-
磷是生物体必需的营养元素之一,同时也是限制大多数水生生态系统营养的关键因素[1]。水体中磷浓度过高将会引起富营养化[2],危及水生生态系统。因此,高效去除水中过量磷是一个亟待解决的问题[3]。
目前,已得到广泛应用的水中除磷方法有生物法(微生物除磷工艺)、化学沉淀法、离子交换法等,但生物法将产生大量剩余污泥[4],化学沉淀法中投加的药剂容易对水体造成二次污染[5],离子交换法易受共存离子的干扰[6]。相比而言,操作简单[7]、效果稳定[8]的吸附法逐渐受到关注。
性能优良的吸附剂是吸附法成功的关键。水中除磷常用的吸附剂主要有黏土矿物[9]、活性炭[10]、树脂[3]、生物质材料[8]等。其中,生物质材料价格低廉[8]、来源广泛,是其作为吸附剂的重要优势。但未经处理的生物质对磷的吸附效率有限,有研究通过在生物质表面负载金属的方式提高其吸附能力,如铝改性小麦秸秆[11],铁改性花生壳[12]等。因此,利用高价态金属改性生物质材料去除水中磷具有一定的应用潜力。近年来,镧和锆2种金属元素因化学性质稳定,且对磷有较强的选择性而成为水中除磷的研究热点[13-14],但是金属氧化物或氢氧化物粉末易随水流失,难于从水中分离[9],这就限制了他们在吸附磷方面的工程化应用。若将其负载到生物质材料上以制成颗粒状除磷吸附剂,不仅可以提高吸附剂的机械强度,还能降低其使用成本。目前,利用镧和锆改性生物质材料去除水中磷的有关研究还较少,镧和锆改性材料吸附特征的对比探究也鲜见报道。
油菜和菱角作为2种经济作物,我国每年产量巨大,在其生产加工过程中所产生的废弃物亟待处理。同时,油菜秆和菱角壳中含有丰富的纤维素和木质素,含有大量羟基和羧基结构,是2种潜在载体材料。选择油菜秸秆和菱角壳作为载体,负载以镧或锆2种金属,制成新型吸附剂,既有望解决水体中磷含量过高而导致的富营养化的问题,又可为其本身的资源化处置开辟新途径。此外,用于吸附过后的材料可作为含磷丰富的还田物质,无须进行后处理。
本研究采用共沉淀法制得镧改性油菜秆(La-BC)、锆改性油菜秆(Zr-BC)、镧改性菱角壳(La-TN)、锆改性菱角壳(Zr-TN)4种材料,分别探究了其投加量、溶液的pH、磷的初始浓度、吸附时间等影响因素对4种改性材料吸附水中磷的影响规律,并在实际养猪废水中进行验证,旨在今后的磷去除和农业废弃物的资源化利用上提供一定参考。
镧、锆改性油菜杆和菱角壳去除养猪废水中的磷
Lanthanum and zirconium modified rape stalk and water chestnut shell removing phosphorus from swine wastewater
-
摘要: 磷是引起地表水富营养化的重要因素之一,选择高效低成本的吸附材料是去除废水中磷的关键所在。基于此,采用共沉淀法制得镧、锆改性的油菜秆(La-BC、Zr-BC)和菱角壳(La-TN、Zr-TN),探究了其对模拟废水中磷的吸附去除;分别考察了在改性材料不同投加量、溶液pH、磷的初始浓度、反应时间等条件下对磷吸附特征的影响。FT-IR和SEM-EDS表征结果表明,镧和锆均已成功负载于油菜秆和菱角壳的表面上。La-TN、La-BC、Zr-TN和Zr-BC对磷的吸附量随改性材料投加量的增加呈指数下降,最大吸附量分别为12.49、11.41、6.85、6.83 mg
$ \cdot {{\rm{g}}}^{-1}$ 。随pH的上升,镧改性材料对磷的吸附量呈先上升后下降的趋势,而锆改性材料呈幂函数式下降。4种改性材料的吸附动力学使用叶诺维奇模型描述更为合适,且吸附等温线使用Freundlich模型拟合更佳。La-BC、Zr-BC、La-TN、Zr-TN在养猪废水中吸附量分别为14.82、10.36、15.41和8.91${\rm{m}}{\rm{g}} \cdot {{\rm{g}}}^{-1}$ ,较改性前分别提升了34、20、53、37倍,这表明4种改性材料可作为养猪废水中除磷的潜在材料。以上研究结果可为废水中磷的去除及农业废弃物的资源化利用提供一定的参考。Abstract: Phosphorus is one of the important factors causing eutrophication of surface water, and the key to remove phosphorus from wastewater is to select high-efficiency and low-cost adsorption materials. Based on this, lanthanum and zirconium modified rape stalks (La-BC, Zr-BC) and water chestnut shells (La-TN, Zr-TN) were prepared by coprecipitation method, and their adsorption and removal of phosphorus in the simulated wastewater were investigated. The effects of different dosages of modified materials, pH of solution, initial concentration of phosphorus and reaction time on phosphorus adsorption characteristics were investigated, respectively. FT-IR and SEM-EDS characterization results showed that lanthanum and zirconium were successfully loaded on the surfaces of rape stalks and water chestnut shells. The adsorption capacity of La-TN, La-BC, Zr-TN and Zr-BC to phosphorus decreased exponentially with the increase of the dosage of modified materials, and their maximum adsorption capacities were 12.49, 11.41, 6.85 and 6.83${\rm{m}}{\rm{g}} \cdot {{\rm{g}}}^{-1}$ , respectively. With the increase of pH, the adsorption capacity of lanthanum modified materials to phosphorus increased first and then decreased, while the