有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响

刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
引用本文: 刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
Citation: LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025

有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响

    作者简介: 刘勰(1995—),女,硕士研究生。研究方向:低温水处理。E-mail:xieliu@mail.ecust.edu.cn
    通讯作者: 闫莹(1980—),女,博士,副教授。研究方向:电化学和低温水处理。E-mail:wendy@ecust.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(21876050)
  • 中图分类号: X703

Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization

    Corresponding author: YAN Ying, wendy@ecust.edu.cn
  • 摘要: 冷冻法在有机废水处理方面取得了良好的应用效果,但其分离机理缺乏深入的研究。为深入研究冷冻法对有机污染物的处理效果及分离机理,采用悬浮冷冻结晶法,对废水中己烷、正己酸、正己醇和正己醛4种具有不同官能团的有机物污染物进行分离实验,并采用量子化学方法计算了氢键结合能,进一步探讨了有机物官能团对冰晶杂质浓度的影响机理。悬浮结晶实验结果表明,废水中己烷、正己酸、正己醇和正己醛的去除率分别可达67.07%、87.75%、94.71%和95.32%。量子化学计算结果表明,极性有机物官能团和水分子间缔结的氢键结合能越大,其对应的冰晶杂质浓度越高,从而导致有机物去除率越低。正己醛3种极性有机物(正己酸、正己醇和正己醛)中和水分子间氢键结合能最小,对应的去除率最高。而己烷作为非极性有机物,无法和水分子间缔结产生氢键,因而极易在悬浮结晶时析出,与悬浮冰晶混合于溶液上层,故其去除率最低。以上研究结果从分子水平加深了对冷冻法在有机废水处理中作用机理的理解,可为该技术在水处理领域的深入研究提供参考。
  • 在饮用水处理过程中,氯因其持久氧化性及经济性是目前最为常用的氧化剂和消毒剂。然而,氯与有机物反应会生成多种具有致畸性、致癌性消毒副产物(disinfection by-products,DBPs)。我国《生活饮用水卫生标准》(GB 5749-2022)对三卤甲烷(trihalomethanes,THMs)和卤乙酸(haloacetic acid,HAAs)进行了明确管控。除了已知的包括THMs、HAAs、卤代苯酚、亚硝铵等多种DBPs之外,饮用水中还存在着大量具有较高潜在毒性风险的未知DBPs。

    活性炭(activated carbon,AC)作为一种高效、经济的吸附剂广泛应用于饮用水厂和家用净水过滤系统中[1]。在预处理阶段,粉末活性炭常用于解决突发性微量污染物问题[2]。在净水过滤器中,AC可以作为其吸附剂的主要组分[3]。因此,在预处理阶段或者家用净水器端,AC不可避免的会与氯接触。之前的研究发现[4],AC本身也可与氯反应生成毒性更强的DBPs。且由于AC的催化作用,其可催化次氯酸产生氯自由基(Cl·),导致不同的氯化产物。BULMAN等[5]发现,氯光解过程中形成的多种活性氧化剂会诱导形成新兴的氯化DBPs。VOUDRIAS等[6]也发现AC会促进游离氯氧化酚类物质形成新的副产物。此外,AC作为优良的吸附剂既可以吸附溶解性天然有机物(dissolved organic matter,DOM),也可以吸附生成的DBPs,导致其对DOM氯化过程中DBPs的生成具有复杂的影响效应。因此,深入探究AC对DOM氯化过程中产生DBPs释放风险的影响具有重要意义。

    傅立叶变换离子回旋共振质谱(fourier transform ion cyclotron resonance mass spectrometry,FTICR-MS)是一种高分辨率质谱仪器。为了分析的精确性,其采用较长的采集时间和上百次的谱图叠加[7],用于检测DOM中的分子结构,也可鉴定高分子质量的有机化合物[8-9]。FTICR-MS可通过分子式的元素比率和芳香度信息来分析DOM的组分特征,从而研究DOM与生物、自然介质之间的关系[10]。ZHANG等[11]通过FTICR-MS对不同分子质量DOM馏分的光学和分子特征进行了研究,发现高度不饱和的芳香族物质富含电子,其与次氯酸表现出高反应性。AC氯化后会生成分子质量为1 000~10 000 Da的副产物,但具体的种类及AC对DOM氯化的影响机制还尚未明确。

    因此,本研究通过以是否在氯化过程中投加AC为变量,达到以下目的:1)研究AC对DOM氯化过程中产生已知DBPs的影响,并评价其出水产物毒性;2)通过FTICR-MS技术识别并明确AC对DOM氯化过程中产生的氯化产物种类的影响;3)通过FTICR-MS技术阐明AC对氯化过程中DOM特性转化的影响。

    本研究中使用的DBPs标准品为色谱纯,购自Accu Standard公司(美国);甲基叔丁基醚(methyl tert-butyl ether,MTBE)为色谱纯,购自北京百灵威科技有限公司;无水硫酸钠(Na2SO4)、碳酸氢钠(NaHCO3)、浓硫酸(H2SO4)、硫代硫酸钠(NaS2O3)和次氯酸钠(NaClO)均为分析纯,购自国药集团化学试剂有限公司;AC购自宁夏光华活性炭有限公司,选取椰壳炭的物理性质包括碘值1 030 mg·g−1,比表面积1 114 m2·g−1,平均孔径3.61 nm,总孔隙体积0.78 m2·g−1,微孔和介孔体积分别为0.3 m2·g−1和0.46 m2·g−1;其表面官能团结构包括碱性、酸性、酚醛、羧基和内酯基团的含量为0.58、0.50、0.11、0.38和0.02 mmoL·g−1。AC均用去离子水洗涤至滤液pH呈中性,在115 ℃下干燥12 h后,将其制备成1 g·L−1的悬浊液。原水(raw water,RW)取自中国北京京密引水渠,本研究所用的实验水样参数:pH=8.27,浊度为1.28 NTU,以CaCO3计的碱度和硬度分别为83.38 mg·L−1和111.00 mg·L−1,UV254为0.023 cm−1,溶解性有机碳(dissolved organic carbon,DOC)为2.21 mg·L−1

