有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响

刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
引用本文: 刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
Citation: LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025

有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响

    作者简介: 刘勰(1995—),女,硕士研究生。研究方向:低温水处理。E-mail:xieliu@mail.ecust.edu.cn
    通讯作者: 闫莹(1980—),女,博士,副教授。研究方向:电化学和低温水处理。E-mail:wendy@ecust.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(21876050)
  • 中图分类号: X703

Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization

    Corresponding author: YAN Ying, wendy@ecust.edu.cn
  • 摘要: 冷冻法在有机废水处理方面取得了良好的应用效果,但其分离机理缺乏深入的研究。为深入研究冷冻法对有机污染物的处理效果及分离机理,采用悬浮冷冻结晶法,对废水中己烷、正己酸、正己醇和正己醛4种具有不同官能团的有机物污染物进行分离实验,并采用量子化学方法计算了氢键结合能,进一步探讨了有机物官能团对冰晶杂质浓度的影响机理。悬浮结晶实验结果表明,废水中己烷、正己酸、正己醇和正己醛的去除率分别可达67.07%、87.75%、94.71%和95.32%。量子化学计算结果表明,极性有机物官能团和水分子间缔结的氢键结合能越大,其对应的冰晶杂质浓度越高,从而导致有机物去除率越低。正己醛3种极性有机物(正己酸、正己醇和正己醛)中和水分子间氢键结合能最小,对应的去除率最高。而己烷作为非极性有机物,无法和水分子间缔结产生氢键,因而极易在悬浮结晶时析出,与悬浮冰晶混合于溶液上层,故其去除率最低。以上研究结果从分子水平加深了对冷冻法在有机废水处理中作用机理的理解,可为该技术在水处理领域的深入研究提供参考。
  • 涉重危废指含重金属的危险废物,其危险特性源于重金属的毒性,分为材料源危废和工业源危废[1-2]。涉重危废是危险废物中最为独特且极为重要的类别之一,也是《巴塞尔公约》[3]和国际社会优先关注和严格监管的大类危废类别。我国《国家危险废物名录》(2021年版)[4]包含46大类危废,其中涉重危废就有18大类。重金属的不可降解性决定了涉重危废的环境风险不能完全消除;而重金属的广泛应用及其基础材料地位又决定了涉重危废具有显著的资源属性和循环利用价值。从涉及的金属类型来看,包括铬、钼、锌、铅、锡、镉、镍、金、银、铜、钯、铍、砷、硒、碲、锑、汞、铊等各种金属,这些金属同时属于有毒、剧毒、高价、稀有、稀散、稀贵、战略储备(类)金属。从产排行业来看,包括金属冶炼生产、金属制品生产、金属加工处理、重金属基功能材料失效和废弃等全产业链。从形成机制来看,包括金属基材料/产品功能丧失的废旧和失效材料、金属生产/加工过程产生的废渣和废料以及环境污染控制生成的污泥和飞灰等。总之,涉重危废具有量大、面广、源多、物杂的产排特性[1-2]

    当前,从涉重危废中提取回收各种昂贵、高价和有价金属既是从源头控制重金属环境污染的现实需要,又是实现金属资源循环利用和保障金属资源安全供给的发展需要。涉重危废的资源化利用代表了其处理处置技术的发展方向,已得到全球固废处置与资源化领域产业界和学术界的广泛关注。面对数量巨大、结构复杂多变、环境风险突出、资源属性各异的涉重危废,怎样才能实现其科学、合理、高效、高质、高值的资源化利用?解析涉重危废产排规律和本质特性,提出金属分离提取的科学原理和工艺技术的优选原则,构建资源化利用的理论体系是实现这一目标的首要前提。

    前期工作已完成涉重危废的概念创制、提出了涉重危废资源化利用的实现路径,论证了三维属性(污染、资源和结构属性)量化描述涉重危废特性的科学性,阐述了建立基于三维属性精细化分级分类体系的重要性[1-2]。但这些前期的理论创制、概念提出和制度设计仍是孤立的、离散的、局部的、单维度的,并没有形成系统化的完整理论体系,不能科学地回答涉重危废高效、高质、高值资源化利用的问题。完整的理论体系既要有基础性概念又要有多维度体系化设计,既要解决金属提取回收技术原理问题又要解决金属提取后二次残渣利用方式和污染控制问题,既要关注掌握不同类型涉重危废产排规律又要研究建立其科学分级分类及精细化管理问题。

    涉重危废资源化理论体系包括涉重危废概念、来源及其资源化利用内涵和路径;不同行业和来源涉重危废的产排系数、产排特性和产排规律;不同行业和来源涉重危废资源属性、污染属性和结构属性及基于三维属性的精细化分级分类体系;不同类型涉重危废无害化处置和资源化利用的边际识别及其三维属性指标体系;不同类型涉重危废有价金属提取的技术原理和技术体系;脱毒“脱帽”残渣建材化利用路径选择及其产品安全和环境风险评价体系。该理论体系的构建、发展和成熟将使涉重危废处理处置这一重要细分领域由孤立的个体研究和感性经验上升到系统的科学理论,并为涉重危废资源化利用提供支撑。

    涉重危废具有突出的危害特性和独有的资源属性。涉重危废概念的创制对于该类别危废更具针对性的分类精准监管、高效处置和高值利用至关重要,对于全球重金属污染防控和金属资源安全供给意义重大,是构成本理论体系的重要基础概念之一。涉重危废指含重金属的危险废物,其危险特性源于重金属毒性。这一创制概念首次将含重金属的危险废物与其他类别危废的边际进行了科学界定,形成了涉重危废这一危险废物的重要细分领域[1]

    涉重危废概念的提出,覆盖并联通了从金属冶炼生产、金属制品加工、金属表面处理、金属产品废弃到金属循环再生的产排全过程,既凸显了这一危险废物重要细分领域的共有特性也明确了其外延。按外延性质,又可进一步将涉重危废分为材料源危废和工业源危废2类。前者指重金属基功能材料或产品失效或废弃后演变而成的危废,如废旧电池和废催化剂等[5-6];后者指重金属生产、加工、利用或环境治理过程产生的涉重危废,如电镀污泥和冶炼废渣等[7-8]

    作为危险废物的重要细分领域,涉重危废显示出相当突出的资源-环境二元属性。因此,既要对涉重危废中的有毒金属进行固化稳定化甚至脱除以消除其危害特性,又要对涉重危废中的有价金属进行提取回收以实现其资源化利用。长期以来,有价金属定义的泛化和边界不明,尤其是有价金属和有毒金属之间的复杂交错,极大地困扰着涉重危废资源-环境二元属性的精确量化评价,及对涉重危废的精准监管、高效处置和资源化利用。

