Processing math: 100%

Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制

向超, 张弓, 于洁, 王洪杰, 付军. Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制[J]. 环境工程学报, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074
引用本文: 向超, 张弓, 于洁, 王洪杰, 付军. Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制[J]. 环境工程学报, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074
XIANG Chao, ZHANG Gong, YU Jie, WANG Hongjie, FU Jun. Doping characteristics of Fe-Ni and Fe-Zr hydroxides and their adsorption mechanisms towards aqueous PO34 and AsO34 anions[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074
Citation: XIANG Chao, ZHANG Gong, YU Jie, WANG Hongjie, FU Jun. Doping characteristics of Fe-Ni and Fe-Zr hydroxides and their adsorption mechanisms towards aqueous PO34 and AsO34 anions[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074

Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制

    作者简介: 向超(1987—),男,博士研究生。研究方向:生态环境污染机制与修复技术。E-mail:chaos618@163.com
    通讯作者: 王洪杰(1972—),男,博士,教授。研究方向:生态环境污染修复。E-mail:hongjiewang@bjfu.edu.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2018ZX07110);国家自然科学基金面上项目(51578067,51778054,51708543)
  • 中图分类号: X703

Doping characteristics of Fe-Ni and Fe-Zr hydroxides and their adsorption mechanisms towards aqueous PO34 and AsO34 anions

    Corresponding author: WANG Hongjie, hongjiewang@bjfu.edu.cn
  • 摘要: 水中含氧阴离子的高效去除是水质净化领域的研究前沿和热点之一。以地球上含量丰富的、具有代表性的3d过渡金属Fe、Ni和前4d过渡金属Zr的金属盐为前驱物,采用水热法,制备了过渡金属的水合氧化物及Fe-Ni和Fe-Zr复合水合氧化物,并以磷酸根和砷酸根为目标污染物,评价了这些过渡金属的水合氧化物及Fe-Ni和Fe-Zr复合材料的吸附性能。结果表明:Fe-Ni复合材料吸附性能优于单一材料,Fe-Zr复合材料的吸附性能归因于Zr的本征吸附活性;少量Ni或Zr的掺杂可显著调控过渡金属d电子态,Fe和Ni在晶体晶格中相互掺杂形成Fe-Ni复合氧化物,而Fe-Zr复合材料中FeOH和ZrOH以混合的晶粒形式存在。综合上述结果,Fe-Ni和Fe-Zr水合氧化物不同的掺杂特征是造成复合吸附材料对含氧阴离子吸附效能差异的根本原因。
  • 城市卫生填埋场中生活垃圾在卫生填埋过程中,经微生物分解、发酵等反应,产生大量有毒有害的垃圾渗滤液,对填埋场周边生态环境系统构成严重危险[1]。垃圾渗滤液的处置流程通常采用“厌氧-缺氧-好氧”组合生物工艺脱氮并降解有机污染物,但要使垃圾渗滤液达标排放,需进一步结合深度处理工艺。在垃圾渗滤液深度处置工艺中,纳滤技术因其优异的污染物去除效果而备受关注,MAGALHAES等[2]通过纳滤膜能够实现90%以上的COD去除率。但纳滤深度处理工艺会产生处理体积约15%~30%的纳滤浓缩液[3]。相较于垃圾渗滤液,垃圾渗滤液纳滤浓缩液中因含有更高浓度的有机难降解污染物、药物污染物、无机盐等[4],使得生化系统难以对其进一步处置,因此,亟需一种垃圾渗滤液纳滤浓缩液生化预处理工艺以提高其可生化性。