    将AC悬浊液超声后加入到1 L 0.1 mmol·L−1 NaClO的超纯水和RW中,AC质量浓度为10 mg·L−1,使用10 mmol·L−1磷酸盐缓冲液将溶液的pH调整为7.5,同时设计另一组实验,先使用AC对RW中的DOM进行吸附,再加氯进行反应。磁力搅拌24 h,检测反应0.5、1、2、24 h后水样中THMs和HAAs的浓度,同时对反应24 h的样品进行FTICR-MS分析,使用Na2S2O3淬灭余氯并利用0.45 μm的膜过滤去除AC,滤后水中加入5 g无水Na2SO4,使用MTBE作为萃取剂提取水样,HAAs还需甲醇酸化处理,使其衍化为卤乙酸甲酯,测定DBPs以及其他指标。

    THMs和HAAs的测定参考美国环境保护署标准方法(USEPA Standard Methods 551.1和552.3),THMs和HAAs的回归曲线如图1所示。测定的4种DBPs(TCM、CAA、DCAA、TCAA)采用配备电子捕获检测器(Agilent Technologies,Santa Clara,CA,USA)的气相色谱仪(Agilent 7 890,Santa Clara,USA)进行分析[12]。气相色谱柱为HP-5型的熔融石英毛细管柱(30 mm×0.25 mm内径,薄膜厚度为0.25 mm)。氯化反应开始前的溶液使用pH计(HACHHQ 40 d,Loveland Colorado,USA)校准成中性。余氯使用N,N-二乙基对苯二胺(DPD)方法进行测定,结果以mg·L−1的Cl2表示(HACH Pocket ColorimeterII,Loveland Colorado,USA)。总有机碳分析仪(total organic carbon,TOC,Elementar公司,德国)测定AC滤后水中DOC的浓度。溶液中的有机物含量使用紫外分光光度计(UV-6 100型,中国上海)进行测定。在5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)作为捕获剂的条件下,采用电子自旋共振波谱仪(electron spin resonance,ESR,A300-10/12型Bruker公司,德国)检测自由基。

    图 1  THMs和HAAs的回归曲线
    Figure 1.  Regression curves for THMs and HAAs

    仪器参数与操作步骤使用配备有15.0 T超导磁体和电喷雾电离源的FTICR-MS(Bruker Solari X型)对样品的分子组成进行分析。样品在负离子模式下进行测试,进样方式为连续进样,进样速度为150 μL·h−1,毛细管入口电压为4 kV,离子累积时间为0.08 s,相对分子质量采集范围为100~1 000 Da,采样点数为4 ppm,时域信号叠加300次以提高信噪比.上机测试前用10 mmol·L−1甲酸钠对仪器进行校正,样品检测完成后用可溶性有机质(已知分子式)进行内标校正。经过校正后,检测的质量误差均小于1 ppm。样品检测时取原水样品200 μL,过0.22 μm滤膜以去除颗粒物等杂质,然后用甲酸酸化水样,逐滴加入甲酸直至水样pH调节至2。然后对水样中的DOM进行SPE固相萃取(萃取柱型号为Agilent Bond Elut PPL(1.0 g,6 mL)。H/Cw、O/Cw和碳归一化双键当量(DBE/Cw)等分子式参数根据每个样品中指定分子式的相对强度加权平均值计算得出[13]。数据采用DOM中已知的CHO类化合物进行内标校准,如对应多个分子式,采用同系物规则和最小杂原子个数规则进行正确分子式筛选。

    图2所示,比较了AC是否存在和不同氯化方式对RW氯化过程中DBPs的释放情况。图2(a)所示为测定的DBPs浓度随时间变化规律,可以看到无论是否在RW中加入AC,DBPs浓度均随时间的延长升高,DBPs的总浓度在反应初始时可忽略不计。AC存在与不存在时DBPs的浓度分别从0.5 h的51.29 μg·L−1和103.19 μg·L−1上升至24 h的59.34 μg·L−1和137.87 μg·L−1,并且在2 h时达到较高水平,说明AC与0.1 mmol·L−1 NaClO在开始的2 h内剧烈反应生成大量DBPs。但加入AC的水样随着反应时间的增加,DBPs的变化并不明显,可能是由于部分DBPs及其前体物被AC快速吸附以及自由氯被大量消耗后导致反应速率下降。此外,进一步对比了在RW氯化过程中不同活性炭加入方式对DBPs生成释放的影响,结果如图2(a)所示。发现过滤掉AC后氯化方式产生的DBPs与AC一直存在的结果基本一致,说明AC在此过程中虽然可以吸附THMs、HAAs及其前体物,并且可以催化氯产生自由基,但对释放到水中THMs及HAAs影响较小。如图2(b)所示,在AC存在时,氯的衰减率明显增加,但释放到水体的目标DBPs浓度较未加入AC时更低。AC存在时余氯衰减快,测得DBPs较少。一方面是由于生成的DBPs被AC吸附,另一方面具有较强还原性的AC本身也会快速消耗自由氯。如图2(a)所示,单独在24 h时测定AC吸附的DBPs,发现即使将吸附反应后的AC经有机溶剂丙酮浸泡,并超声处理释放DBPs,测定的4种TCM、CAA、DCAA、TCAA的质量浓度分别为19.85、16.29、12.08、12.50 μg·L−1,可以发现加入AC组的DBPs总质量浓度(120.05 μg·L−1)仍低于不加入AC组(147.87 μg·L−1)。此外,如图3所示,还测定了在纯水中AC与过量氯反应产生的DBPs。发现THMs及HAAs的浓度先下降后上升。这是由于AC前期吸附性较强,后期吸附能力下降,生成的DBPs逐渐释放到水中。同时对水中的DOC进行测定,前2 h的DOC浓度均为先下降后上升,但随着反应时间的继续增加,加入AC组的DOC浓度继续上升,而未加入AC组却呈现下降趋势。这一现象说明AC影响了DOM的氯化过程,导致其结构被破坏且生成了其他副产物。VOUDRIAS等[14]发现AC会导致一系列自由基连锁反应的发生。HUANG等[4]研究了THMs和HAAs在AC存在下的含量变化,但没有研究其单独氯化DOM的情况,而且AC存在时溶液的细胞毒性也有所增强。因此,还需进一步探究AC存在时的氯化副产物的变化。