    为了更精准地指导涉重危废中有价金属的回收利用及有毒金属的污染控制,本理论体系将金属/重金属进行了五分法分类[1],即:1)昂贵金属,单价100×104 元·t−1以上,包括金、银、钯、鉑、铑等;2)高价金属,单价(5~100)×104 元·t−1(以铜价为下限),包括铜、镍、钴、钼、钒等;3)低价金属,包括锌、锰、铝等;4)高毒金属,包括汞、砷、镉、铬、铅;5)无毒金属,包括钙、镁、铁、钠、钾等。金属五分法为精确反映和评价各类金属/重金属的资源回收价值和环境污染风险提供了分类学支撑,构成了本理论体系的第2个重要基础概念。

    涉重危废的资源化利用从本质上讲就是通过调节调控不同金属在溶液-残渣两相中的分配行为(湿法)或在飞灰-熔体-渣体三相中的分配行为(火法)实现目标金属的分离、提取和回收,但不同类别金属需要采取不同的分离提取策略。金属五分法为涉重危废科学合理的资源化利用奠定了分类学基础。涉重危废全量资源化利用的总体原则和实现路径为:提取回收昂贵和高价金属,脱除有毒和高毒金属,保留低价和无毒金属的脱毒残渣进行建材利用。昂贵和高价金属的提取回收实现涉重危废的高值化资源利用,脱毒残渣的建材消纳实现低价和无毒金属的低值化资源利用,有毒和高毒金属的脱除及浓缩实现涉重危废的风险集中管控。

    产排系数是指在正常技术经济和管理条件下,生产单位产品所产生或排放的污染物数量的统计平均值。产污系数是指生产单位产品所产生的原始污染物的量;排污系数是指经污染控制措施消减后排放到环境中的污染物的量。产排系数与产品类型、生产工艺、生产规模、原辅料使用、设备技术水平及污染控制措施等有关,通过现场实测、物料衡算或理论计算取得。产排系数是污染物统计、环境管理和污染治理的基础性数据[9-10]

    当前,产排系数在我国水污染和大气污染管理和防治中已发挥重要作用,但危险废物和涉重废物的产排规律、产排特性和产排系数研究基础却十分薄弱。实际上,产排系数对于危险废物和涉重危废产排总量的精确统计、涉重危废的精细管理和精准处理处置更为重要。我国的危险废物日常数据收集是采取产废单位主动申报制度,但由于危险废物高昂的处置费用和严格的管理要求,产废单位的申报数据往往存在少报、瞒报、漏报的现象,因而导致危险废物的真实产排数量难以掌握。借助科学的产排系数推算可有效甄别上报数据的真伪,有助于危险废物和涉重危废排放总量的精确掌握,从而为危险废物和涉重危废的规范管理和合理处置利用提供可靠的数据支持。

    涉重危废这一概念覆盖并联通了重金属冶炼生产、重金属制品制造、重金属加工处理、重金属基产品使用、失效及废弃等上中下游涉重全产业链条。涉重危废涉及行业众多、金属类型多样,危废形成的过程和机制也各不相同,因此,不同行业、不同类型、不同过程涉重危废的产排特性和产排系数存在很大差异。从全产业链过程分析,针对铅、锌、铜、镍、铬、镉、汞、钴、钒等重要有毒重金属,系统研究其从冶炼生产、产品制造、加工处理、失效废弃、到再生循环等不同环节的产排规律、产排特性和产排系数,对于加强涉重危废科学管理、推进涉重危废精准处置利用具有重要意义(图1)。

    图 1  重金属类型、产业链条和涉重危废产排关联图
    Figure 1.  Relevance diagrams of heavy metals types, industrial chain and production and discharge of hazardous wastes containing heavy metals

    涉重危废的危险特性源于重金属毒性。与有毒有机物相比,重金属不能降解、分解和矿化消失,只有形态转变、价态转化和空间位移。基于重金属的这一性质,通过质量平衡计算(物料衡算法)即可全面了解目标/有毒金属在产物、飞灰、底渣、浸出渣、净化渣、污泥等各相的分布及排入环境的量,并由此表征涉重危废的产排特性和产排系数。在此基础上,进一步研究飞灰、底渣、浸出渣、净化渣、污泥等各类固废/危废中金属赋存形态、液相溶解行为、高温挥发行为及其环境释放行为,从而为涉重危废的风险鉴别及分级分类、无害化处置和资源化利用提供理论依据[11-13]

    涉重危废的有毒金属产排系数计算公式见式(1)至式(4)。

    E产生=Q原料Q产品 (1)
    E排放=Wi×Ci (2)
    e产生系数=E产生P (3)
    e排放系数=E排放P (4)

    式中:E产生是有毒金属污染产生量;Q原料是原辅料中金属总量;Q产品是产品或出品中的金属利用量;E排放是金属污染排放量;Wi是固废/危废i的排放量;Ci是固废/危废i中有毒金属含量;e产生系数是金属污染产生系数;e排放系数是金属污染排放系数;P是产品(出品)总量。

    在现有严格的有毒金属污染排放控制标准下,无论一次危废还是二次危废中有毒金属的污染产生总量和排放总量大致相等,但不同排放途径和来源的有毒金属之环境行为、污染特性和危害强度存在显著差异,因而需要针对典型涉重危废产生、处置和利用全过程加强研究,以识别全产业链环境风险点并研发控制阻隔技术,引导目标金属向高资源利用和低环境风险的循环利用技术工艺和产业发展方式转变。

    涉重危废具有鲜明的资源-环境二元属性,但目前对于该类别危废二元属性的表征都是粗略说明和定性描述,缺乏量化指标和计算公式。这显然对于涉重危废的精细化管理、无害化处置和资源化利用都极为不利。另一方面,涉重危废产排涉及行业众多、金属类型多样、形成过程机制各不相同,以致其组分多变、结构复杂、种类繁多。不同产业链位阶、不同来源、不同行业、不同类型的涉重危废不仅在资源属性和污染属性上差异巨大,在组成和结构方面也千差万别。复杂多变的结构无论对于有毒/高毒金属的环境释放行为还是昂贵/高价金属的分离提取效能都会产生严重影响和干扰。因此,只有三维(资源、污染、结构)属性才能更加客观、准确、全面地反映涉重危废的固有本质特性。三维属性及其量化计算构成本理论体系的第3个基础概念。涉重危废之结构属性、资源属性和污染属性的量化计算公式和方法参考文献[2]

