图7(b)。可以看出,PTAFC、PAFC的投加量分别在72、116 mg·L−1时达到零电位点,零电位点处的混凝剂投加量一定程度上表征了混凝剂的混凝脱稳能力[29]。由本研究结果可知,PTAFC的混凝脱稳能力强于PAFC。另外,絮体Zeta电位的变化能够有效表征混凝剂的混凝作用机理[30],在最佳混凝剂投加量条件下,PTAFC和PAFC所生成絮体的Zeta电位分别为-0.8 mV和-2.1 mV。这表明除了电中和作用外,吸附架桥和卷扫网捕在混凝过程中也发挥了重要作用。

  • 水样初始pH对浊度去除率及Zeta电位的影响如图8所示。由图8(a)可知,剩余浊度随着pH的升高而逐渐降低,投加PAFC的实验水样在pH>7时逐渐稳定,而投加PTAFC的实验水样在pH>6时趋于稳定,且在pH为7~8时除浊效果最好,浊度去除率可达到99.8%。在逐渐升高pH的过程中,PTAFC对浊度的去除率并未出现显著降低的趋势。在pH<7时,PTAFC混凝后的剩余浊度明显低于PAFC,且拥有比PAFC更广的pH适用范围。在混凝剂加入水中后,Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)会迅速水解,水解产物带有大量正电荷,水中带有负电荷的胶体粒子会在吸附电中和及压缩双电层的作用下脱稳[31]。当pH较低时,较低的OH浓度可能会导致Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)的水解不完全,反应体系中金属离子主要以Al(H2O)3+6Fe(H2O)3+6等水合离子和其他电荷高而聚合度低的多核配离子形态存在,因而混凝效果较差;随着初始pH的升高,水解产物逐渐转化为电荷低而聚合度高的无机高分子物质,并进一步转化为电中性的聚合度极高的氢氧化物沉淀,聚合物基本形态结构单元增大,混凝效果变好。PTAFC在初始pH为6~10时对浊度都有优良的去除效果,pH为7时最佳。PAFC在初始pH为9时浊度的去除率最高。因此,确定PTAFC和PAFC的最佳pH分别为7和9。

    絮体Zeta电位随着水样pH的变化趋势如图8(b)所示。对于投加PTAFC的实验组,随着水样pH的增大,絮体Zeta电位逐渐由正值降低至负值;而对于投加PAFC的实验组,絮体Zeta电位由负值增大至正值,再逐渐降低至负值。絮体的Zeta电位随着初始水样pH的变化而变化,这与不同初始pH条件下混凝剂水解产物的不同有关。对于PAFC,在pH=5时,Al(Ⅲ)、Fe(Ⅲ)的水解受到抑制,其主要水解产物为带正电荷的单体Al-Fea[32]。这些水解产物能够中和污染颗粒上的负电荷,使颗粒物脱稳,但是在此条件下的正电荷不足以中和所有的负电荷,所以pH=5时,絮体的Zeta电位为负值,这也是在pH为5的条件下浊度去除率较低的原因。当水样pH由5增大至7时,形成了载有较多正电荷且具有较大比表面积的水解产物(Al-Feb、Al-Fec)。这些水解产物通过吸附、电中和及共沉作用可有效地去除水体中的有机物,从而达到较高的浊度去除率,所得絮体的Zeta电位升高到正值。相似地,对于投加PTAFC的组,当水样pH<7时,混凝剂载有正电荷的水解产物与载有负电荷的污染物通过电中和作用发生反应,絮体Zeta电位为正值,这是由多余的载有正电荷的混凝剂水解产物吸附在颗粒物表面导致的;在较高水样pH条件下,混凝剂迅速水解,主要水解产物载有较少的正电荷,甚至出现Ti(OH)4、Fe(OH)3和A1(OH)3沉淀。因此,污染物负电荷不能够被完全电中和,并且较高的pH可引入浓度极高的带负电的氢氧根离子,使得絮体Zeta电位为负值,这也是PTAFC呈现出在较高pH条件下,浊度去除率略有下降的原因。在2种混凝剂对应的最佳pH条件下,絮体Zeta电位值分别为1.1 mV和2 mV,这表明电中和作用是PTAFC和PAFC的主要作用机理,此外,吸附和卷扫网捕在混凝过程中也发挥了重要的作用。

