-
混凝/絮凝是去除水中悬浮物常用的水处理方法。19世纪末,人类就开始使用含铝混凝剂进行水质净化,但对于铝可能对人类健康和环境造成的不利影响却一直存在争议[1]。为避免残余铝潜在的生物毒性,铁混凝剂越来越多地被开发和应用,铁混凝剂对溶解有机碳(DOC)的去除率高于铝混凝剂,对人类健康的不利影响较小[2]。但使用铝、铁混凝剂在混凝-絮凝过程中会产生大量的污泥,增加后续污泥处理成本[3]。近年来,钛盐因其具有绿色、低毒、高效的特点,在水处理上的应用及研究发展迅速[4],利用钛盐制备混凝剂也成为水处理药剂的研究热点之一。据报道[5-6],钛盐混凝剂水解迅速,在处理低温低浊度水方面表现出比铁盐、铝盐混凝剂更好的混凝效果和对污染物的去除能力。但对于在混凝过程中的传统钛盐混凝剂,钛水解导致大量的H+释放,导致处理水样pH过低,从而需要增加碱的投加量。有研究[7-8]表明,传统钛混凝剂引起水样pH降低的问题可以通过聚钛混凝来解决。聚钛混凝剂通过预水解的方式,使钛离子在制备过程中将H+释放,进而使其在混凝过程中对水样pH的影响降到最低。此外,聚钛混凝剂在有机物去除和对pH的依赖性方面也比传统钛混凝剂更佳。
煤矸石是采煤和洗煤过程中排放的固体废物。在我国,煤矸石已成为一种排出量和储存量最大的工业废弃物[9],且煤矸石在放置过程中易被风化,能够产生大量有毒物质及有害气体,对人体、生态都造成极大的危害[10]。煤矸石既是固体废物,也是难得的矿物资源,其富含Al2O3、Fe2O3、CaO和MgO等金属氧化物,以煤矸石为原料来制备含铝、铁等产品是煤矸石资源化利用的一个重要途径[11-12]。
国内外关于无机高分子混凝剂的研究较多,但如何降低混凝剂的成本、提高混凝效率并解决原料不足的问题依然是目前研究的热点。煤矸石作为一种含有益矿物的资源型矿物,以其为原料制备的混凝剂已有大量研究和应用,但以煤矸石为原料制备钛掺杂聚合氯化铝铁还鲜有报道。本研究在煤矸石制备聚合氯化铝铁的基础上进行钛掺杂的尝试,研究了制备条件对混凝性能的影响规律,确定了聚合氯化铝铁钛(PTAFC)的最佳制备条件,并将其应用到城镇污水处理厂中二沉池出水的深度处理研究,以期为有效减少煤矸石的堆存量、拓宽煤矸石利用渠道并实现聚钛混凝剂的低成本、高效率工业化生产及应用提供参考。
基于煤矸石制备的聚合氯化铝铁钛及其在二沉池出水处理中的应用
Preparation of polyaluminum iron titanium chloride from coal gangue and its application in the treatment of effluent from secondary sedimentation tank
-
摘要: 以煤矸石酸浸液为原料,经过钛掺杂、聚合、熟化和浓缩干燥等过程,制备了高效无机高分子混凝剂聚合氯化铝铁钛(PTAFC)。分别考察了钛投加量、pH、聚合温度、聚合时间对PTAFC混凝性能的影响,同时研究了PTAFC对城镇污水处理厂二沉池出水浊度、COD、总磷和氨氮的去除效果,并与聚合氯化铝铁(PAFC)进行了对比。结果表明:在钛铁摩尔比0.3、pH=1.5、聚合温度60 ℃、聚合时间3 h、常温熟化24 h时,所制得的PTAFC性能最佳;在投加量70 mg·L−1、pH=7、反应温度20 ℃、慢速搅拌速度40 r·min−1的混凝条件下,对自配水的浊度、COD和UV254的去除效果最好,去除率分别为99.13%、37.25%和39.9%。PTAFC对城镇污水处理厂二沉池出水的浊度和总磷有极好的去除效果,同时对COD和氨氮有一定去除能力,污染物去除能力明显优于PAFC。上述研究成果对有效减少煤矸石的堆存量、拓宽煤矸石利用渠道,实现混凝剂的低成本、高效率工业化生产和应用具有重要的意义。Abstract: In this study, acid leaching solution of coal gangue was taken as a raw material to prepare polyaluminum iron titanium chloride (PTAFC), a highly efficient coagulant, through titanium doping, polymerization, curing, concentration and drying process. The effects of preparation conditions of PTAFC (titanium dosage, pH, polymerization temperature, and polymerization time) on turbidity removal were investigated. Besides, the turbidity, COD, TP and NH3-N removal effects from the effluent of secondary sedimentation tank of urban wastewater treatment plant by PTAFC were studied and compared with those by traditional polyaluminum iron chloride (PAFC). The results showed that the prepared PTAFC possessed the best performance under the preparation conditions of Ti-Fe molar ratio of 0.3, pH 1.5, polymerization temperature of 60 ℃, 3 h polymerization and 24 h curing at room temperature. When the coagulation conditions were set as follows: PTAFC dosage of 70 mg·L−1, pH 7, reaction temperature of 20 ℃ and slow stirring speed of 40 r·min−1, the best removal effects of turbidity, COD and UV254 of laboratory-made wastewater occurred with the removal rates of 99.13%, 37.25% and 39.9%, respectively. For the effluent of secondary sedimentation tank of urban wastewater treatment plant, PTAFC had an excellent removal effect on turbidity and total phosphorus, while a certain removal effect on COD and NH3-N, which were significantly better than PAFC. This study is of great significance for effectively reducing the stockpiling of coal gangue and expanding its utilization channel, as well as realizing the low-cost and high-efficiency industrial production and application of coagulant.