    在固体废物/危险废物环境管理中,分级分类聚焦于环境风险管控,只关注固体废物/危险废物的污染属性。为了解决危险废物监管压力和效率之间日益增长的矛盾,新修订的《固体废物污染环境防治法》[14]专门提出危险废物要进行分级分类管理。目前,我国《国家危险废物名录》[4]中并没有体现明确的分级分类管理思路,只是通过豁免管理清单和排除管理清单作为辅助和并行管理措施;而美国等国家针对危险废物小微产生源的分级管理措施基本属于名录管理的补充和完善,并不是严格意义上的分级分类,更没有形成完整体系[15]

    本研究提出的精细化分级分类体系是基于涉重危废三维属性的综合性分级分类,构成本理论体系的第4个基础概念。精细化分级分类体系从环境危害程度,资源利用潜力和物料结构特性3个维度对涉重危废进行定量描述。在三维属性量化计算的基础上进行5级(极高、高、中、低、极低)分级,再基于定量分级进行综合分类。该体系将突破不同行业领域的传统边界划分,完全按照三维属性量化指标进行分级分类。基于行业领域和危害特性定性分类的《国家危险废物名录》[4]和基于三维属性的精细化分级分类体系呈相辅相成的互补关系。前者是国家危险废物监管的依据和基础,后者是前者的辅助和补充,共同为涉重危废的高效精准监管、切实无害化处置和合理资源化利用提供科学可靠的理论基础。

    涉重危废的资源-环境二元属性决定了无害化处置和资源化利用并举是涉重危废处置利用的基本原则,但无害化处置和资源化利用是两种完全不同的路径选择。前者为了消除涉重危废的污染特性,凸显了环境效益;而后者为了提取回收稀缺的二次金属资源,体现了经济效益。无害化处置和资源化利用的路径选择显著依赖涉重危废的三维属性。

    涉重危废的资源化利用潜力不但取决于其所含昂贵/高价金属的浓度、类型、价格、赋存形态以及金属提取的技术经济性,而且与有毒/剧毒金属的含量、种类、赋存形态以及低价/安全金属等干扰离子的种类及浓度都有密切关系。具有高资源属性、低污染属性、低结构属性的涉重危废适宜资源化利用;而具有低资源属性、高污染属性、高结构属性的涉重危废适宜无害化处置。因此,需要在全面分析涉重危废三维属性基础上,确立可满足不同类型涉重危废无害化处置和资源化利用边际识别的三维属性指标体系,才能确保涉重危废科学、合理、可持续地资源化利用。涉重危废资源化利用潜力和无害化处置潜力归一化指标计算公式参考文献[2]。

    涉重危废具有的资源-环境二元属性,决定了其资源化利用的核心内涵是潜在资源价值的最大化回收和环境危害特性的最大化降低,其中的关键诉求是昂贵/高价金属的深度提取以实现最大的经济效益和剧毒/高毒金属的深度脱除以实现残渣的危险属性降级。但无论昂贵/高价金属的提取回收还是剧毒/高毒金属的脱除分离,都需要适宜的技术工艺以及相应的处置成本,工艺选择和费用投入与涉重危废的三维属性存在紧密关系[16]。基于不同类型涉重危废无害化处置和资源化利用的边际识别,对于资源化利用潜力较高的涉重危废则实现资源化利用,对于资源化利用价值较低的涉重危废则实行无害化处置。

    火法冶金、湿法冶金和生物沥浸在涉重危废有价金属提取和危险属性降级中各具优劣。总体来讲,火法冶金适宜高浓度、大批量、单一金属的分离提取和危险属性降维,尤其是低沸点、易挥发金属的烟化或挥发提取;湿法工艺适宜中高浓度、中小批量、多金属的同步提取回收;生物沥浸-循环富集适宜低浓度、小批量、多金属深度浸提和危险属性降级[17-18]。3种金属提取工艺存在较高的互补性和协同性,因此,只有科学合理的工艺组合才能保证有价金属提取和危险属性降级两大诉求的有效达成。例如:火法工艺还原融熔所产的合金或富氧侧吹所产的冰铜、冰镍等富集物料必须借助湿法工艺才能进一步获得高纯度单质态金属或金属盐;湿法工艺所产浸出渣需要借助生物沥浸-循环富集工艺以实现金属的深度提取、液相富集和危险属性降级;生物沥浸工艺有时需要火法或湿法工艺作为前(预)处理,如石化废催化剂需要低温煅烧去除包覆的油类物质后,才能确保生物沥浸高效进行,高浓度电镀污泥则需要前置硫酸浸提再串以生物沥浸才能使其处理规模提高、浸提富集成本减低。

    目前,涉重危废中昂贵/高价等目标金属的提取回收技术工艺选择大多依靠孤立的离散实验和研究者的感性经验。由于缺乏系统完整的科学原理指导以及基于定量分析的优选理论支持,现有的涉重危废金属提取工艺普遍存在设计不合理、标准不统一、技术不规范、路径选择随意性大的问题,加之涉重危废结构复杂多变的特性有时甚至出现技术工艺难以运行的严重状况。这是因为,金属提取工艺选择不但与金属类型性质有关,而且与其含量及赋存形态也存在很大关系,甚至与共存的其他低价、高毒和无毒金属以及处理规模、电价水价、物料配伍等都存在密切关系。所以,需要在三维属性精细化分级分类基础上,深入探究涉重危废三维属性及其分级分类与金属提取优化工艺及其组合之间的内在关联和响应关系,阐明不同分级分类物料提取工艺优选的一般规律和总体原则,构建涉重危废金属提取回收技术优选的多目标多参数定量精准决策体系。

    涉重危废金属提取过程需要在特定反应介质中进行,反应介质中的外加物料会以各种方式进入残渣之中,并改变残渣的元素组成、物相结构、金属含量及其赋存形态。不同的金属提取工艺或工艺组合可实现涉重危废的危险属性降级,但脱毒残渣中各类金属和其他有害组分、含量、赋存形态及环境风险差异较大,其建材化利用方式、途径和使用方向也各不相同[19]。因此,需要系统分析不同三维属性涉重危废脱毒残渣的物相、结构和组成,识别关联产品安全和环境安全的有害元素和离子,评估脱毒残渣建材化利用的产品安全和环境风险并进行分级分类,建立建材化利用的黑/白名单,进而提出涉重危废脱毒残渣建材化利用的技术规范和标准体系。

    基于产品安全的离子/元素限值按式(5)计算;基于环境安全的离子/元素限值按式(6)计算。

    M×S1L (5)

    式中:M指脱毒残渣中关联产品安全的离子/元素含量;L指建材产品安全要求限值;S1指脱毒残渣在建材产品中的掺和比。

    N×S2K (6)