    图 2  RW氯化过程中,对比是否存在AC、后氯化和24 h AC吸附的目标DBPs浓度和余氯、DOC变化
    Figure 2.  Comparison of target DBPs concentrations and changes in residual chlorine and DOC during RW chlorination in the presence or absence of AC, post-chlorination and 24-hour AC adsorption
    图 3  纯水中AC与过量氯测定的目标DBPs浓度
    Figure 3.  Concentration of target DBPs determined by AC with excess chlorine in pure water

    图4所示,通过FTICR-MS探究了AC对氯化副产物的影响。由图4(a)可以看到,在RW氯化过程中,其产物匹配了302个氯化分子式,而AC存在时的氯化产物中,可对应220个氯化分子式。进一步分析302种氯化产物,其中163种分子式与AC存在时相同,因此AC存在时的氯化会导致部分氯化产物减少,但也生成了新的氯化产物包括57种在内的独特分子式,其中CHOCl、CHONCl、CHOSCl、CHNSCl、CHNOSCl分子式各生成了42、5、5、2、3种。如图4(b)所示,在有AC存在的氯化过程中,氯化副产物产生的含有2个和3个氯原子的DBPs相对较少。在AC存在的氯化水样中,生成含有2个和3个Cl原子的分子式分别为90个和19个;而在RW氯化过程中,生成含有2个和3个Cl原子的分子式为125个和25个。此外,如表1所示,经对比发现,AC存在时,CHOCl、CHONCl、CHONSCl分子式的数量减少,而CHOSCl的分子式增加,并且CHOCl、CHONCl以及CHOSCl和CHONSCl分子式的H/Cw值均低于RW的氯化过程,相反的是O/Cw均高于RW氯化。有研究[15]表明,与传统的暗氯化生成副产物的生成机制不同,活性氯物种(reactive chlorine species,RCS)与有机物的主要反应机理是氯加成、单电子转移和氢抽取反应。BEN等[16]和SUN等[17]发现氯可以通过自由基链式反应发生降解,从而减少自身与其他物质的接触时间。RCS和DOM结合也会影响靶向DBPs的生成,诱导形成新型的DBPs[5],这可能是AC存在时有Cl·的生成,从而发生的后续自由基反应导致H/Cw值较低、O/Cw较高。

    图 4  AC在RW氯化过程后形成氯化副产物的范克雷维伦图和该过程中形成的含氯副产物的计数
    Figure 4.  Van Krevelen diagram of the formation of chlorination by-products of AC after the RW chlorination process and the counting of chlorine-containing by-products neutral to the process
    表 1  RW氯化过程中的氯化产物分子式分子指数的强度加权平均值
    Table 1.  Intensity-weighted average of molecular indices of molecular formulae for chlorination products during the RW chlorination process
    分子式 水样 H/CW O/CW DBEW AImod,w 总强度 相对丰度/%
    CHOCl 不含AC 1.29 0.50 6.98 0.22 4.60×109 93.77
    含AC 1.23 0.54 7.24 0.25 2.8×109 94.38
    CHONCl 不含AC 1.42 0.28 8.84 0.17 1.48×108 3.41
    含AC 1.33 0.33 9.22 0.24 7.52×107 2.54
    CHOSCl 不含AC 1.68 0.21 7.28 0.03 6.8×107 1.37
    含AC 1.67 0.51 3.69 -0.31 6.15×107 2.07
    CHONSCl 不含AC 1.6 0.30 7.02 -0.14 7.2×107 1.45
    含AC 0.49 0.13 0.65 -0.12 4.02×107 1.01
     | Show Table
    DownLoad: CSV

    DOM的成分也会影响AC对氯的反应特性。因此,探究了AC存在时RW氯化过程中DOM的转化情况。基于修正后的芳香指数和H/C将溶解性有机质分为5类[18]:稠环多环芳烃(AImod>0.66)、多酚类物质(0.5<AImod≤0.66)、高度不饱和酚类物质(AImod≤0.5且H/C≤1.5)、脂肪类物质(AImod≤0.5和1.5<H/C≤2)和饱和类物质(H/C>2)[19]。如图5(a)和图5(b)所示,绝大部分有机物属于脂肪类物质、高度不饱和酚类物质和多酚类物质。此外,SUVA254(即UV254/DOC)可用来比较不同样品中的芳香族化合物的含量(即芳香度)[20]。芳香度与反应性有关,有机物的反应性反映了通过凝聚去除该有机物的难易程度,以及有机物与氯反应产生DBPs的可能性。如图6所示,对比了氯化后RW中是否存在AC时SUVA254的变化,THMs和HAAs的浓度随SUVA254的增加而增加[21]图5显示AC存在时的SUVA254低于不含AC的水样,与上述结果保持一致。含AC和不含AC的RW中DOC在氯化前后仅有轻微变化,这表明DOM未发生矿化作用。SUVA254还可以表征有机物中不饱和键数量(芳香特征),氯化后的RW中,加入AC组后的SUVA254较低,因此其芳香性低,DOM转化的较多。在两种氯化过程后,SUVA254均有所下降,尤其是AC存在时,BULMAN等[5]的研究也得到了类似的结果,这表明SUVA254的大幅下降可能是由于含有芳香族DOM分子,富含芳香族结构的化合物可以提供更强的疏水作用、离子相互作用和键合作用。

