-
硝基苯(NB)是一种无色或微黄色的具有苦杏仁味的油状液体,主要应用于制造染料、塑料、农药、炸药和药品,是典型的硝基芳香化合物,具有毒性大、难降解的特点[1-2]。环境中的NB主要来源于化工厂、染料厂、制药厂的废水废气或泄露事故,尤其是苯胺(AN)染料厂排放的废水中含大量NB[3]。NB包括苯环和硝基,硝基吸电子能力强,容易被还原而难于被氧化[4],因此,化学还原成为处理水环境中NB的重要技术方法[5]。纳米零价铁被广泛用于降解硝基苯,但存在易团聚、易氧化、成本高等问题[6-7],因此需要寻求高效廉价的还原剂。
天然硫铁矿主要存在于水体、湖泊、沉积物以及地下水中,是储备最丰富的天然矿物之一[8]。相比其他的还原物质,硫铁矿主要成分为FeS和FeS2,理论上具有较强的还原性能[9-10],且稳定性较好,容易贮存。然而,天然矿物粒径大、比表面积小,实际应用中与污染物接触效率较低,影响其对污染物的降解效果和反应速率[11]。有研究[12]表明,利用球磨法将天然矿物制成微纳级粉末,使矿物表面的悬空未配位键和点缺陷等增多,扩大比面积、增加活性位点和提高反应活性。
还原法降解NB的主要产物通常为AN,仍为有毒有害物质,因此,对其需要进一步处理。高级氧化法可以实现对AN的高效彻底降解[13]。过硫酸盐(PS)具有较强的氧化能力,在环境中的稳定性较好,且通过热、碱、紫外或过渡金属离子等方式活化,可以产生氧化能力更强的硫酸根自由基(
${\rm{SO}}_4^ - $ ·)和羟基自由基(OH·),对有机污染物具有较强的降解和矿化效果[14-16]。基于上述分析,本文采用湿式球磨法制备微纳级硫铁矿粉末(BMP),并考察BMP单独处理及与PS联合处理对水中NB和AN的去除特性;采用TEM、XRD、FT-IR、XPS等对BMP及其反应后的残渣进行表征,分析反应溶液中的主要离子,阐明BMP/PS对NB的联合降解机制。最后,采用响应面法设计多因素实验寻求最优反应条件,旨在为含NB废水处理或地下水NB污染修复提供新方法。
球磨硫铁矿-过硫酸盐联合降解水中硝基苯和苯胺
Degradation of nitrobenzene and aniline in water with ball milled pyrite and persulfate
-
摘要: 采用湿式球磨法制备微纳级硫铁矿粉末,研究了球磨硫铁矿(BMP)和过硫酸盐(PS)联合处理对水环境中硝基苯(NB)及其还原产物苯胺(AN)的降解效果,分别考察了BMP投加量、溶液初始pH和PS投加量对NB和AN降解的影响,采用TEM、XRD、FT-IR和XPS对反应前后的BMP进行了表征,分析了反应溶液中TOC和主要离子的变化,采用响应面法设计多因素实验,对反应条件进行了拟合和优化。结果表明,NB浓度与BMP投加量呈负相关关系,AN浓度与PS投加量呈负相关关系,pH在酸性和中性条件下NB和AN降解效果好。当BMP投加量为5 g·L−1时,NB去除率达99%;当PS投加量为2.5 g·L−1时,AN浓度低于1 mg·L−1。BMP/PS联合处理可以高效降解NB并消减还原产物AN。采用二次多项式和逐步回归法拟合NB去除率、AN浓度和反应条件之间的关系,模拟值与验证实验结果相近,模型精度较好。表征结果表明,BMP单独处理时Fe(Ⅱ)和S2−作为活性物质与NB反应,生成
${\rm{SO}}_3^{2 - }$ 和Fe(Ⅲ)以及中间产物AN;联合处理中BMP中的Fe(Ⅱ)活化PS生成具有强氧化性的${\rm{SO}}_4^{ - \cdot }$ 和HO·,其可与AN反应生成${\rm{SO}}_4^{2 - }$ 和单质S,Fe(Ⅱ)和Fe(Ⅲ)与水中的OH−或O2反应,生成铁氧化物。BMP/PS联合处理可以快速高效彻底降解NB,在含NB废水处理或NB污染地下水修复中具有应用潜力。Abstract: In this study, the micro-nano level pyrite powder (BMP) was prepared by wet spheroidal grinding. Then BMP was used to degrade nitrobenzene (NB) and its reduction product of aniline (AN) in water with combination of persulfate (PS). The effects of BMP dosage, initial pH of solution, and PS dosage on NB and AN degradation were investigated. The TEM, XRD, FT-IR and XPS were used to characterize the properties of BMP before and after reaction, and the changes of TOC and main anions in the reaction solution were analyzed. The response surface method was used to design multi-factor experiment, and the reaction conditions were fitted and optimized. The results showed that the NB concentration was negatively correlated with the BMP dosage, and the AN concentration was negatively correlated with the PS dosage. At the initial acidic and neutral pHs, the best degradation effects of NB and AN occurred. When the BMP dosage was 5 g·L−1, the removal rate of NB reached 99%. When the PS dosage was 2.5 g·L−1, the concentration of AN was less than 1 g·L−1. The joint treatment with ball-milled BMP and PS could efficiently degrade NB and eliminate its main reduction product AN. The relationship between NB removal rate