    式中:N指脱毒残渣中关联环境安全的离子/元素含量;K指建材环境安全要求限值;S2指脱毒残渣在建材产品中的掺和比。

    脱毒残渣在建材产品中的掺和比S取S1和S2二者中的最小值。当S≤10%,则说明该消纳途径风险大,可列入黑名单;当S≥30%,则说明该消纳途径风险小,可列入白名单。通过黑/白名单的管理,使脱毒残渣是否采用或采用何种建材化利用的路径判别更加便利。

    涉重危废产排贯穿金属冶炼生产、金属加工处理、金属基材料制备、废弃和再利用等全产业链。金属作为现代生活和工业生产的基础性原材料,其生产、消耗和废弃正以前所未有的规模在全球进行,因此,涉重危废的产生也以前所未有的速度在全球发生。据估算,世界上涉重危废的年产量在1×108 t左右,我国涉重危废年产量在3 000×104~3 500×104 t[1]。涉重危废的长期任意排放是全球环境重金属污染的主因之一,而重金属不能降解的特性又使得重金属污染显示出累积性、持久性和高危害性。但另一方面,涉重危废含有以各种形式存在的多种金属元素,而金属不可再生的特性又赋予了涉重危废独有的二次资源价值。有毒/高毒/剧毒金属赋予涉重危废污染属性,昂贵/高价/有价金属赋予涉重危废资源属性,金属激发的污染属性和资源属性并存是涉重危废最显著的特点。从涉重危废中提取回收有价金属不但能够从源头消除涉重危废的环境危害,而且还可实现稀缺金属资源的循环永续利用,是固体废物处理处置学科及资源再生学科领域的热点课题。

    作为危险废物的重要细分领域,涉重危废资源化利用已是国内外经济社会发展的必然趋势,而我国作为世界制造大国,更是面临涉重危废产排量不断增长和金属资源愈加短缺的双重困境,涉重危废的资源化利用更加紧迫。然而,涉重危废固有的高污染属性给其资源化利用带来很大困扰,在分级分类、提取工艺、风险管控、政策法律等许多方面都面临巨大挑战[20-21]。目前,针对不同类型涉重危废,世界各国学者在技术层面广泛研究了有价金属高效提取的火法冶炼、湿法冶炼和生物沥浸的工艺优化、过程控制和溶释机理,但基本都是基于特定单一危废物料的孤立个案研究,未见针对涉重危废三维属性的量化分析及精细化分级分类,亦未见无害化处置和资源化利用的边界识别研究,更未见有价金属深度提取和危险属性降级的技术原理探究和技术工艺优选,以及脱毒残渣建材化利用的方式、工艺和标准研究。涉重危废量大、面广、源多、物杂的产排特性,给其高效、高质、高值的资源化利用带来很大挑战。构建基于精细化分级分类的涉重危废资源化利用理论体系是实现这一目标的根本保证,是指导涉重危废资源化利用健康、科学、可持续发展的必然要求,是涉重危废资源化利用从经验数据积累到完整学科形成的必然要求。

    涉重危废资源化利用的理论框架以涉重危废、金属五分法、涉重危废三维属性及精细化分级分类4组概念为基础,以涉重危废精细化分级分类体系、涉重危废无害化处置和资源化利用边际识别指标体系、涉重危废有价金属提取和危险属性降级技术体系、涉重危废脱毒残渣建材化利用标准体系4大体系建设为核心,以涉重危废产排系数计算、涉重危废三维属性定量描述、涉重危废资源化利用和无害化处置潜力归一化指数计算、涉重危废脱毒残渣建材化利用风险控制和黑白名单管理4个重要问题为抓手和工具(总体框架见图2)。该理论体系全面系统地回答了涉重危废全量高值化资源利用所涉及的关键问题和重大困扰,有力保障了其资源化利用的过程安全、产品安全和环境安全。该理论体系的构建、发展和成熟将使得涉重危废这一重要细分领域由孤立的个体研究上升到系统的科学理论,并为涉重危废的精细化监管、精准化风险管控和高质化资源利用提供全周期全方位全流程的理论指导。

    图 2  涉重危废资源化利用理论体系的总体框架
    Figure 2.  General framework of theoretical system of resource utilization of hazardous wastes containing heavy metals

    1)从涉重危废中提取有价回收金属促进其污染属性向资源属性的定向转化,虽然可从源头消除涉重危废的环境污染而且实现金属资源的循环利用,但其危险属性对资源化利用构成了极大困扰。为了确保涉重危废的科学、合理、健康、可持续、高值化利用,构建了涉重危废资源化利用的理论体系。

    2)涉重危废资源化利用的理论体系框架由4组概念和4大体系组成。4组概念包括涉重危废、金属五分法、涉重危废三维属性及精细化分级分类;4大体系包括涉重危废精细化分级分类体系、涉重危废无害化处置和资源化利用边际识别指标体系、涉重危废有价金属提取和危险属性降级技术体系、涉重危废脱毒残渣建材化利用标准体系。

    3)该理论体系以4组概念为基础、以4大体系建设为核心,以系统化数学公式和定量计算为工具。该理论体系的提出、发展和成熟将使得涉重危废这一重要细分领域由孤立的个体研究和感性经验上升到系统的科学理论,为涉重危废的精细化监管、精准化风险管控和高质化资源利用提供全周期全方位的理论指导。

    辛宝平(1969—),男,理学博士,教授。从事固体废物/涉重危废资源化利用理论体系和技术原理研究。中国环境科学学会理事、中国物资再生协会湿法冶金分会首席科学家、中国环境科学学会固体废物专业委员会副主任委员、中国环境科学学会重金属污染防治专业委员会副主任委员、中国有色冶金学会环境污染防治专业委员会副主任委员、全国危废处理处置技术联盟学术委员会副主任委员、中华环保联合会固危废及污染土壤专委会副主任委员、中国再生资源回收利用协会危险废物专业委员会副主任委员。在《Chemical Engineering Journal》《Bioresource Technology》《Journal of Hazardous Materials》《Waste Management》《ACS Applied Materials and Interfaces》等期刊发表SCI和EI论文100余篇,高水平SCI论文(1区)30篇,发明专利20余项。在国际上首次创制了涉重危废、金属5分法、三维属性及精细化分级分类等系列概念并构建涉重危废资源化利用的理论体系;率先将膜生物反应器(MBR)引入生物沥浸领域,解决了生物沥浸技术周期长、处理量小的行业难题;撰写了涉重危废资源化利用方面的首部专著;主持了全国涉重危废产废和处置行业发展现状及技术需求的首次调研;主持研发涉重危废行业首套100 m3级电镀污泥有价金属生物沥浸-循环富集成套设备和工艺。