    图 5  RW氯化24 h后分子式的范克雷维伦图
    Figure 5.  van Krevelen plot of the molecular formula of RW after 24 h of chlorination
    图 6  RW氯化过程中SUVA254的变化
    Figure 6.  Changes in SUVA254 during chlorination of raw water

    利用FTICR-MS对有无AC存在的2种情况下的无氯分子式进行比较。如图5(c)所示,2种条件下,相同分子式的比例(约70%)显著高于氯化分子式的比例。如表2所示,CHO、CHON、CHOS和CHONS分子式的H/Cw和O/Cw相似。不含AC氯化条件下CHO、CHON、CHOS和CHONS分子式的DBEw均大于AC存在时氯化条件下的DBEw。较低的DBEw表明产生的DOM平均脂肪族含量更高,与SUVA254结果相一致。有研究[15, 22]表明,AC可与氧气反应生成过氧自由基,过氧自由基经过双分子衰变或单分子衰变生成醇或醛。因此,较低的DBEw可能是由于过氧自由基在AC和氧的活化下产生了部分醇。

    表 2  RW氯化过程后的非氯化产物分子式分子指数的强度加权平均值
    Table 2.  Intensity-weighted average of molecular indices of molecular formulae for non-chlorinated products after the RW chlorination process
    分子式 水样 H/CW O/CW DBEW AImod,w 总强度 相对丰度/%
    CHO 不含AC 1.23 0.52 9.54 0.24 1.79×1011 80.56
    含AC 1.23 0.52 9.35 0.23 1.79×1011 78.06
    CHON 不含AC 1.20 0.52 9.99 0.23 3.21×1010 14.45
    含AC 1.20 0.52 9.88 0.23 3.11×1010 13.56
    CHOS 不含AC 1.40 0.49 6.45 0.07 8.5×109 3.83
    含AC 1.42 0.53 6.40 0.03 1.54×1010 6.71
    CHONS 不含AC 1.51 0.55 7.81 -0.14 2.58×109 1.16
    含AC 1.55 0.60 7.12 -0.22 3.82×109 1.67
     | Show Table
    DownLoad: CSV

    采用ESR技术对AC氯化前后产生的自由基进行检测分析。如图7所示,在只含AC时,可检测到活性炭表面的持久性自由基。在AC氯化后发现了多重峰的存在,DMPO-H2O体系中的七重峰对应·Cl/DMPO加合物,表明在此过程中产生了Cl·[23],Cl·是一种对有机化合物具有较强选择性的自由基,易发生取代反应。由于Cl·具有很强的活性,因此,能够促进DBPs的生成,诱导某些有毒副产物的形成。ESR的结果表明,AC表面持久性自由基可催化次氯酸产生Cl·,在自由基的作用下,DOM与RCS之间会产生氯化副产物,尤其是亲核反应在其中发挥着很大作用,并且DOM的芳香性变强也有助于总有机氯的形成[24]。因此,氯化过程中AC会促进自由基的产生进而诱导其他类型DBPs的生成。

    图 7  AC氯化前后的ESR光谱对比
    Figure 7.  Comparison of ESR spectra before and after AC chlorination

    AC作为一种优良吸附剂被广泛应用于水处理工艺和终端净水过滤;同时,氯也是一种常见的预氧化剂和消毒剂。本文阐述了AC对RW氯化过程DBPs生成及DOM转化的影响,主要结果如下。

    1)虽然AC存在时余氯下降较为迅速,但生成的THMs及HAAs较少,这是由于AC优良的吸附性能以及还原性AC快速消耗氯生成其他DBPs,DOC的变化也可说明了这一变化趋势。

    2) FTICR-MS检测结果表明,AC存在时含氯物质的数量减少,Cl-DBPs的种类由302种减少到220种,其中有57种特异性氯代产物,CHOSCl化合物生成较多,其他CHOCl、CHONCl、CHONSCl化合物的数量减少。

    3) FTICR-MS的结果显示,AC存在时可鉴定的化合物数量呈下降趋势,其是否存在的两种情况,生成的化合物有较大区别,但大部分化合物均属于脂肪类物质、高度不饱和类及酚类物质和多酚类物质。AC存在时,SUVA254的大幅降低表明含有芳香性的DOM被转化,而未加入AC组没有发生矿化反应。

    4) AC表面持久性自由基催化次氯酸产生Cl·,Cl·引发的自由基反应是造成氯化产物及有机物形态改变的主要原因。

  • 图 1  在低温浴中搅拌下的悬浮结晶装置图

    Figure 1.  Experiment equipment of the suspension freeze process under stirring in a cryogenic bath

    图 2  己烷、正己酸、正己醇和正己醛在相同悬浮结晶条件下的去除率

    Figure 2.  Removal rate of hexane, N-hexanol, N-hexanal, hexanoic acid under same freeze concentration condition