    垃圾渗滤液纳滤浓缩液常规处理方法有回灌法、蒸发法和高级氧化法[5]。回灌法直接将浓缩液回流至垃圾填埋场填埋层,具有运行简便,处理成本低的优势,但长期回灌会造成填埋场渗滤液水质严重恶化并影响填埋层稳定性[6]。蒸发法通过加热蒸发的方式,可快速处置垃圾渗滤液纳滤浓缩液,但该方法对处置设备的抗腐蚀要求很高[7]。高级氧化法(advanced oxidation processes, AOPs)主要利用强氧化性的活性自由基(羟基自由基(·OH)、氯自由基、超氧自由基等[8])能高效分解、矿化难降解有机污染物,以提高垃圾渗滤液纳滤浓缩液的可生化性,但AOPs也存在药剂消耗量大和运行成本高等问题[9]。臭氧(O3)氧化法是AOPs中广泛应用于污水处理的一种工艺,O3在水体中可形成O3分子、单线态氧和·OH等一系列强氧化自由基[10]。其中O3分子和单线态氧具有选择氧化性,可选择性降解含有不饱和键的物质[11-12],而·OH则可对绝大多数污染物均有较好的去除效果[13]。ZHAO等[14]通过O3预处理渗滤液纳滤浓缩液,COD去除率可达到25%左右,挥发性脂肪酸质量浓度从18.14 mg·L−1提高至101.70 mg·L−1,其中大分子有机污染物可高效转化为可降解小分子有机物,渗滤液纳滤浓缩液的可生化性得到显著提高。HE等[15]构建的γ-Al2O3/O3体系处理垃圾渗滤液浓缩液,在γ-Al2O3投加量为50 g·L−1,O3投加量为22 mg·min−1,初始pH为7.3,反应温度为30 ℃,处理时间为30 min的最佳条件下,COD去除率可达70%,(BOD5/COD)B/C可从0.01提高到0.2。尽管目前O3氧化在催化剂领域的研究取得了良好进展,但O3催化剂在长期运行中的存在严重的失活问题极大限制其实际应用。HE等[16]在O3催化氧化处理实际废水中发现在O3氧化工艺稳定运行12个月后,O3催化剂的催化处理COD效率由56%回落至14.5%。此外,O3在水中较低的溶解度和传质系数导致其利用率低,也阻碍基于O3的AOPs工艺用于垃圾渗滤液纳滤浓缩液的处理。因此,采用新的O3氧化技术应用于垃圾渗滤液纳滤浓缩液的高效处理已成为未来的着重研究的方向。

    臭氧微纳米气泡技术(O3/micro-nanobubbles, O3/MNBs)是将微纳米气泡技术与O3氧化技术高效结合的一种工艺。微纳米气泡技术常采用水力空化,通过改变流体水力条件造成局部压力减小而引发空化效应,产生的微纳米气泡尺寸一般为0.2~50 μm,能够在水中停留数小时[17]。这使得O3可以更有加效的溶于水中,改善了O3溶解度低和传质系数低的问题,提高O3利用率[18]。此外,微纳米气泡较小的直径会导致气泡内部产生较高的压力,进一步加大了O3的溶解度[18]。ZHENG等[19]采用O3/MNBs和常规O3法处理晴纶废水,相同条件下,O3/MNBs可实现42%的COD去除率,B/C从0.04提升到0.13,而常规O3法的COD去除率仅有17%,B/C从0.04提升到0.08。当前O3/MNBs在有机污染物降解方面取得了一定的成果,但该技术的应用仍多停留于模拟废水,在实际废水中的应用鲜有报道。

    鉴于此,本研究将采用絮凝-O3/MNBs耦合工艺高效处理垃圾渗滤液纳滤浓缩液,探究耦合工艺中絮凝阶段的絮凝剂投加量、絮凝时间、絮凝转速以及O3/MNBs工艺的进气量、反应时间、反应温度等工艺参数对垃圾渗滤液纳滤浓缩液中污染物去除及可生化性的影响。并深入考察了絮凝-O3/MNBs耦合工艺对双酚A(Bisphenol A, BPA)、磺胺嘧啶(Sulfadiazine, SDZ)、磺胺甲恶唑(Sulfamethoxazole, SMX)和萘普生(Naproxen, NPX)等典型药物物质的去除效能。本研究为絮凝-O3/MNBs耦合在垃圾渗滤液纳滤浓缩液预处理工艺的实际工程运用中提供科学的技术支持。