and reaction conditions, AN concentration and reaction conditions were fitted using the quadratic polynomial and the stepwise regression methods. The simulated values were close to the verification experiment results, so the model accuracy was good. Characterization results showed that Fe(Ⅱ) and S2− as active substances reacted with NB to produce${\rm{SO}}_3^{2 - }$ , Fe(Ⅲ) and intermediate product AN when BMP was used alone; in the joint treatment, Fe(Ⅱ) in BMP activated PS to form strong oxidizing${\rm{SO}}_4^{ - \cdot }$ and HO·, which reacted with AN to form${\rm{SO}}_4^{2 - }$ and elemental S. In addition, Fe (Ⅱ) and Fe (Ⅲ) reacted with OH− or O2 in water to form iron oxide. The joint treatment of BMP/PS can degrade NB quickly, efficiently and completely. It has application potential for treating wastewater containing NB or remediating NB-contaminated groundwater.-
Key words:
- pyrite /
- persulfate /
- nitrobenzene /
- aniline /
- response surface optimization
-
表 1 响应面法实验设计
Table 1. Experiment design with response surface method
编码
水平因素 BMP投加量/
(g·L−1)还原时间/
minPS投加量/
(g·L−1)氧化时间/
min−1 2.5 15 2.5 5 0 5 30 5 17.5 1 7.5 45 7.5 30 表 2 多因素实验设计及实验结果
Table 2. Multi-factor experiment design and experiment results
序号 BMP投加量/(g·L−1) 还原时间/min PS投加量/(g·L−1) 氧化时间/min NB去除率/% AN浓度/(mg·L−1) 1 5 30 5 17.5 98.39 0.11 2 5 45 5 30 99.26 0.11 3 5 30 2.5 30 97.38 17.33 4 2.5 30 2.5 17.5 47.04 0.15 5 5 30 5 17.5 97.05 0.13 6 7.5 30 5 5 99.04 13.9 7 5 45 7.5 17.5 94.29 0.19 8 7.5 30 5 30 99.16 17.73 9 5 45 2.5 17.5 98.99 15.07 10 5 30 7.5 30 97.62 0.16 11 5 30 5 17.5 98.68 0.03 12 5 30 5 17.5 98.1 0.12 13 7.5 15 5 17.5 88.86 8.84 14 7.5 30 7.5 17.5 99.11 0.28 15 2.5 30 7.5 17.5 68.23 0.06 16 2.5 45 5 17.5 73.53 0.74 17 5 15 5 5 68.71 0.58 18 5 45 5 5 96.3 12.37 19 5 30 7.5 5 94.74 5.29 20 2.5 15 5 17.5 40.72 0.11 21 2.5 30 5 5 51.79 2.88 22 7.5 45 5 17.5 99.62 6.02 23 5 30 2.5 5 97.86 19.67 24 7.5 30 2.5 17.5 96.62 38.98 25 2.5 30 5 30 77.2 0.14 26 5 15 7.5 17.5 95.03 1.4 27 5 15 2.5 17.5 83.3 19.73 28 5 15 5 30 85.07 0.04 29 5 30 5 17.5 96.54 0.19 -
[1] YIN W, WU J, PING L, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chemical Engineering Journal, 2012, 184(3): 198-204. [2] WEI T, HONG M, LIU L. Study on the removal effect and influencing factors of nitrobenzene reduction by iron carbonate precipitates[J]. Environmental Science & Pollution Research, 2018, 25(20): 1-10. [3] DAI Y, MIHARA Y, TANAKA S, et al. Nitrobenzene-adsorption capacity of carbon materials released during the combustion of woody biomass[J]. Journal of Hazardous Materials, 2010, 174(3): 776-781. [4] XU M, ZHANG A, HAN S, et al. Studies of 3D-quantitative structure-activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA[J]. Chemosphere, 2002, 48(7): 707-715. doi: 10.1016/S0045-6535(02)00165-0 [5] 朱颖一, 王城晨, 王明新, 等. 硫化纳米铁反应带修复硝基苯污染地下水[J]. 