    图 3  己烷、正己醇、正己醛和正己酸溶液的逐步冷却曲线

    Figure 3.  Step cooling curves of hexane, N-hexanol, N-hexanal, hexanoic acid

    图 4  不同冷冻温度下的冰晶不纯度变化

    Figure 4.  Changes of ice impurity at different freezing temperatures

    图 5  不同冷冻时间下的冰晶不纯度变化

    Figure 5.  Changes of ice impurity at different freezing times

    图 6  不同转速下的冰晶不纯度变化

    Figure 6.  Changes of ice impurity at different rotational speeds

    图 7  模型几何结构优化结果

    Figure 7.  Results of model geometry optimization

    图 8  水分子与有机物结合的RDG等值面图

    Figure 8.  RDG iso-surface map of organic bonding with water molecules

    表 1  悬浮结晶测试期间的实验条件

    Table 1.  Experimental conditions during the suspension freeze test

    冷冻温度/℃转速/(r·min−1)冷冻时间/min
    −0.420030
    −0.920030
    −1.920030
    −2.620030
    −0.910030
    −0.920030
    −0.930030
    −0.940030
    −0.920010
    −0.920030
    −0.920060
    −0.9200120
    冷冻温度/℃转速/(r·min−1)冷冻时间/min
    −0.420030
    −0.920030
    −1.920030
    −2.620030
    −0.910030
    −0.920030
    −0.930030
    −0.940030
    −0.920010
    −0.920030
    −0.920060
    −0.9200120
    下载: 导出CSV

    表 2  模型化合物和稳态能量

    Table 2.  Model compounds and steady state energy

    计算化合物类型化合物单点能/(kJ·mol−1)分子间作用力/(kJ·mol−1)
    H2O−200 677.59
    己烷−622 531.83
    正己醇−820 010.87
    正己醛−816 830.71
    正己酸−1 014 428.12
    己烷&H2O−823 211.35−1.93
    正己醇&H2O−1 020 714.94−26.48
    正己醛&H2O−1 017 532.61−24.31
    正己酸&H2O−1 215 149.81−44.10
    计算化合物类型化合物单点能/(kJ·mol−1)分子间作用力/(kJ·mol−1)
    H2O−200 677.59
    己烷−622 531.83
    正己醇−820 010.87
    正己醛−816 830.71
    正己酸−1 014 428.12
    己烷&H2O−823 211.35−1.93
    正己醇&H2O−1 020 714.94−26.48
    正己醛&H2O−1 017 532.61−24.31
    正己酸&H2O−1 215 149.81−44.10
    下载: 导出CSV
  • [1] 陈晓远, 闫莹, 范成李, 等. 悬浮结晶法预处理敌草胺生产废水[J]. 化工环保, 2019, 39(2): 53-57.
    [2] 方汉昭. 冷冻盐析法处理硫酸废液技术[J]. 环境工程, 1995, 13(4): 7-9.
    [3] 袁怡, 黄勇, 李祥, 等. 长期保藏对厌氧氨氧化污泥脱氮性能的影响[J]. 环境工程学报, 2014, 8(5): 2051-2056.
    [4] 米兰, 冯奥博, 盛文军, 等. 沙棘原浆冷冻浓缩工艺的响应面优化[J]. 食品工业科技, 2018, 39(1): 143-148.
    [5] 樊士昊, 白羽嘉, 郑万财, 等. 不同冷冻浓缩度对和田红葡萄酒品质影响[J]. 食品研究与开发, 2017, 38(23): 82-87. doi: 10.3969/j.issn.1005-6521.2017.23.015
    [6] 秦贯丰, 原娇娇. 苹果汁冷冻浓缩与真空蒸发浓缩的对比实验研究[C]//中国食品科学技术学会. 2018年中国食品科学技术学会学术年会论文集. 山东, 2018: 387-388.
    [7] GAY G, LORAIN O, AZOUNI A, et al. Wastewater treatment by radial freezing with stirring effects[J]. Water Research, 2003, 37(10): 2520-2524. doi: 10.1016/S0043-1354(03)00020-4
    [8] 连建枝. 冷冻浓缩生产工艺技术及其设备的研究[D]. 福州: 福建农林大学, 2011.
    [9] ORELLANA P P, PETZOLD G, TORRES N, et al. Elaboration of orange juice concentrate by vacuum-assisted block freeze concentration[J]. Journal of Food Processing and Preservation, 2018, 42(2): e13438. doi: 10.1111/jfpp.13438
    [10] CHIVAVAVA J, RODRIGUEZ P M, LEWIS A E. Effect of operating conditions on ice characteristics in continuous eutectic freeze crystallization[J]. Chemical Engineering & Technology, 2014, 37(8): 1314-1320.
    [11] EMILY M A B, MARCOS R P, ALISON E L, et al. Influence of phenol on the crystallization kinetics and quality of ice and sodium sulfate decahydrate during eutectic freeze crystallization[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11926-11935.
    [12] 王沥东, 冯万里, 陈晓远, 等. 悬浮结晶法冷冻处理喹乙醇生产废液[J]. 化工环保, 2019, 22(4): 79-83.
    [13] CHEN P, SONG P, WANG L, et al. Recovering sodium erythorbate from wastewater through freeze crystallization technology[J]. Water Environment Research, 2019, 91(5): 455-461. doi: 10.1002/wer.1043
    [14] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652. doi: 10.1063/1.464913
    [15] LEE C, YANG W, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter and Materials Physics, 1988, 37(2): 785-789. doi: 10.1103/PhysRevB.37.785
    [16] JOHNSON E R, KEINAN S, MORI S P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506. doi: 10.1021/ja100936w
    [17] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885
    [18] GRABOWSKI J S. Ab Initio calculations on conventional and unconventional hydrogen bonds study of the hydrogen bond strength[J]. Journal of Physical Chemistry A, 2001, 105(47): 10739-10746. doi: 10.1021/jp011819h
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.250.50.7511.25Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.0 %DOWNLOAD: 3.0 %HTML全文: 80.0 %HTML全文: 80.0 %摘要: 17.0 %摘要: 17.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %XX: 0.3 %XX: 0.3 %张家口: 0.1 %张家口: 0.1 %其他XX张家口Highcharts.com
图( 8) 表( 2)
计量
  • 文章访问数:  6531
  • HTML全文浏览数:  6531
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-04
  • 录用日期:  2020-05-19
  • 刊出日期:  2021-01-10
刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
引用本文: 刘勰, 陈鹏, 范成李, 殷迪, 金亮, 张乐华, 闫莹. 有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响[J]. 环境工程学报, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025
Citation: LIU Xie, CHEN Peng, FAN Chengli, YIN Di, JIN Liang, ZHANG Lehua, YAN Ying. Influence of hydrogen bond strength between functional groups of organic pollutant and water molecules on ice impurity during suspension crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 57-64. doi: 10.12030/j.cjee.202003025