  • 水体剩余浊度与沉降时间的关系如图9所示。随着沉降时间的增加,剩余浊度急剧下降,在5 min后逐渐达到平稳。PTAFC所生成的絮体具有较高的沉降速度,这说明PTAFC混凝性能明显优于PAFC。在0~5 min,PTAFC的浊度去除率随着沉降时间的增长而显著升高,这是因为在较慢的搅拌速度下,絮体开始生长,Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)的形态从Al-Fe-Tia (快速络合的自由离子、单体和初聚物)向Al-Fe-Tib(慢速络合的低聚和、中等聚合物)和Al-Fe-Tic(高聚物和Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)的溶胶态)转变,形成的一些大的矾花快速沉淀,故开始时浊度降低较快;静置5 min后,浊度去除率趋于稳定,此时水体中Al(Ⅲ)、Fe(Ⅲ)和Ti(Ⅳ)的形态主要为Al-Fe-Tib、Al-Fe-Tic而沉降下去,但也有一些不易沉降的小矾花悬浮在水中,因此,在沉淀5 min后,大的矾花已沉降完全,而小的矾花不易沉淀,从而使得上清液浊度降低较慢。沉淀10 min后,浊度去除率达到99%以上,且增加不明显,因此,确定10 min为最佳沉淀时间。

  • 搅拌速度对浊度去除率的影响如图10所示。整个混凝过程分为混合和反应2个阶段:混合阶段通过较短时间的剧烈搅拌,使药剂在水体中均匀分散,形成较小的絮体;反应阶段通过缓慢地搅拌,从而使在混合阶段生成的细小絮体碰撞、凝聚而逐渐长大[33]。由图10可知,搅拌速度为0时混凝效果不佳,在40 r·min−1时混凝效果最好,浊度去除率可达到99%以上,之后继续增加搅拌速度,浊度去除率开始下降。这是因为搅拌速度增大,对絮体施加的剪切力增加,不利于絮体的稳定生长,继续增加剪切力会导致新生成的絮体破碎,从而影响混凝效果。因此,确定40 r·min−1为最佳搅拌速度。

    为了进一步研究搅拌速度对絮体特性的影响,从絮体的抗破碎和破碎后再生能力入手,分析搅拌速度对絮体再生的影响。根据图10,选取40 r·min−1对絮体施加慢搅速度,慢搅结束后,对所产生的絮体施加200 r·min−1的剪切力,5 min之后,恢复到不同的慢搅速度(40、70、110、150 r·min−1),实现絮体的破碎后再生过程(图11)。由图11可知,与PAFC相比,PTAFC所产生的絮体具有较大的絮体粒径和较高的生长速度。在混凝慢搅阶段,PTAFC在2 min内即达到最大粒径,随着慢搅时间的增加,絮体粒径呈现逐渐下降的趋势;而对PAFC来说,需要5~8 min达到稳定粒径,且在生长阶段,絮体粒径较为稳定。絮体生长阶段的稳定粒径PTAFC>PAFC,絮体生长速度的大小PTAFC>PAFC。慢搅阶段结束后,2种混凝剂所产生的絮体被施加200 r·min−1的破碎剪切力,在剪切力作用下絮体粒径迅速下降,当恢复不同的慢搅速度时,絮体呈现一定程度的再生,对于不同的慢搅速度,2种混凝剂表现有一定的一致性,搅拌速度对絮体的再生粒径的影响结果为40 r·min−1>70 r·min−1>110 r·min−1>150 r·min−1,这说明在慢速搅拌的状态下有利于絮体的再生,这与图10的结果一致。由图11可知,在200 r·min−1的剪切力下,PTAFC所产生的絮体具有较高的强度因子,这说明PTAFC所产生的絮体具有较强的抗破碎能力。但是,PTAFC所产生絮体的恢复因子远小于PAFC,这表明PTAFC所产生的絮体在破碎后具有较弱的再生能力。