  • 图 1  在低温浴中搅拌下的悬浮结晶装置图

    Figure 1.  Experiment equipment of the suspension freeze process under stirring in a cryogenic bath

    图 2  己烷、正己酸、正己醇和正己醛在相同悬浮结晶条件下的去除率

    Figure 2.  Removal rate of hexane, N-hexanol, N-hexanal, hexanoic acid under same freeze concentration condition

    图 3  己烷、正己醇、正己醛和正己酸溶液的逐步冷却曲线

    Figure 3.  Step cooling curves of hexane, N-hexanol, N-hexanal, hexanoic acid

    图 4  不同冷冻温度下的冰晶不纯度变化

    Figure 4.  Changes of ice impurity at different freezing temperatures

    图 5  不同冷冻时间下的冰晶不纯度变化

    Figure 5.  Changes of ice impurity at different freezing times

    图 6  不同转速下的冰晶不纯度变化

    Figure 6.  Changes of ice impurity at different rotational speeds

    图 7  模型几何结构优化结果

    Figure 7.  Results of model geometry optimization

    图 8  水分子与有机物结合的RDG等值面图

    Figure 8.  RDG iso-surface map of organic bonding with water molecules

    表 1  悬浮结晶测试期间的实验条件

    Table 1.  Experimental conditions during the suspension freeze test

    冷冻温度/℃转速/(r·min−1)冷冻时间/min
    −0.420030
    −0.920030
    −1.920030
    −2.620030
    −0.910030
    −0.920030
    −0.930030
    −0.940030
    −0.920010
    −0.920030
    −0.920060
    −0.9200120
    冷冻温度/℃转速/(r·min−1)冷冻时间/min
    −0.420030
    −0.920030
    −1.920030
    −2.620030
    −0.910030
    −0.920030
    −0.930030
    −0.940030
    −0.920010
    −0.920030
    −0.920060
    −0.9200120
    下载: 导出CSV

    表 2  模型化合物和稳态能量

    Table 2.  Model compounds and steady state energy

    计算化合物类型化合物单点能/(kJ·mol−1)分子间作用力/(kJ·mol−1)
    H2O−200 677.59
    己烷−622 531.83
    正己醇−820 010.87
    正己醛−816 830.71
    正己酸−1 014 428.12
    己烷&H2O−823 211.35−1.93
    正己醇&H2O−1 020 714.94−26.48
    正己醛&H2O−1 017 532.61−24.31
    正己酸&H2O−1 215 149.81−44.10
    计算化合物类型化合物单点能/(kJ·mol−1)分子间作用力/(kJ·mol−1)
    H2O−200 677.59
    己烷−622 531.83
    正己醇−820 010.87
    正己醛−816 830.71
    正己酸−1 014 428.12
    己烷&H2O−823 211.35−1.93
    正己醇&H2O−1 020 714.94−26.48
    正己醛&H2O−1 017 532.61−24.31
    正己酸&H2O−1 215 149.81−44.10
    下载: 导出CSV
  • [1] 陈晓远, 闫莹, 范成李, 等. 悬浮结晶法预处理敌草胺生产废水[J]. 化工环保, 2019, 39(2): 53-57.
    [2] 方汉昭. 冷冻盐析法处理硫酸废液技术[J]. 环境工程, 1995, 13(4): 7-9.
    [3] 袁怡, 黄勇, 李祥, 等. 长期保藏对厌氧氨氧化污泥脱氮性能的影响[J]. 环境工程学报, 2014, 8(5): 2051-2056.
    [4] 米兰, 冯奥博, 盛文军, 等. 沙棘原浆冷冻浓缩工艺的响应面优化[J]. 食品工业科技, 2018, 39(1): 143-148.
    [5] 樊士昊, 白羽嘉, 郑万财, 等. 不同冷冻浓缩度对和田红葡萄酒品质影响[J]. 食品研究与开发, 2017, 38(23): 82-87. doi: 10.3969/j.issn.1005-6521.2017.23.015
    [6] 秦贯丰, 原娇娇. 苹果汁冷冻浓缩与真空蒸发浓缩的对比实验研究[C]//中国食品科学技术学会. 2018年中国食品科学技术学会学术年会论文集. 山东, 2018: 387-388.
    [7] GAY G, LORAIN O, AZOUNI A, et al. Wastewater treatment by radial freezing with stirring effects[J]. Water Research, 2003, 37(10): 2520-2524. doi: 10.1016/S0043-1354(03)00020-4
    [8] 连建枝. 冷冻浓缩生产工艺技术及其设备的研究[D]. 福州: 福建农林大学, 2011.
    [9] ORELLANA P P, PETZOLD G, TORRES N, et al. Elaboration of orange juice concentrate by vacuum-assisted block freeze concentration[J]. Journal of Food Processing and Preservation, 2018, 42(2): e13438. doi: 10.1111/jfpp.13438
    [10] CHIVAVAVA J, RODRIGUEZ P M, LEWIS A E. Effect of operating conditions on ice characteristics in continuous eutectic freeze crystallization[J]. Chemical Engineering & Technology, 2014, 37(8): 1314-1320.
    [11] EMILY M A B, MARCOS R P, ALISON E L, et al. Influence of phenol on the crystallization kinetics and quality of ice and sodium sulfate decahydrate during eutectic freeze crystallization[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11926-11935.
    [12] 王沥东, 冯万里, 陈晓远, 等. 悬浮结晶法冷冻处理喹乙醇生产废液[J]. 化工环保, 2019, 22(4): 79-83.
    [13] CHEN P, SONG P, WANG L, et al. Recovering sodium erythorbate from wastewater through freeze crystallization technology[J]. Water Environment Research, 2019, 91(5): 455-461. doi: 10.1002/wer.1043
    [14] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652. doi: 10.1063/1.464913
    [15] LEE C, YANG W, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter and Materials Physics, 1988, 37(2): 785-789. doi: 10.1103/PhysRevB.37.785
    [16] JOHNSON E R, KEINAN S, MORI S P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506. doi: 10.1021/ja100936w
    [17] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885
    [18] GRABOWSKI J S. Ab Initio calculations on conventional and unconventional hydrogen bonds study of the hydrogen bond strength[J]. Journal of Physical Chemistry A, 2001, 105(47): 10739-10746. doi: 10.1021/jp011819h
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 85.7 %HTML全文: 85.7 %摘要: 12.1 %摘要: 12.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 86.3 %其他: 86.3 %Beijing: 4.7 %Beijing: 4.7 %Beishi: 0.0 %Beishi: 0.0 %Boulder: 0.0 %Boulder: 0.0 %Brooklyn: 0.0 %Brooklyn: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changchun: 0.1 %Changchun: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chaowai: 0.1 %Chaowai: 0.1 %Chengdu: 0.0 %Chengdu: 0.0 %Daxing: 0.0 %Daxing: 0.0 %Ghent: 0.0 %Ghent: 0.0 %Guangzhou: 0.1 %Guangzhou: 0.1 %Guangzhou Shi: 0.0 %Guangzhou Shi: 0.0 %Haikou: 0.0 %Haikou: 0.0 %Hangzhou: 0.2 %Hangzhou: 0.2 %Heerlen: 0.0 %Heerlen: 0.0 %Hefei: 0.1 %Hefei: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinhua: 0.0 %Jinhua: 0.0 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Kuala Lumpur: 0.0 %Kuala Lumpur: 0.0 %Lancaster: 0.0 %Lancaster: 0.0 %luohe shi: 0.0 %luohe shi: 0.0 %Manchester: 0.0 %Manchester: 0.0 %Mountain View: 0.1 %Mountain View: 0.1 %New York: 0.0 %New York: 0.0 %Newark: 0.0 %Newark: 0.0 %Qingdao: 0.0 %Qingdao: 0.0 %Qinnan: 0.0 %Qinnan: 0.0 %Shanghai: 0.2 %Shanghai: 0.2 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.3 %Shenzhen: 0.3 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %Shuozhou: 0.1 %Shuozhou: 0.1 %Singapore: 0.0 %Singapore: 0.0 %Taichung: 0.0 %Taichung: 0.0 %Taipei: 0.0 %Taipei: 0.0 %Taiyuan: 0.1 %Taiyuan: 0.1 %Weinan: 0.0 %Weinan: 0.0 %Wuhan: 0.0 %Wuhan: 0.0 %Xi'an: 0.1 %Xi'an: 0.1 %XX: 4.2 %XX: 4.2 %Yuncheng: 0.1 %Yuncheng: 0.1 %Yuzhong Chengguanzhen: 0.0 %Yuzhong Chengguanzhen: 0.0 %Zhengzhou: 0.0 %Zhengzhou: 0.0 %上海: 0.1 %上海: 0.1 %丽水: 0.0 %丽水: 0.0 %北京: 0.6 %北京: 0.6 %台州: 0.0 %台州: 0.0 %合肥: 0.0 %合肥: 0.0 %天津: 0.0 %天津: 0.0 %宁波: 0.0 %宁波: 0.0 %杭州: 0.0 %杭州: 0.0 %武汉: 0.0 %武汉: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %深圳: 0.1 %深圳: 0.1 %清远: 0.0 %清远: 0.0 %漯河: 0.0 %漯河: 0.0 %芝加哥: 0.0 %芝加哥: 0.0 %衢州: 0.1 %衢州: 0.1 %运城: 0.0 %运城: 0.0 %连云港: 0.0 %连云港: 0.0 %郑州: 0.2 %郑州: 0.2 %防城港: 0.0 %防城港: 0.0 %阳泉: 0.1 %阳泉: 0.1 %其他BeijingBeishiBoulderBrooklynChang'anChangchunChangshaChaowaiChengduDaxingGhentGuangzhouGuangzhou ShiHaikouHangzhouHeerlenHefeiHyderabadJinhuaJinrongjieKuala LumpurLancasterluohe shiManchesterMountain ViewNew YorkNewarkQingdaoQinnanShanghaiShenyangShenzhenShijiazhuangShuozhouSingaporeTaichungTaipeiTaiyuanWeinanWuhanXi'anXXYunchengYuzhong ChengguanzhenZhengzhou上海丽水北京台州合肥天津宁波杭州武汉洛杉矶深圳清远漯河芝加哥衢州运城连云港郑州防城港阳泉Highcharts.com
图( 8) 表( 2)
计量
  • 文章访问数:  6512
  • HTML全文浏览数:  6512
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-04
  • 录用日期:  2020-05-19
  • 刊出日期:  2021-01-10
刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
引用本文: 刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
Citation: LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025