有机物官能团与水分子间氢键强度对冷冻结晶过程中冰晶纯度的影响

    通讯作者: 闫莹(1980—),女,博士,副教授。研究方向:电化学和低温水处理。E-mail:wendy@ecust.edu.cn
    作者简介: 刘勰(1995—),女,硕士研究生。研究方向:低温水处理。E-mail:xieliu@mail.ecust.edu.cn
  • 华东理工大学资源与环境工程学院,国家环境保护化工过程环境风险评价与控制重点实验室,上海 200237
基金项目:
国家自然科学基金资助项目(21876050)

摘要: 冷冻法在有机废水处理方面取得了良好的应用效果,但其分离机理缺乏深入的研究。为深入研究冷冻法对有机污染物的处理效果及分离机理,采用悬浮冷冻结晶法,对废水中己烷、正己酸、正己醇和正己醛4种具有不同官能团的有机物污染物进行分离实验,并采用量子化学方法计算了氢键结合能,进一步探讨了有机物官能团对冰晶杂质浓度的影响机理。悬浮结晶实验结果表明,废水中己烷、正己酸、正己醇和正己醛的去除率分别可达67.07%、87.75%、94.71%和95.32%。量子化学计算结果表明,极性有机物官能团和水分子间缔结的氢键结合能越大,其对应的冰晶杂质浓度越高,从而导致有机物去除率越低。正己醛3种极性有机物(正己酸、正己醇和正己醛)中和水分子间氢键结合能最小,对应的去除率最高。而己烷作为非极性有机物,无法和水分子间缔结产生氢键,因而极易在悬浮结晶时析出,与悬浮冰晶混合于溶液上层,故其去除率最低。以上研究结果从分子水平加深了对冷冻法在有机废水处理中作用机理的理解,可为该技术在水处理领域的深入研究提供参考。

English Abstract

  • 冷冻法作为一种清洁、高效且具有广阔应用前景的水处理技术,在废水处理[1-3]和食品工业[4-5]等方面展现出众多优势,例如设备腐蚀低、没有二次污染和无需化学添加剂等[6]。冷冻过程中,水分子在凝固点结晶为冰晶,同时可溶性污染物则在液相中积聚[7]。因此,通过分离冰-液体混合物可以得到洁净水。根据冰晶的生长方式,冷冻法可分为渐进冷冻法和悬浮结晶法[8]。与渐进冷冻法相比,悬浮结晶法具有更大的固液界面,更高的能量传递效率和更快的冰晶生长速度[9]。因此,悬浮结晶法在实验和理论研究方面均受到了更加广泛的关注。

    近年来,研究人员从多个方面对冷冻法进行研究,例如通过建立数学模型预测冰晶生长速度,将数字图像处理技术运用于研究冰晶的形状和大小[10-11]。有研究[12-13]表明,由于在悬浮结晶过程中,污染物会进入冰晶中,从而降低冰晶纯度,因此,冰晶纯度是冷冻法的研究核心。但是,从分子水平层面来看,对杂质进入冰晶的机理仍然缺乏相关的报道和研究。

    本研究以4种不同官能团有机物污染物(即己烷、正己酸、正己醇和正己醛)为研究对象,利用悬浮结晶法进行污染物分离实验,探讨了不同有机污染物在冷冻浓缩过程中所形成的冰晶中的杂质浓度变化。此外,运用量子化学计算,通过几何优化和约化密度梯度(RDG)分析,从理论上研究了拥有不同官能团的有机物污染物与水分子之间形成的氢键强度,以探究官能团与水分子形成的氢键强度对冰晶纯度的影响。

  • 图1为悬浮结晶实验装置示意图。该装置配有低温恒温槽(1.5 kW,DC-4006,郑州北润仪器有限公司),并搭载数显电动搅拌器(JJ-1A,60W Tenke科学仪器公司,中国)。在整个悬浮结晶过程,用温度记录仪(sh-x24,多通道东莞联谊仪器有限公司,中国)监控溶液温度的变化。500 mL广口瓶置于装有无水乙醇的低温恒温槽中,通过搅拌器改变悬浮结晶过程中的转速。用软木塞密封容量瓶,以减少外部环境因素的干扰并防止有机物挥发。在整个悬浮结晶过程中,用温度记录仪监控溶液温度的变化。

  • 分别将250 mL浓度为1.6 mmol·L−1的模拟溶液(己烷、正己醇、正己醛和正己酸)(购自阿拉丁,纯度大于99%)放入500 mL广口瓶中。冷冻悬浮结晶实验工艺参数设置如表1所示。该悬浮结晶实验中,冷冻温度均设定为溶液的冰点以下。为进一步研究冰晶杂质浓度差异,本文分别在不同冷冻温度、冷冻时间及转速等实验条件下,研究在不同有机污染物中冰晶中杂质浓度的差异。