中国环境科学, 2020, 40(2): 670-680. doi: 10.3969/j.issn.1000-6923.2020.02.025 [6] 韩建江, 李常锁, 温春宇, 等. 乳化纳米铁浆液在含水层中的迁移特征研究[J]. 中国环境科学, 2018, 38(6): 2175-2181. doi: 10.3969/j.issn.1000-6923.2018.06.020 [7] PHENRAT T, CIHAN A, KIM H J, et al. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content and coatings[J]. Environmental Science & Technology, 2010, 44(23): 9086-9093. [8] KANTAR C, ORAL O, URKEN O, et al. Role of complexing agents on oxidative degradation of chlorophenolic compounds by pyrite-fenton process: Batch and column experiments[J]. Journal of Hazardous Material, 2019, 373: 160-167. doi: 10.1016/j.jhazmat.2019.03.065 [9] YUAN Y, HONG T, FAN J, et al. Degradation of p-chloroaniline by persulfate activated with ferrous sulfide ore particles[J]. Chemical Engineering Journal, 2015, 268: 38-46. doi: 10.1016/j.cej.2014.12.092 [10] ZHANG Y, ZHANG K, DAI C, et al. Performance and mechanism of pyrite for nitrobenzene removal in aqueous solution[J]. Chemical Engineering Science, 2014, 111: 135-141. doi: 10.1016/j.ces.2014.02.029 [11] CHEN Y, LIANG W, LI Y, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review[J]. Chemical Engineering Journal, 2019, 362: 144-159. doi: 10.1016/j.cej.2018.12.175 [12] POURGHAHRAMANI P, AKHGAR B N. Characterization of structural changes of mechanically activated natural pyrite using XRD line profile analysis[J]. International Journal of Mineral Processing, 2015, 134: 23-28. doi: 10.1016/j.minpro.2014.11.005 [13] YANG S, WANG P, YANG X, et al. Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179(1): 552-558. [14] ZHOU Y Y, XIANG Y J, HE Y Z. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds[J]. Journal of Hazardous Materials, 2018, 359: 396-407. doi: 10.1016/j.jhazmat.2018.07.083 [15] 周明毅, 魏琛, 盛贵尚, 等. 紫外活化过硫酸钠降解水中三唑酮的效能[J]. 环境工程学报, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017 [16] 黎想, 任彦瑛, 丁琳洁. 预磁化零价铁活化过硫酸盐体系降解双氯芬酸钠[J]. 环境工程学报, 2019, 13(12): 2808-2815. doi: 10.12030/j.cjee.201901116 [17] LI W D, CHEN Z, WANG D Z. Reliable and valid pyrite electrocatalysts supported on nitrogen-doped porous carbon sheets for advanced lithium sulfur batteries[J]. Journal of Power Sources, 2019, 435(9): 226778. [18] VENKATESHALU S, GOBAN K P, KOLLU P, et al. Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications[J]. Electrochimica Acta, 2018, 290(12): 378-389. [19] LI D, MAO Z, ZHONG Y, et al. Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron[J]. Water Research, 2016, 103(10): 1-9. [20] XU C, ZHANG B, WANG Y, et al. Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron[J]. Environmental Science & Technology, 2016, 50(21): 11879-11887. [21] MORRISSEY C, HE H. Silicene catalyzed reduction of nitrobenzene to aniline: A mechanistic study[J]. Chemical Physics Letters, 2018, 695(3): 228-234. [22] YANG Z, MA X, SHAN C, et al. Enhanced nitrobenzene reduction by zero valent iron pretreated with H2O2/HCl[J]. Chemosphere, 2018, 197(4): 494-501. [23] WEERASOORIYA R, TOBSCHALL H J. Pyrite-water interactions: Effects of pH and pFe on surface charge[J]. Colloids & Surfaces A, 2005, 264(3): 68-74. [24] 杨世迎, 马楠, 王静, 等. 