有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响

    通讯作者: 闫莹(1980—),女,博士,副教授。研究方向:电化学和低温水处理。E-mail:wendy@ecust.edu.cn
    作者简介: 刘勰(1995—),女,硕士研究生。研究方向:低温水处理。E-mail:xieliu@mail.ecust.edu.cn
  • 华东理工大学资源与环境工程学院,国家环境保护化工过程环境风险评价与控制重点实验室,上海 200237
基金项目:
国家自然科学基金资助项目(21876050)

摘要: 冷冻法在有机废水处理方面取得了良好的应用效果,但其分离机理缺乏深入的研究。为深入研究冷冻法对有机污染物的处理效果及分离机理,采用悬浮冷冻结晶法,对废水中己烷、正己酸、正己醇和正己醛4种具有不同官能团的有机物污染物进行分离实验,并采用量子化学方法计算了氢键结合能,进一步探讨了有机物官能团对冰晶杂质浓度的影响机理。悬浮结晶实验结果表明,废水中己烷、正己酸、正己醇和正己醛的去除率分别可达67.07%、87.75%、94.71%和95.32%。量子化学计算结果表明,极性有机物官能团和水分子间缔结的氢键结合能越大,其对应的冰晶杂质浓度越高,从而导致有机物去除率越低。正己醛3种极性有机物(正己酸、正己醇和正己醛)中和水分子间氢键结合能最小,对应的去除率最高。而己烷作为非极性有机物,无法和水分子间缔结产生氢键,因而极易在悬浮结晶时析出,与悬浮冰晶混合于溶液上层,故其去除率最低。以上研究结果从分子水平加深了对冷冻法在有机废水处理中作用机理的理解,可为该技术在水处理领域的深入研究提供参考。

English Abstract

  • 冷冻法作为一种清洁、高效且具有广阔应用前景的水处理技术,在废水处理[1-3]和食品工业[4-5]等方面展现出众多优势,例如设备腐蚀低、没有二次污染和无需化学添加剂等[6]。冷冻过程中,水分子在凝固点结晶为冰晶,同时可溶性污染物则在液相中积聚[7]。因此,通过分离冰-液体混合物可以得到洁净水。根据冰晶的生长方式,冷冻法可分为渐进冷冻法和悬浮结晶法[8]。与渐进冷冻法相比,悬浮结晶法具有更大的固液界面,更高的能量传递效率和更快的冰晶生长速度[9]。因此,悬浮结晶法在实验和理论研究方面均受到了更加广泛的关注。