adsorption capacity of zirconium modified materials decreased in power function. It was more suitable to describe the adsorption kinetics of the four modified materials using the Elovich model, and the Freundlich model was better to fit the adsorption isotherms. The adsorption capacities of La-BC, Zr-BC, La-TN, Zr-TN in swine wastewater were 14.82, 10.36, 15.41 and 8.91${\rm{m}}{\rm{g}} \cdot {{\rm{g}}}^{-1}$ , respectively, which increased by 34, 20, 53 and 37 times of the pristine materials, indicating that the four modified materials had potential for phosphorus removal in swine wastewater. The results of this study can provide some references for the removal of phosphorus from wastewater and the recycling of agricultural wastes.-
Key words:
- phosphorus /
- rape stalk /
- water chestnut shell /
- agricultural wastes /
- modify
-
表 1 6种吸附材料表面元素质量分数
Table 1. Surface element mass percentages of 6 types of adsorption materials
% 吸附剂 C O La Zr Ca BC 65.56 27.91 0 0 6.53 La-BC 44.52 26.00 29.47 0 0 Zr-BC 16.93 21.65 0 61.42 0 TN 77.76 22.24 0 0 0 La-TN 10.90 22.40 66.70 0 0 Zr-TN 10.14 11.49 0 78.37 0 表 2 4种改性材料对模拟废水中磷吸附的准一级动力学模型、准二级动力学模型及叶诺维奇模型相关参数
Table 2. Parameters of pseudo-first-order, pseudo-second-order and Elovich models of phosphorus adsorption insimulated wastewater by four modified materials
吸附剂 准一级动力学模型 准二级动力学模型 叶诺维奇模型 K1 qe R2 K2 qe R2 $\alpha_{\rm{s}}$ $\beta_{\rm{s}}$ R2 La-TN 0.04 13.31 0.630 0.008 13.74 0.964 25404 1.24 0.967 Zr-TN 0.02 7.82 0.921 0.005 8.09 0.977 20.87 1.25 0.982 La-BC 0.05 11.66 0.875 0.008 12.16 0.930 125.04 0.90 0.959 Zr-BC 0.04 7.06 0.808 0.008 7.60 0.915 4.69 1.02 0.978 表 3 4种改性材料对模拟废水中磷的等温吸附模型
Table 3. Isothermal adsorption models parameters of four modified materials toward phosphorus in simulated wastewater
吸附剂 Langmuir Freundlich qm/(mg·g−1) Ka R2 Kf n R2 La-TN 13.18 4.90 0.932 10.36 14.59 0.936 Zr-TN 11.16 0.07 0.961 2.74 3.10 0.998 La-BC 13.40 2.66 0.932 9.52 10.40 0.994 Zr-BC 13.76 0.13 0.920 2.46 2.84 0.990 -
[1] HAO H T, WANG Y L, SHI B Y. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11. doi: 10.1016/j.watres.2019.01.049 [2] LIU J Y, WAN L H, ZHANG L, et al. Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber[J]. Journal of Colloid and Interface Science, 2011, 364(2): 490-496. doi: 10.1016/j.jcis.2011.08.067 [3] BUI T H, HONG S P, YOON J. Development of nanoscale zirconium molybdate embedded anion exchange resin for selective removal of phosphate[J]. Water Research, 2018, 134: 22-31. doi: 10.1016/j.watres.2018.01.061 [4] YAN P, GUO J S, WANG J, et al. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process[J]. Bioresource Technology, 2015, 183: 181-187. doi: 10.1016/j.biortech.2015.02.070 [5] REN J, LI N, WEI H, et al. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant[J]. Water Research, 2020, 170: 115361. doi: 10.1016/j.watres.2019.115361 [6] YU Y, CHEN J P. Key factors for optimum performance in phosphate removal from contaminated water by a Fe-Mg-La tri-metal composite sorbent[J]. Journal of Colloid and Interface Science, 2015, 445: 303-311. doi: 10.1016/j.jcis.2014.12.056 [7] LIU Q, HU P, WANG J, et al. Phosphate adsorption from aqueous solutions by zirconium (IV) loaded cross-linked chitosan particles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59: 311-319. doi: 10.1016/j.jtice.2015.08.012 [8] NGUYEN T A H, NGO H H, GUO W S, et al. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study[J]. Science of the Total Environment, 2015, 523: 40-49. doi: 10.1016/j.scitotenv.2015.03.126 [9] 梁舒静, 林建伟, 詹艳慧, 等. 锆负载颗粒沸石改良底泥对水中磷酸盐的吸附行为[J]. 环境科学, 2018, 39(10): 4565-4575. [10] MANJUNATH S V, KUMAR M. Evaluation of single-component and multi-component adsorption of metronidazole, phosphate and nitrate on activated carbon from Prosopıs julıflora[J]. Chemical Engineering Journal, 2018, 346: 525-534. doi: 10.1016/j.cej.2018.04.013 [11] 吴文清, 黄少斌, 张瑞峰, 等. 改性秸秆纤维素在水处理中除磷的研究[J]. 造纸科学与技术, 2012, 31(5): 80-86. [12] 孙霄, 盛梅, 沈晓强, 等. 载纳米铁花生壳的制备及其吸附除磷性能[J]. 环境工程学报, 2017, 11(1): 386-392. doi: 10.12030/j.cjee.201508205 [13] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research, 2013, 14: 5018-5026. [14] XIE J, LIN Y, LI C J, et al. Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide[J]. Powder Technology, 2015, 269: 351-357. doi: 10.1016/j.powtec.2014.09.024 [15] MUTHU PRABHU S, PANDI K, ELANCHEZHIYAN S S, et al. Ethylene glycol-induced metal alkoxides via phase-transfer catalyst as multi-talented adsorbents for boosted adsorption performance of toxic anions/oxyanions from waters[J]. Separation and Purification Technology, 2020, 235: 116247. doi: 10.1016/j.seppur.2019.116247 [16] MULLICK A, NEOGI S. Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water[J]. Ultrasonics Sonochemistry, 2019, 50: 126-137. doi: 10.1016/j.ultsonch.2018.09.010 [17] NOVAIS S V, ZENERO M D O, TRONTO J, et al. Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption[J]. Journal of Environmental Management, 2018, 214: 36-44. [18] ZHOU Q, WANG X, LIU J Y, et al. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by sol-gel method[J]. Chemical Engineering Journal, 2012, 200-202: 619-626. doi: 10.1016/j.cej.2012.06.123 [19] 罗元, 谢坤, 张克强, 等. 镧(La)改性吸附材料脱除水体磷酸盐研究进展[J]. 化工进展, 2019, 38(11): 5005-5014. [20] ÖZACAR M, ŞENGIL İ A. A kinetic study of metal complex dye sorption onto pine sawdust[J]. Process Biochemistry, 2005, 40(2): 565-572. doi: 10.1016/j.procbio.2004.01.032 [21] AHAMAD K U, SINGH R, BARUAH I, et al. Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder[J]. Groundwater for Sustainable Development, 2018, 7: 452-458. doi: 10.1016/j.gsd.2018.06.005 [22] KAJJUMBA G W, YILDIRIM E, AYDIN S, et al. A facile polymerisation of magnetic coal to enhanced phosphate removal from solution[J]. Journal of Environmental Management, 2019, 247: 356-362. doi: 10.1016/j.jenvman.2019.06.088 [23] 苗琛琛, 毛林强, 陶德晶, 等. 镧改性凹凸棒土的制备及其对水中磷酸盐的吸附[J]. 环境工程学报, 2016, 10(12): 7069-7074. doi: 10.12030/j.cjee.201508033