    实验中所采用的垃圾渗滤液纳滤浓缩液采集自佛山市高明区苗村白石坳垃圾填埋场一厂,渗滤液纳滤浓缩液的基本水质参数:COD为(4752±140) mg·L−1,BOD5为(427±30) mg·L−1。实验试剂甲醇、乙腈、甲酸等为色谱级,聚合硫酸铁(polymerized ferrous sulfate, PFS)、聚丙烯酰胺(polyacrylamide, PAM)、氢氧化钠、硫酸、BPA、SDZ、SMX和NPX等为分析纯,上述试剂均采购自阿拉丁试剂(中国)。实验仪器包括多功能数控消解仪(昌鸿DIS-36B,中国),微纳米气泡发生器(禹创AD-24030,山东),O3发生器(同林3S-TS10,中国),磁力搅拌器(艾卡C-MAG HS-7,德国)。

    1)絮凝实验。絮凝实验示意图见图1(a),取1 L垃圾渗滤液纳滤浓缩液于烧杯中。置于磁力搅拌器上,加入适量质量浓度为30%的PFS溶液,以600 r·min−1快速混合60 s,随后在一定范围内调节转速,反应结束后加入适量质量分数(3‰)PAM溶液,200 r·min−1搅拌60 s,随后静置10 min,取上清液。絮凝实验选取絮凝时间(0~60 min)、絮凝剂投加量(0~12 g·L−1)及絮凝转速(0~400 r·min−1)为主要的技术参数进行研究,探究絮凝预处理垃圾渗滤液纳滤浓缩液的最优条件,每批实验重复2次。

    图 1  絮凝实验示意图和O3/MNBs实验反应器装置
    Figure 1.  Schematic diagram of flocculation experiments and reactor setup for O3/MNBs experiments

    2) O3/MNBs实验。絮凝实验完成后,取4 L絮凝处理后的垃圾渗滤液纳滤浓缩液(基本水质参数:COD为(1230±37) mg·L−1,BOD5为(270±15) mg·L−1)于O3/MNBs反应器装置中,O3/MNBs反应器装置如图1(b)所示。该装置高30 cm,内径14 cm,水浴层宽2 cm,有效容积4.6 L。本实验中的O3发生器以纯氧为气源产生O3气体,气体中O3的质量浓度为80 mg·L−1,O3气体进入MNBs发生器与垃圾渗滤液纳滤浓缩液絮凝上清液混合,通过高速旋转和加压溶解作用获得含MNBs的水悬浮液。O3/MNBs反应器装置中未反应的O3通过反应器顶部通气孔进入质量浓度为2%碘化钾(KI)吸收液。O3/MNBs高效氧化处理垃圾渗滤液纳滤浓缩液的实验选取O3进气量(50~500 mL·min−1)、初始pH(3~11)和反应温度(10~50 ℃)等为主要影响因素进行研究,考察其对垃圾渗滤液纳滤浓缩液可生化性的影响,每批实验重复3次。

    1)水质指标分析。化学需氧量采用COD测定仪(哈希DR1010,美国)测定,pH采用pH计(三信SX 751,上海)测定,5天生化需氧量(BOD5)采用BOD测定仪(赛莱默OxiTop IS12,德国)测定,色度和腐殖质采用紫外分光光度计(岛津UV2700,日本)测定,腐殖质以紫外分光光度计在254 nm波长处的吸光度计,色度计算方法[18]如式(1)所示。

    stringUtils.convertMath(!{formula.content}) (1)