-
表 1 PAFC和PTAFC对二沉池出水的处理效果的对比
Table 1. Comparison of the treatment effect of effluent from secondary sedimentation tank between PAFC and PTAFC
样品 余浊/NTU 剩余COD/(mg·L−1) COD去除率/% 剩余氨氮/(mg·L−1) 氨氮去除率/% 剩余总磷/(mg·L−1) 总磷去除率/% PAFC 0.8 62.21 37.00 11.13 11.03 0.42 56.3 PTAFC 0.2 48.81 50.57 9.38 25.02 0.13 86.5 -
[1] CHENG W P, CHI F H. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method[J]. Water Research, 2002, 36(18): 4583-4591. doi: 10.1016/S0043-1354(02)00189-6 [2] BELL-AJY K, ABBASZADEGAN M, IBRAHIM E, et al. Conventional and optimized coagulation for NOM removal[J]. American Water Works Association, 2000, 92(10): 44-58. doi: 10.1002/j.1551-8833.2000.tb09023.x [3] EDZWALD J K, TOBIASON J E. Enhanced coagulation: US requirements and a broader view[J]. Water Science & Technology, 1999, 40(9): 63-70. [4] 黄鑫. 聚合钛盐混凝剂的研究[D]. 济南: 山东大学, 2017. [5] OKOUR Y, SHON H K, EL S I. Characterisation of titanium tetrachloride and titanium sulfate flocculation in wastewater treatment[J]. Water Science & Technology, 2009, 59(12): 2463. [6] ZHAO Y, GAO B Y, SHON H, et al. Floc characteristics of titanium tetrachloride(TiCl4) compared with aluminum and iron salts in humic acid-kaolin synthetic water treatment[J]. Separation and Purification Technology, 2011, 81: 332-338. doi: 10.1016/j.seppur.2011.07.041 [7] GAO B Y, LIX X, WANG M, et al. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment[J]. Water Research, 2011, 45(18): 6181-6188. doi: 10.1016/j.watres.2011.09.019 [8] CHENG W P. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution[J]. Chemosphere, 2002, 47(9): 963-969. doi: 10.1016/S0045-6535(02)00052-8 [9] 王世林, 牛文静, 张攀, 等. 煤矸石的研究现状与应用[J]. 江西化工, 2019(5): 69-71. doi: 10.3969/j.issn.1008-3103.2019.05.024 [10] 王鹏涛. 煤矸石综合利用的现状及存在的问题研究[J]. 科学技术创新, 2019(16): 182-183. doi: 10.3969/j.issn.1673-1328.2019.16.115 [11] 杨喜, 崔慧霞, 郭彦霞, 等. 煤矸石中的铝、铁在高浓度盐酸中的浸出行为[J]. 环境工程学报, 2014, 8(8): 3403-3408. [12] CHENG F, CUI L, MILLER J, et al. Aluminum leaching from calcined coal waste using hydrochloric acid solution[J]. Mineral Processing & Extractive Metallurgy Review, 2012, 33(6): 391-403. [13] 张琼. 黄磷炉渣制取无机高分子聚硅酸铝铁絮凝剂的研究[D]. 昆明: 昆明理工大学, 2014. [14] 喻苗. 不同碱化度聚合氯化铝(PAC)混凝剂对富藻水体混凝去除效果的研究[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集(第二卷). 2017: 796-806. [15] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. [16] 章兴华, 黄大志. 氟盐遮蔽中合法测定聚合氯化铝铁碱化度[J]. 贵州化工, 1999, 2(6): 31-33. [17] 刘海龙, 赵霞, 焦茹媛, 等. 聚合铝的水解形态对混凝过程中磷分布转化的影响[J]. 环境科学, 2011, 32(1): 102-107. [18] 柯水洲, 涂家勇, 朱佳, 等. 