    在实验过程中,当溶液温度降低至设定温度时,向广口瓶中投入0.1 g晶种,并从此时开始记录冷冻时间。悬浮结晶完成后,将冰晶收集用自制分离装置在离心机中以1 000 r·min−1离心1 min,从而将冰晶与表面残留污染物分离。随后,在室温(25±2) ℃下将其融化,并用TOC分析仪(TOC-VCPH,Shimadzu,Japan)测量原水和冰晶融化后的总有机碳(TOC)。最后,根据式(1)计算冰晶不纯度。

    式中:R为冰晶不纯度;CRW为原溶液的TOC,mg·L−1CI为冰融水的TOC,mg·L−1

  • 本研究模拟了水分子与四种有机物杂质之间形成的氢键。通过DFT和Becke的3参数混合泛函[14]结合Gaussian 09,选取6-31+G**基组,使用Lee-Yang-Parr的B3LYP泛函[15]优化,分别对有机物和水分子进行几何优化,从而得到能量最低的初始构型,再基于该初始构型进行几何优化,得到能量最低的构型,并且引入了吸附能以研究氢键的特性[16]。通常认为,如果在定义为R1-A-H和B-R2的2个物种之间存在分子间力,则可以通过式(2)证明这种相互作用的能量。

    式中:E(R1—A—H···B—R2)、E(R1—A—H)、E(B—R2)分别为各个化合物在稳定状态下的单点能,kJ·mol−1;R1—A—H···B—R2体系由于形成结合键而稳定,因此,ΔE值为负。在O—H···O体系中,深入研究氢键强度和H···B间距离的关系。由于氢键体系易以线性呈现,因此,将A—H···B角度作为氢键的几何特征进行研究。通过RDG的分析结果[17]实现对有机物与水分子之间的范德华相互作用和氢键的可视化呈现,从而有利于深入理解有机物与水分子之间的相互作用[18]

  • 图2所示,在己烷、正己酸、正己醇和正己醛4种具有不同官能团有机物的悬浮结晶分离实验中,转速200 r·min−1,−0.9 ℃冷冻温度,30 min反应时长,发现其去除率分别为67.07%、87.75%、94.71%和95.32%。其中对于非极性有机物己烷,其去除率最低仅有67.07%,而对于3种极性有机物,其去除率呈现一定差异。结果表明,对于具有不同官能团的有机物,在悬浮结晶过程中形成的冰晶杂质浓度有明显差异。

    通过冰点测定实验,分别得到4种有机物的冰点温度(己烷−0.21 ℃、正已醇−0.25 ℃、正己醛−0.23 ℃正己酸−0.25 ℃)(图3),发现其冰点温度均在−0.2 ℃左右。由于溶液结冰时需要一定的过冷度,因此,将初始实验温度设定为低于冰点的−0.4 ℃。并分别在过冷度为0.2、0.7、1.7、2.4 ℃的工况下,进行悬浮结晶测试。

    图4所示,当固定转速为200 r·min−1,冷冻时间为30 min,随着冷冻温度降低,4种有机杂质在冰晶中的浓度呈下降趋势,但当温度低于一定限值时,会发生过冷效应,部分杂质重新进入冰晶中,从而使得冰晶杂质浓度升高。更重要的是,由图4中可明显看出,在己烷溶液中,在各温度下所形成的冰晶杂质浓度均要明显高于其他3种有机溶液。其主要原因在于,己烷是非极性有机物,其在水中的溶解度较低,在低温下易于析出,且悬浮在溶液表面,易掺入溶液上层悬浮的冰晶中,从而使得冰晶杂质浓度明显上升。

    图5所示,当固定的冷冻温度为−0.9 ℃,转速为200 r·min−1,随着冷冻时间的延长,在4种有机物溶液中,悬浮结晶形成的冰晶中有机物杂质浓度均呈降低的趋势。但是,在己烷溶液中,冰晶的杂质浓度要明显高于其他3种有机溶液。

    在研究转速对冰晶杂质浓度的过程中可以发现,转速的影响主要体现在结冰速率和有机物掺杂这2个方面。如图6所示,当固定的冷冻温度为−0.9 ℃,冷冻时间为30 min,对于正己醇,正己醛和正己酸这3种极性有机物杂质,当转速处于低速区间时(200 r·min−1内),结冰速率相对较慢,且由于这3种极性有机物溶解度较高,在搅拌的作用下,转速的增加会加速杂质进入冰晶中。而当转速处于高速区间时(大于200 r·min−1),随着转速的增加,结冰速率明显加快,不利于杂质的进入,从而使得冰晶杂质浓度逐渐降低。此时,转速的提高起到加速杂质分离的作用。然而,转速对于己烷的作用恰好相反。经过分析认为,由于己烷溶解度较低,因此,当转速在低速区间时,更利于杂质和冰晶的分离;当转速超过临界值后,会加速己烷析出并和溶液上层悬浮的冰晶混合,从而使得最终冰晶的杂质浓度上升。另外,在己烷溶液中,冰晶的杂质浓度依然明显高于其他3种有机物中形成的冰晶杂质浓度。