    式中:C为色度;A436A525A620分别为紫外分光光度计在波长为436、525和620 nm波长处的吸光度。

    2)药品和个人护理品污染物分析。本研究中的药品和个人护理品(pharmaceutical and personal care products, PPCPs)污染物检测通过固相萃取法富集浓缩,过膜后装入液相小瓶,浓缩后待测样品4 ℃保存。PPCPs污染物采用高效液相色谱仪(赛默飞Ultimate 3000,美国)进行检测,色谱柱型号为AcclaimTM 120 C18(5 μm,4.6 mm×150 mm),检测方法见表1

    表 1  PPCPs污染物检测条件
    Table 1.  Detection conditions for PPCPs contaminants
    污染物 流动相比例 流速/(mL·min−1) 检测波长/nm 温度/℃
    双酚A 甲醇∶超纯水=70∶30 1.0 225 30
    萘普生 甲醇∶0.1%甲酸水=70∶30 1.0 254 30
    磺胺嘧啶 甲醇∶0.1%甲酸水=35∶65 1.0 269 30
    磺胺甲恶唑 甲醇∶0.1%甲酸水=35∶65 1.0 275 30
     | Show Table
    DownLoad: CSV

    3) 发光细菌急性毒性检测。急性毒性检测采用费氏弧菌(金达清创V.fischeri,北京)作为急性毒性检测的实验菌种,急性毒性检测标准采用硫酸锌作为阳性对照,以质量浓度2%的氯化钠溶液作为空白对照。急性毒性检测时将样品加入培养好的V.fischeri菌液,放入生物发光检测仪内振荡10 s,然后置于空气中暴露15 min后,测定发光值。发光抑制率计算方法见式(2),根据不同的发光抑制率判别水质急性毒性风险等级的标准为:E<30%时,属低毒;30%≤E<50%时,属中毒;50%≤E<70%时,属重毒;70%≤E<100%时,属高毒;E≥100%时,属剧毒[20]

    stringUtils.convertMath(!{formula.content}) (2)

    式中:E为发光抑制率,%;I为样品暴露15 min后的发光值;I0为空白组暴露15 min后的发光值。

    采用絮凝工艺对垃圾渗滤液纳滤浓缩液进行预处理,能有效去除垃圾渗滤液纳滤浓缩液中的胶体和大分子有机物[21],降低后续O3/MNBs工艺的处理能耗,并提高处理效率,对垃圾渗滤液纳滤浓缩液的高效处理有着重要作用。游丽华[22]采用混凝耦合微气泡O3氧化处理焦化废水生化尾水,可实现83.1%的COD去除率,其中混凝工艺去除效果占比可达到46.1%。

    本实验所采用的PFS絮凝剂,水解形成[Fe(H2O)6]3+、[Fe2(H2O)3]3+、[Fe(H2O)2]3+等多核络离子可使垃圾渗滤液纳滤浓缩液中的胶体物质脱稳,形成絮体沉降下来以此去除污染物[23]。本实验通过调整絮凝工艺的时间、PFS投加量和絮凝转速等参数研究污染物的最佳去除条件,结果如图2所示。

    图 2  不同絮凝条件对垃圾渗滤液纳滤浓缩液色度、腐殖质、COD和B/C处理效果的影响
    Figure 2.  Influence of different flocculation conditions on the treatment effect of colour, humus, COD and B/C of nanofiltration concentrate of landfill leachate

    在PFS投加量为9 g·L−1,絮凝转速为300 r·min−1的条件下,探究了絮凝时间0~60 min对絮凝工艺的影响,结果见图2(a)。可见,垃圾渗滤液纳滤浓缩液的色度、腐殖质及COD的去除率均随絮凝时间的延长而提高,在0~40 min内色度、腐殖质及COD去除率分别达到62.2%、46.9%和69.9%,B/C由0.09增至0.20。但进一步延长絮凝时间至60 min时,色度、腐殖质和COD的去除率分别为69.8%、52.7%和73.7%,B/C增至0.21。这一结果表明,垃圾渗滤液纳滤浓缩液絮凝工艺在0~40 min时,垃圾渗滤液纳滤浓缩液短时间内可形成大量絮体从而达到较高的去除率,但40 min后随着垃圾渗滤液纳滤浓缩液中的大分子污染物浓度的降低,絮体间的碰撞概率减小,去除效果增长有限。