聚合铝水解形态对混凝效果及絮体特性的影响[J]. 环境工程学报, 2017, 11(2): 733-738. doi: 10.12030/j.cjee.201509139 [19] CHEKLI L, ERIPRET C, PARK S H, et al. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC)compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal tubid water[J]. Separation & Purification Technology, 2017, 175: 99-106. [20] ZHAO Y X, GAO B Y, CAO B C, et al. Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment[J]. Chemical Engineering Jounal, 2011, 166(2): 544-550. [21] 高廷耀, 顾国维, 周琪. 水污染控制工程[M]. 北京: 高等教育出版社, 2006. [22] 徐红波, 孙挺, 姜效军. 碳酸钙和氢氧化铁共沉淀脱除碱性蚀刻液中铅砷[J]. 冶金分析, 2007(12): 46-49. doi: 10.3969/j.issn.1000-7571.2007.12.011 [23] 康黛男. 聚合氯化铝铁絮凝剂的研制及其在废水处理中的应用[D]. 西安: 长安大学, 2008. [24] 马秋利, 杨浩. 化学反应速率及平衡原理应用[J]. 中学化学教学参考, 2019(20): 67-68. [25] 柴彬. 聚合氯化铝制备条件优化与应用研究[D]. 成都: 西南交通大学, 2017. [26] 劳德平. 粉煤灰与氧化铁皮制备复合型混凝剂及混凝性能研究[D]. 北京: 北京科技大学, 2019. [27] 于兴海. 聚硅酸钛助凝剂温控优化制备及在低温水处理中的应用[D]. 西安: 西安建筑科技大学, 2017. [28] 司玉成. 利用煤泥制备聚合氯化铝铁絮凝剂的试验研究[J]. 化学工程师, 2017, 31(4): 67-70. [29] 冯欣蕊. PAC-PDMDAAC杂化絮凝剂的制备、表征及絮凝性能研究[D]. 重庆: 重庆大学, 2014. [30] 李柏林, 梁亚楠, 张程琛, 等. 粉煤灰-铝土矿改性制备铝铁复合混凝剂的除磷性能及混凝机理研究[J]. 环境科学学报, 2016, 36(7): 2503-2511. [31] GAO B Y, CHU Q Y, YUE B J, et al. Characterization and coagulation of a polyaluminum chloride (PACl) coagulant with high Al13 content[J]. Journal of Environmental Planning and Management, 2005, 76(2): 143-147. [32] 高宝玉, 岳钦艳, 李振东, 等. 聚硅氯化铝混凝剂的形态及带电特性研究[J]. 环境科学, 1998, 19(3): 48-51. [33] 赵艳侠. 钛盐混凝剂的混凝行为、作用机制、絮体特性和污泥回用研究[D]. 济南: 山东大学, 2014. [34] 俞文正, 杨艳玲, 卢伟, 等. 低温条件下絮体破碎再絮凝去除水中颗粒的研究[J]. 环境科学学报, 2009, 29(4): 791-796. doi: 10.3321/j.issn:0253-2468.2009.04.018 [35] HUANG X, SUN S L, GAO B Y, et al. Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment[J]. Journal of Environmental Sciences, 2015, 30(4): 215-222. [36] ISTV'AN L. On the type of bond developing between the aluminum and iron(Ⅲ) hydroxide and organic substances[J]. Water Science and Technology, 1993, 27(11): 242-252. [37] 罗国兵. 水体化学需氧量的检测方法[J]. 岩矿测试, 2013, 32(6): 860-874. doi: 10.3969/j.issn.0254-5357.2013.06.004 [38] 王珊, 张克峰, 任杰, 等. 钛盐在水处理中的应用及其污泥回用研究进展[J]. 水处理技术, 2019, 45(3): 8-13. [39] 刘娟, 何明礼, 刘庆斌. 聚硅硫酸钛铁的特性及对乳化油的混凝性能研究[J]. 湖北理工学院学报, 2013, 29(5): 29-33. doi: 10.3969/j.issn.2095-4565.2013.05.009 [40] 童祯恭. 给水处理工程中的强化混凝技术[J]. 华东交通大学学报, 2004, 21(1): 12-16. doi: 10.3969/j.issn.1005-0523.2004.01.003 [41] AUVRAY F, VAN HULLEBUSCH E D, DELUCHAT V, et al. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium[J]. Water Research, 2006, 40(14): 2713-2719. doi: 10.1016/j.watres.2006.04.042