    近年来,研究人员从多个方面对冷冻法进行研究,例如通过建立数学模型预测冰晶生长速度,将数字图像处理技术运用于研究冰晶的形状和大小[10-11]。有研究[12-13]表明,由于在悬浮结晶过程中,污染物会进入冰晶中,从而降低冰晶纯度,因此,冰晶纯度是冷冻法的研究核心。但是,从分子水平层面来看,对杂质进入冰晶的机理仍然缺乏相关的报道和研究。

    本研究以4种不同官能团有机物污染物(即己烷、正己酸、正己醇和正己醛)为研究对象,利用悬浮结晶法进行污染物分离实验,探讨了不同有机污染物在冷冻浓缩过程中所形成的冰晶中的杂质浓度变化。此外,运用量子化学计算,通过几何优化和约化密度梯度(RDG)分析,从理论上研究了拥有不同官能团的有机物污染物与水分子之间形成的氢键强度,以探究官能团与水分子形成的氢键强度对冰晶纯度的影响。

  • 图1为悬浮结晶实验装置示意图。该装置配有低温恒温槽(1.5 kW,DC-4006,郑州北润仪器有限公司),并搭载数显电动搅拌器(JJ-1A,60W Tenke科学仪器公司,中国)。在整个悬浮结晶过程,用温度记录仪(sh-x24,多通道东莞联谊仪器有限公司,中国)监控溶液温度的变化。500 mL广口瓶置于装有无水乙醇的低温恒温槽中,通过搅拌器改变悬浮结晶过程中的转速。用软木塞密封容量瓶,以减少外部环境因素的干扰并防止有机物挥发。在整个悬浮结晶过程中,用温度记录仪监控溶液温度的变化。

  • 分别将250 mL浓度为1.6 mmol·L−1的模拟溶液(己烷、正己醇、正己醛和正己酸)(购自阿拉丁,纯度大于99%)放入500 mL广口瓶中。冷冻悬浮结晶实验工艺参数设置如表1所示。该悬浮结晶实验中,冷冻温度均设定为溶液的冰点以下。为进一步研究冰晶杂质浓度差异,本文分别在不同冷冻温度、冷冻时间及转速等实验条件下,研究在不同有机污染物中冰晶中杂质浓度的差异。

    在实验过程中,当溶液温度降低至设定温度时,向广口瓶中投入0.1 g晶种,并从此时开始记录冷冻时间。悬浮结晶完成后,将冰晶收集用自制分离装置在离心机中以1 000 r·min−1离心1 min,从而将冰晶与表面残留污染物分离。随后,在室温(25±2) ℃下将其融化,并用TOC分析仪(TOC-VCPH,Shimadzu,Japan)测量原水和冰晶融化后的总有机碳(TOC)。最后,根据式(1)计算冰晶不纯度。

    式中:R为冰晶不纯度;CRW为原溶液的TOC,mg·L−1CI为冰融水的TOC,mg·L−1

  • 本研究模拟了水分子与四种有机物杂质之间形成的氢键。通过DFT和Becke的3参数混合泛函[14]结合Gaussian 09,选取6-31+G**基组,使用Lee-Yang-Parr的B3LYP泛函[15]优化,分别对有机物和水分子进行几何优化,从而得到能量最低的初始构型,再基于该初始构型进行几何优化,得到能量最低的构型,并且引入了吸附能以研究氢键的特性[16]。通常认为,如果在定义为R1-A-H和B-R2的2个物种之间存在分子间力,则可以通过式(2)证明这种相互作用的能量。

    式中:E(R1—A—H···B—R2)、E(R1—A—H)、E(B—R2)分别为各个化合物在稳定状态下的单点能,kJ·mol−1;R1—A—H···B—R2体系由于形成结合键而稳定,因此,ΔE值为负。在O—H···O体系中,深入研究氢键强度和H···B间距离的关系。由于氢键体系易以线性呈现,因此,将A—H···B角度作为氢键的几何特征进行研究。通过RDG的分析结果[17]实现对有机物与水分子之间的范德华相互作用和氢键的可视化呈现,从而有利于深入理解有机物与水分子之间的相互作用[18]

  • 图2所示,在己烷、正己酸、正己醇和正己醛4种具有不同官能团有机物的悬浮结晶分离实验中,转速200 r·min−1,−0.9 ℃冷冻温度,30 min反应时长,发现其去除率分别为67.07%、87.75%、94.71%和95.32%。其中对于非极性有机物己烷,其去除率最低仅有67.07%,而对于3种极性有机物,其去除率呈现一定差异。结果表明,对于具有不同官能团的有机物,在悬浮结晶过程中形成的冰晶杂质浓度有明显差异。

    通过冰点测定实验,分别得到4种有机物的冰点温度(己烷−0.21 ℃、正已醇−0.25 ℃、正己醛−0.23 ℃正己酸−0.25 ℃)(图3),发现其冰点温度均在−0.2 ℃左右。由于溶液结冰时需要一定的过冷度,因此,将初始实验温度设定为低于冰点的−0.4 ℃。并分别在过冷度为0.2、0.7、1.7、2.4 ℃的工况下,进行悬浮结晶测试。

    图4所示,当固定转速为200 r·min−1,冷冻时间为30 min,随着冷冻温度降低,4种有机杂质在冰晶中的浓度呈下降趋势,但当温度低于一定限值时,会发生过冷效应,部分杂质重新进入冰晶中,从而使得冰晶杂质浓度升高。更重要的是,由图4中可明显看出,在己烷溶液中,在各温度下所形成的冰晶杂质浓度均要明显高于其他3种有机溶液。其主要原因在于,己烷是非极性有机物,其在水中的溶解度较低,在低温下易于析出,且悬浮在溶液表面,易掺入溶液上层悬浮的冰晶中,从而使得冰晶杂质浓度明显上升。

    图5所示,当固定的冷冻温度为−0.9 ℃,转速为200 r·min−1,随着冷冻时间的延长,在4种有机物溶液中,悬浮结晶形成的冰晶中有机物杂质浓度均呈降低的趋势。但是,在己烷溶液中,冰晶的杂质浓度要明显高于其他3种有机溶液。