    确定最佳絮凝时间为40 min,选取絮凝转速为300 r·min−1,以此探究PFS投加量在0~12 g·L−1时对絮凝效果的影响,结果如图2(b)所示。当PFS投加量为0~2 g·L−1时,垃圾渗滤液纳滤浓缩液的污染物去除效果较差,色度、腐殖质和COD的去除率仅为1.7%、0.5%和7.4%,B/C从0.09增至0.10;而在PFS投加量为4~10 g·L−1时,垃圾渗滤液纳滤浓缩液处理效果随着PFS投加量的增加而明显提高,当PFS投加量为10 g·L−1时,垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别提高至79.8%、59.2%和73.3%,B/C增至0.22。这一结果表明,在垃圾渗滤液纳滤浓缩液的PFS投加量为0~2 g·L−1时,形成的多核络离子较少,凝聚的絮体尺寸小、数量少,难以通过良好的网捕卷扫作用去除污染物[24]。随后增加垃圾渗滤液纳滤浓缩液的PFS投加量为4~10 g·L−1,垃圾渗滤液纳滤浓缩液中多核络离子数量也相应增加,这使得胶体与多核络离子不断碰撞脱稳,脱稳胶体进而被络离子吸附形成长链结构,并促进网捕卷扫作用将小絮体沉淀下来[24]。当PFS投加量进一步增加至12 g·L−1时,絮凝处理效果并无显著提高,这是由于过量的絮凝剂会使得絮体表面电荷发生改变,出现胶体再稳现象,去除率无法提高甚至降低[25]。因此,垃圾渗滤液纳滤浓缩液絮凝处理最佳PFS投加量为10 g·L−1

    在最佳絮凝时间40 min,最佳PFS投加量10 g·L−1的条件下,考察0~400 r·min−1转速对絮凝工艺处理效能的影响,结果如图2(c)所示。当转速为0~300 r·min−1时,絮凝效果随转速的增加而提高,色度、腐殖质及COD去除率分别从0 r·min−1的20.4%、14.2%和13.3%提高至300 r·min−1下的79.8%、59.2%和73.3%,B/C由0.18增至0.22。而当絮凝转速增至400 r·min−1时,相较于300 r·min−1垃圾渗滤液纳滤浓缩液絮凝效果出现下降,色度、腐殖质及COD去除率由79.8%、59.2%和73.3%下降至74.0%、55.3%和69.4%,B/C从0.22降至0.21。上述结果表明,适宜搅拌强度是保证PFS、胶体以及絮体间能够充分接触的必要条件,需要注意的是,在搅拌强度过高时,已经形成的絮体会被水的剪切力破碎从而致使去除率下降[26]

    根据以上实验结果,絮凝时间40 min、PFS投加量10 g·L−1、絮凝转速300 r·min−1为垃圾渗滤液纳滤浓缩液最佳絮凝条件。较GU等[27]用PFS处理渗滤液浓缩液的COD去除效果(44.4%)有较大提高。尽管絮凝去除了大部分污染物,絮凝处理后的垃圾渗滤液纳滤浓缩液可生化性依然较差[28],B/C仅为0.22,仍需进一步处理以提高可生化性。

    1) O3进气量对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。垃圾渗滤液纳滤浓缩液经絮凝处理后,尽管COD去除率达到73.3%,但B/C仍较低,无法保证后续生物工艺深度处理效果。因此,本实验采用O3/MNBs高级氧化技术进一步提高垃圾渗滤液纳滤浓缩液的可生化性。O3作为氧化剂直接参与氧化反应,其使用量直接影响整个O3/MNBs处理的效果。实验控制O3气体中O3质量浓度为80 mg·L−1,通过改变O3进气量来探究O3投加量对垃圾渗滤液纳滤浓缩液处理效果的影响。