  • 在考察反应温度对混凝效果的影响时,使用恒温水浴锅控制温度,分别在10、20、30 ℃进行混凝实验,反应温度对浊度去除率的影响如图12所示。PTAFC和PAFC的浊度去除率随着温度的升高而升高,这可能是因为在低温下颗粒间运动碰撞概率减少,不利于混凝过程的进行。温度影响了水体黏度,进而影响了混凝搅拌效率和混凝剂的水解速度和絮体性质,较低的水温对混凝动力学具有明显的反作用。也有研究[33-34]发现,水样温度对絮体强度造成了影响,铝盐在低温条件下所形成的絮体比在20 °C条件下形成的絮体强度差,更易在外界剪切力下破碎,在低温条件下,絮体的粒径通常较小。由图12可知,PAFC在低温下处理效果不佳,浊度去除率仅为76.9%,随着温度的增加,PAFC浊度去除率趋于稳定,达到98%。PTAFC在10 ℃时余浊为3.3 NTU,在温度为20 ℃和30 ℃时,余浊分别为0.4 NTU和0.8 NTU,浊度去除率均达到99%以上,PTAFC在低温下也可以达到较好的去除效果。PTAFC在低温下之所以有比较好的混凝效果可能是由于Ti(Ⅳ)化合物水解形成大量多核钛羟基聚合物,具有极强压缩双电层、电中和、吸附架桥与网捕卷扫能力而引起的。

    综上所述,PTAF在混凝过程中最佳的反应条件为:投加量70 mg·L−1、pH=7、反应温度20 ℃、快速(300 r·min−1) 1 min、中速(150 r·min−1) 3 min、慢速(40 r·min−1) 8 min,最佳工况下,当进水浊度为100 NTU时,出水浊度低至0.4 NTU。

  • 在考察PAFC和PTAFC对二沉池出水的处理效果对比时,实验水样为城镇污水处理厂二沉池出水,分别在PAFC、PTAFC最佳混凝条件下进行效果对比,结果如表1所示。PTAFC对浊度、COD、氨氮和总磷的去除效果均优于PAFC。COD反映了水中还原性物质的含量,包括有机物与其他还原性无机物质[35],这里的有机物也包含了带负电的有机物和中性以及带正电的有机物等,混凝剂去除有机物的过程以吸附电性中和为主导。PTAFC对COD去除率更高的原因在于钛具有生物亲和性[36],同时钛的电荷高,能使混凝剂电性中和和压缩双电层能力加强[37]。PAFC和PTAFC对水样中氨氮的去除效果不佳,这与其他混凝剂一样,对氨氮的去除率普遍较低[38]。氨氮在水处理中一般采用生物法和活性炭吸附法[39]等方法,主要原因是:混凝剂对大分子物质有较好的吸附作用,而氨氮是小分子物质且性质稳定,难以被氧化还原和沉淀,混凝剂的电性中和、吸附架桥作用均表现的比较弱[40-41]。PTAFC对二沉池出水总磷表现出较强的去除能力,出水优于《地表水环境质量标准》(GB 3838-2002)Ⅲ类水标准0.2 mg·L−1

  • 1)煤矸石酸浸液制备钛掺杂聚合氯化铝铁钛(PTAFC)的最佳条件为钛铁摩尔比0.3、pH=1.5、聚合温度60 ℃、聚合时间3 h、常温熟化24 h。

    2) PTAFC对浊度有很好的去除效果,对自配水浊度去除率最高可达99.8%,同时对COD和UV254也有一定的去除率。PTAFC最佳混凝条件为投加量70 mg·L−1、慢速搅拌速度40 r·min−1、pH=7、反应温度20 ℃。PTAFC对初始pH的适用范围广,在pH= 6~10时均具有很好的去浊效果。PTAFC混凝形成的矾花大而密实,容易沉淀,沉淀5 min即可得到较好的去浊效果,10 min后趋于稳定;PTAFC在处理低温水时具有比PAFC更高的浊度去除率。

    3) PAFC和PTAFC对城镇污水处理厂二沉池出水的污染物有一定去除的能力,PTAFC在去除浊度、氨氮、COD、总磷方面都比PAFC强,特别对浊度和总磷表现出极其优异的去除效果。PTAFC的成功制备为污水处理站提标改造或在现有基础上提质增效提供了新的材料和方法。

    4)以煤矸石制备混凝剂对推动煤矸石和综合利用和混凝剂产业发展均具有较积极的意义,能有效降低煤矸石的污染,提高煤炭企业效益,降低水处理的成本,提高水处理效果,具有很大的推广价值。

参考文献 (41)

返回顶部

目录

/

返回文章
返回