    在研究转速对冰晶杂质浓度的过程中可以发现,转速的影响主要体现在结冰速率和有机物掺杂这2个方面。如图6所示,当固定的冷冻温度为−0.9 ℃,冷冻时间为30 min,对于正己醇,正己醛和正己酸这3种极性有机物杂质,当转速处于低速区间时(200 r·min−1内),结冰速率相对较慢,且由于这3种极性有机物溶解度较高,在搅拌的作用下,转速的增加会加速杂质进入冰晶中。而当转速处于高速区间时(大于200 r·min−1),随着转速的增加,结冰速率明显加快,不利于杂质的进入,从而使得冰晶杂质浓度逐渐降低。此时,转速的提高起到加速杂质分离的作用。然而,转速对于己烷的作用恰好相反。经过分析认为,由于己烷溶解度较低,因此,当转速在低速区间时,更利于杂质和冰晶的分离;当转速超过临界值后,会加速己烷析出并和溶液上层悬浮的冰晶混合,从而使得最终冰晶的杂质浓度上升。另外,在己烷溶液中,冰晶的杂质浓度依然明显高于其他3种有机物中形成的冰晶杂质浓度。

    通过上述分析可以发现,转速、温度等实验工况对不同有机物杂质进入冰晶的浓度具有影响。并且,己烷溶液的冰晶杂质浓度明显高于正己醇、正己醛和正己酸溶液的冰晶杂质浓度。该结果表明,相比于有官能团的极性有机物(正己醇、正己醛和正己酸),在没有官能团的非极性己烷的溶液中,更容易导致冰晶杂质浓度上升。其原因在于,非极性己烷在水中的溶解度较低,在浓缩效应的作用下,在冷冻过程中更容易析出。析出的正己烷和悬浮结晶形成的冰晶,由于密度较低,会漂浮在溶液上层并逐渐发生混合。因此,己烷会附着在冰晶的表面,并且在离心过程中很难被去除,从而使得冰杂质浓度要明显高于具有较高溶解度的极性正己醇、正己醛和正己酸。但是,在相同冷冻条件下,对于具有不同官能团的正己醇、正己醛和正己酸溶液中仍然呈现出冰晶杂质浓度的差异。通过量子化学计算其氢键强度,可以进一步深入分析杂质浓度差异与氢键强度相关性。

  • 模型几何结构优化结果见图7,通过对不同有机物分子和水分子进行结构优化以达到能量最低的稳定状态。如图7(a)可见,在己烷分子中,17C—19H键由原来的0.109 5 nm,经过结构优化后缩短至0.109 nm。氢原子(己烷分子)与氧原子(水分子)距离为0.259 nm。由己烷分子和水分子优化后的总能量与单个己烷和水分子之和的能量差为−1.93 kJ·mol−1,这表明己烷分子和水分子没有缔合形成氢键,仅存在较弱的分子间作用力。

    正己醇和正己醛分别可以与水分子形成一个氢键(图7(b)图7(c))。其中,正己醇的羟基中氧原子和水分子中氢原子形成的氢键键长为0.189 nm。并且形成氢键后,正己醇的17C—20O和20O—21H键长分别由原来的0.143 nm和0.096 nm伸长至0.144 nm和0.097 nm。经过计算可知,正己醇和水分子间的氢键键能为−26.48 kJ·mol−1,20O—24H—22O的键角为172.46°。正己醛中的醛基中氧原子和水分子中氢原子形成的氢键键长为0.192 nm,醛基中的17C=19O的键长由原来的0.121 nm伸长至0.122 nm。经过计算可知,氢键作用能为−24.31 kJ·mol−1,19O—22H—20O键角为160.18°。由此可知,正己醇和正己醛与水分子形成的氢键键能十分接近。该理论计算的结果和上述悬浮结晶实验(图4~图6)中,正己醇和正己醛溶液中相似的冰晶杂质浓度结果相一致。

    与正己醇和正己醛不同,正己酸和水分子可以形成2个氢键(图7(d)),其中,羰基氧原子和水分子的氢形成氢键,键长为0.196 nm,羟基氢原子和水分子的氧原子形成氢键,键长为0.179 nm。正己酸和水分子形成氢键后,正己酸的17C=20O和18O—19H的键长由原来的0.121 nm和0.097 nm伸长至0.123 nm和0.099 nm。由计算可得,氢键键能为−44.10 kJ·mol−1。18O—19H—21O和20O—22H—21O的键角分别为156.26°和136.98°。

    为了提高4种有机物分子和水分子间作用力的可视化程度,利用RDG分析法对其相互作用力进行分析,其结果如图8所示,有机物和水分子之间的分子间力由彩色等值面表示,蓝色表示氢键,绿色表示范德华相互作用,红色表示强排斥力。

    已知正己酸和水分子间的氢键键能(−44.10 kJ·mol−1)明显高于正己醇和正己醛。如图8所示,正己酸和水分子间有明显蓝色等值面。而正己醇和正己醛与水分子间形成的氢键键能较弱(分别为−26.48 kJ·mol−1和−24.31 kJ·mol−1),因而其间等值面的蓝色区域面积明显较小。己烷和水分子间由于没有缔结氢键,因此,在其间的等值面完全呈现对应于范德华相互作用的绿色。

    通过计算结果(表2)可知,正己酸和水分子间缔结的氢键键能要远大于正己醇和正己醛。较大的氢键键能使得正己酸与水分子间存在较强的吸附能,从而使得正己酸在悬浮结晶过程中更容易进入冰晶中。因此,其冰晶的杂质浓度明显高于正己醇和正己醛中冰晶的杂质浓度。而正己烷由于是非极性有机物,其和水分子间无法缔结氢键,因此,其溶解性较差,从而在悬浮结晶过程中易于析出,漂浮在溶液表层并于悬浮在表层的冰晶混合,附着于冰晶表面,并难以通过离心分离,从而使得其冰晶的杂质浓度要远高于另外3种极性有机物杂质。本研究在探讨水分子和有机物分子物理吸附体系的理论计算过程中,是在基态即绝对零度下进行的,通过结构优化获得体系最低单点能,进而通过能量差算得分子间作用力。然而在现实情况下,无法实现绝对零度的理想条件,当环境温度升高时,体系焓则随之增加,不利于体系的稳定,而当温度降低时,则反之,有利于体系吉布斯自由能下降。根据吉布斯状态函数可知,熵的增加可导致吉布斯自由能降低,这有利于体系温度降低,而当熵减小时则反之。

  • 1)悬浮冷冻结晶法对废水中己烷、正己酸、正己醇和正己醛的去除率分别可达67.07%、87.75%、94.71%和95.32%,且有机污染物的官能团在冷冻结晶过程中发挥重要作用。

    2)非极性己烷溶液中形成的冰晶杂质浓度要明显高于其余3种极性有机溶液。

    3)量子化学理论分析对冰晶杂质浓度的变化机理的研究结果表明,极性有机污染物官能团和水分子之间缔结的氢键强度会明显影响冰晶杂质浓度,氢键吸附能越大,其冰晶杂质浓度越高,对应分离效果越差。

参考文献 (18)

返回顶部

目录

/

返回文章
返回