    在初始pH为(5.8±0.2)、反应温度为(25±1) ℃的条件下,研究了O3进气量(50~500 mL·min−1)对O3/MNBs处理垃圾渗滤液纳滤浓缩液效果的影响,结果如图3所示。可见,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD去除率由O3进气量为50 mL·min−1条件下的35.3%、60.8%和10.3%提高至400 mL·min−1的77.6%、75.1%和26.5%。但当进一步提高O3进气量,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD的去除率均无明显增效,这与WU等[29]的研究结果相似。与色度、腐殖质及COD去除率随O3进气量增加而逐步上升的情况不同,O3/MNBs出水B/C在低O3进气量时出现了轻微降低的现象,B/C从垃圾渗滤液纳滤浓缩液絮凝处理后出水时的0.22分别降至50 mL·min−1下的0.14和100 mL·min−1下的0.13。进一步增加O3进气量,O3/MNBs出水B/C出现明显改善,在进气量由200 mL·min−1增至400 mL·min−1的条件下,O3/MNBs出水B/C由0.21增至0.44。但当O3进气量进一步增加至500 mL·min−1时,O3/MNBs出水B/C再次降低。这可能是由于水中O3含量较低时,O3优先与可生物降解污染物进行反应,BOD组分浓度下降;随着O3进气量的提高,O3与难以生物降解的耗氧有机物(以COD计)反应逐步占优,分解大分子难降解有机物并生成小分子有机物,BOD组分浓度上升;O3过量时,多余的O3会与·OH反应[30],导致处理效果不佳,垃圾渗滤液纳滤浓缩液的B/C出现下降。综合考虑,O3/MNBs工艺最佳参数O3进气量为400 mL·min−1。O3投加量是影响O3/MNBs效能的重要因素,但并不是唯一因素,可通过调控其他因素来提高O3/MNBs工艺的处理效果。

    图 3  不同O3进气量对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响
    Figure 3.  Effects of different ozone intakes on the treatment of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate

    2)初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。O3氧化方式分为O3分子的直接氧化和·OH的间接氧化,·OH氧化还原电位(2.80 eV)比O3分子的氧化还原电位(2.07 eV)更高,具有更强的氧化性,同时,较O3分子选择性氧化,·OH可以对绝大多数污染物进行降解[31]。并且O3分子与·OH在O3/MNBs反应体系内存在如式(3)~(5)的反应过程,两者均与反应体系的pH密切相关:酸性条件下,体系以O3分子为主;而碱性条件下,体系以·OH为主[32]。O3/MNBs工艺通过改变垃圾渗滤液纳滤浓缩液絮凝处理后的出水初始pH,考察初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。