零价铁-过二硫酸盐连续运行体系去除水中硝基苯[J]. 环境科学学报, 2014, 34(4): 920-924. [25] LIAN W, YI X, HUANG K, et al. Degradation of tris(2-chloroethyl) phosphate (TCEP) in aqueous solution by using pyrite activating persulfate to produce radicals[J]. Ecotoxicology and Environmental Safety, 2019, 174(6): 667-674. [26] XIE X F, ZHANG Y Q, HUANG W L. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation[J]. Journal of Environmental Sciences, 2012, 24(5): 821-826. doi: 10.1016/S1001-0742(11)60844-9 [27] CHEN W S, HUANG C P. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate[J]. Chemosphere, 2015, 125(4): 175-181. [28] TANG J, TANG L, FENG H, et al. pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions[J]. Journal of Hazardous Materials, 2016, 320(12): 581-590. [29] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151(5): 178-188. [30] 黄涛, 张胜男, 黄菲, 等. 红透山黄铁矿的红外光谱研究[J]. 地学前缘, 2013, 20(3): 104-109. [31] SUN Y, LV D, ZHOU J S, et al. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study[J]. Chemosphere, 2017, 185(10): 452-461. [32] HE F, ZHAO D, LIU J, et al. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater[J]. Industrial & Engineering Chemistry Research, 2007, 46(1): 29-34. [33] 解立斌, 俞丹, 魏萌, 等. 单质硫νS-S伸缩振动的漫反射红外光谱研究[J]. 理化检验(化学分册), 2017(4): 47-51. [34] LIN Z, GONG J, DAN J, et al. Novel visible light enhanced pyrite-fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism[J]. Chemosphere, 2019, 228(8): 232-240. [35] DENG J, DONG H, LI H, et al. Ca(OH)2 coated nanoscale zero-valent iron as a persulfate activator for the degradation of sulfamethazine in aqueous solution[J]. Separation and Purification Technology, 2019, 227(11): 115731. [36] ZHANG Y Q, PHUONG T H, DU X, et al. Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study[J]. Chemical Engineering Journal, 2017, 308(1): 1112-1119. [37] ZHANG Y, ZHANG K, DAI C, et al. Performance and mechanism of pyrite for nitrobenzene removal in aqueous solution[J]. Chemical Engineering Science, 2014, 111(5): 135-141. [38] HUSSAIN I, ZHANG Y, LI M, et al. Heterogeneously degradation of aniline in aqueous solution using persulfate catalyzed by magnetic BiFeO3 nanoparticles[J]. Catalysis Today, 2018, 310(7): 130-140. [39] 朱峥嵘, 王明新, 张金永, 等. Fe(VI)/CaO2双氧化体系降解水环境中的DMP[J]. 中国环境科学, 2019, 39(7): 2838-2846. doi: 10.3969/j.issn.1000-6923.2019.07.018 [40] DOMENICA M A, DANIELA P. Pentachlorophenol biodegradation in two-phase bioreactors operated with absorptive polymers: Box-Behnken experimental design and optimization by response surface methodology[J]. Process Safety and Environmental Protection, 2019, 131(11): 105-115.