    通过上述分析可以发现,转速、温度等实验工况对不同有机物杂质进入冰晶的浓度具有影响。并且,己烷溶液的冰晶杂质浓度明显高于正己醇、正己醛和正己酸溶液的冰晶杂质浓度。该结果表明,相比于有官能团的极性有机物(正己醇、正己醛和正己酸),在没有官能团的非极性己烷的溶液中,更容易导致冰晶杂质浓度上升。其原因在于,非极性己烷在水中的溶解度较低,在浓缩效应的作用下,在冷冻过程中更容易析出。析出的正己烷和悬浮结晶形成的冰晶,由于密度较低,会漂浮在溶液上层并逐渐发生混合。因此,己烷会附着在冰晶的表面,并且在离心过程中很难被去除,从而使得冰杂质浓度要明显高于具有较高溶解度的极性正己醇、正己醛和正己酸。但是,在相同冷冻条件下,对于具有不同官能团的正己醇、正己醛和正己酸溶液中仍然呈现出冰晶杂质浓度的差异。通过量子化学计算其氢键强度,可以进一步深入分析杂质浓度差异与氢键强度相关性。

  • 模型几何结构优化结果见图7,通过对不同有机物分子和水分子进行结构优化以达到能量最低的稳定状态。如图7(a)可见,在己烷分子中,17C—19H键由原来的0.109 5 nm,经过结构优化后缩短至0.109 nm。氢原子(己烷分子)与氧原子(水分子)距离为0.259 nm。由己烷分子和水分子优化后的总能量与单个己烷和水分子之和的能量差为−1.93 kJ·mol−1,这表明己烷分子和水分子没有缔合形成氢键,仅存在较弱的分子间作用力。

    正己醇和正己醛分别可以与水分子形成一个氢键(图7(b)图7(c))。其中,正己醇的羟基中氧原子和水分子中氢原子形成的氢键键长为0.189 nm。并且形成氢键后,正己醇的17C—20O和20O—21H键长分别由原来的0.143 nm和0.096 nm伸长至0.144 nm和0.097 nm。经过计算可知,正己醇和水分子间的氢键键能为−26.48 kJ·mol−1,20O—24H—22O的键角为172.46°。正己醛中的醛基中氧原子和水分子中氢原子形成的氢键键长为0.192 nm,醛基中的17C=19O的键长由原来的0.121 nm伸长至0.122 nm。经过计算可知,氢键作用能为−24.31 kJ·mol−1,19O—22H—20O键角为160.18°。由此可知,正己醇和正己醛与水分子形成的氢键键能十分接近。该理论计算的结果和上述悬浮结晶实验(图4~图6)中,正己醇和正己醛溶液中相似的冰晶杂质浓度结果相一致。

    与正己醇和正己醛不同,正己酸和水分子可以形成2个氢键(图7(d)),其中,羰基氧原子和水分子的氢形成氢键,键长为0.196 nm,羟基氢原子和水分子的氧原子形成氢键,键长为0.179 nm。正己酸和水分子形成氢键后,正己酸的17C=20O和18O—19H的键长由原来的0.121 nm和0.097 nm伸长至0.123 nm和0.099 nm。由计算可得,氢键键能为−44.10 kJ·mol−1。18O—19H—21O和20O—22H—21O的键角分别为156.26°和136.98°。

    为了提高4种有机物分子和水分子间作用力的可视化程度,利用RDG分析法对其相互作用力进行分析,其结果如图8所示,有机物和水分子之间的分子间力由彩色等值面表示,蓝色表示氢键,绿色表示范德华相互作用,红色表示强排斥力。

    已知正己酸和水分子间的氢键键能(−44.10 kJ·mol−1)明显高于正己醇和正己醛。如图8所示,正己酸和水分子间有明显蓝色等值面。而正己醇和正己醛与水分子间形成的氢键键能较弱(分别为−26.48 kJ·mol−1和−24.31 kJ·mol−1),因而其间等值面的蓝色区域面积明显较小。己烷和水分子间由于没有缔结氢键,因此,在其间的等值面完全呈现对应于范德华相互作用的绿色。

    通过计算结果(表2)可知,正己酸和水分子间缔结的氢键键能要远大于正己醇和正己醛。较大的氢键键能使得正己酸与水分子间存在较强的吸附能,从而使得正己酸在悬浮结晶过程中更容易进入冰晶中。因此,其冰晶的杂质浓度明显高于正己醇和正己醛中冰晶的杂质浓度。而正己烷由于是非极性有机物,其和水分子间无法缔结氢键,因此,其溶解性较差,从而在悬浮结晶过程中易于析出,漂浮在溶液表层并于悬浮在表层的冰晶混合,附着于冰晶表面,并难以通过离心分离,从而使得其冰晶的杂质浓度要远高于另外3种极性有机物杂质。本研究在探讨水分子和有机物分子物理吸附体系的理论计算过程中,是在基态即绝对零度下进行的,通过结构优化获得体系最低单点能,进而通过能量差算得分子间作用力。然而在现实情况下,无法实现绝对零度的理想条件,当环境温度升高时,体系焓则随之增加,不利于体系的稳定,而当温度降低时,则反之,有利于体系吉布斯自由能下降。根据吉布斯状态函数可知,熵的增加可导致吉布斯自由能降低,这有利于体系温度降低,而当熵减小时则反之。

  • 1)悬浮冷冻结晶法对废水中己烷、正己酸、正己醇和正己醛的去除率分别可达67.07%、87.75%、94.71%和95.32%,且有机污染物的官能团在冷冻结晶过程中发挥重要作用。

    2)非极性己烷溶液中形成的冰晶杂质浓度要明显高于其余3种极性有机溶液。

    3)量子化学理论分析对冰晶杂质浓度的变化机理的研究结果表明,极性有机污染物官能团和水分子之间缔结的氢键强度会明显影响冰晶杂质浓度,氢键吸附能越大,其冰晶杂质浓度越高,对应分离效果越差。

参考文献 (18)

返回顶部

目录

/

返回文章
返回