    确定最佳O3进气量为400 mL·min−1,在反应温度为(25±1) ℃时,探究初始pH(3、5、7、9、11)对垃圾渗滤液纳滤浓缩液絮凝上清液处理效果的影响,结果如图4所示。由图4(a)可知,当初始pH为3~5时,垃圾渗滤液纳滤浓缩液脱色率随着反应时间一直稳步上升,分别达到了73.3%和80.0%。在pH为7时,色度可完全去除,继续提高初始pH,完全脱色所用时间也越来越短。同时,提高垃圾渗滤液纳滤浓缩液的初始pH对腐殖质去除率也有增益,垃圾渗滤液纳滤浓缩液腐殖质去除率由pH=3时的71.7%增加到pH=11时的80.8%。此外,图4(b)结果显示初始pH对COD去除率和B/C的影响显著,pH=3时,COD去除率为26.3%;pH=11时,COD去除率为38.9%。B/C由pH=3时0.43提高到pH=11时的0.62,垃圾渗滤液纳滤浓缩液的可生化性大幅提升。上述结果表明,提高进水初始pH能够有效提高O3/MNBs体系对垃圾渗滤液纳滤浓缩液絮凝上清液中污染物的去除效果。从反应过程中pH变化(图4(c))可知,在初始pH=3时,反应体系pH从最初的pH=3提高至pH=3.51。这表明O3分子基本未消耗氢氧根离子产生·OH,此时,O3/MNBs反应体系以O3分子氧化为主,使得O3/MNBs体系具有氧化选择性,只能降解含有不饱和键的物质,整体污染物去除率较低[31]。后续提高初始pH,反应过程中pH均成下降趋势,表明O3分子消耗氢氧根离子生成·OH,随着初始pH提高,反应过程中pH下降趋势愈大,这是因为随着氢氧根离子浓度大幅增加,O3分子加速分解为·OH。同时,有研究[33]表明,MNBs表面通常带有负电荷,这意味着阴离子氢氧根将聚集在气-液界面,O3在界面处以更快的速度产生·OH。此外,MNBs的坍缩会产生更多的·OH[34],进一步提高垃圾渗滤液纳滤浓缩液絮凝上清液中的·OH的含量,最终使O3/MNBs工艺进水初始pH=11时,垃圾渗滤液纳滤浓缩液污染物去除率及出水B/C最高。因此,O3/MNBs反应体系处理垃圾渗滤液纳滤浓缩液絮凝上清液的最佳初始pH为11。

    图 4  不同初始pH对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响以及反应过程中pH的变化
    Figure 4.  Effects of different initial pH on the treatment effect of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate and the change of pH during the reaction process
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    3)温度对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。温度对传统O3氧化的影响较为显著,王新典等[35]研究发现单一O3体系在温度由15 ℃升到65 ℃时,对苯酚溶液的降解率从73.4%提高到89.2%。李玉英等[36]研究了在不同温度条件下,微电解-O3处理水杨酸的效能,水杨酸去除率由15 ℃的78.9%增至30 ℃的96.5%。因此,本实验研究了反应温度对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的影响。

    在最佳O3进气量400 mL·min−1,最佳初始pH=11的条件下,考察反应温度10~50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响,结果如图5所示。可见,在反应温度为10 ℃时,色度、腐殖质及COD去除率分别为100.0%、74.7%及33.5%,B/C从0.22增至0.58。反应温度20~50 ℃条件下,垃圾渗滤液纳滤浓缩液的脱色率均在40 min时达到95.0%左右,在80 min可实现色度的完全去除;垃圾渗滤液纳滤浓缩液的腐殖质去除率在80 min时达到80.0%左右,延长反应时间并无明显增效。由图5(b)可见,垃圾渗滤液纳滤浓缩液的COD去除率在20~50 ℃内无显著变化,均随时间逐步提高,最后去除率为37.0%左右;垃圾渗滤液纳滤浓缩液的B/C在20~50 ℃条件下的变化与COD去除率近似,B/C均从0.22增至0.62左右,上述结果表明在反应温度为10 ℃时,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能会略微降低,这一结果可能是O3分子在水体中存在传质阻力因降温而增大的现象[37],致使O3分子分解缓慢,大量O3分子直接逸散至空气中,参与反应的O3浓度降低。在反应温度20~50 ℃的条件下,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能均有所提高,这表明升温改善了O3分子传质阻力大的问题。需要注意的是,在反应温度为20~50 ℃时,反应温度从20 ℃增至50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能无显著影响。这可能是由于随着反应温度的升高,O3的传质效率和反应速率会有所提高,但存在着温度升高O3因分子热运动在垃圾渗滤液纳滤浓缩液中溶解度下降的问题[38]。从反应活化能角度来看,升温会促进溶液中的放热反应,但同时也会抑制存在的吸热反应。垃圾渗滤液纳滤浓缩液含有大量污染物,在O3/MNBs实验中同时发生大量的吸热和放热反应,当垃圾渗滤液纳滤浓缩液中所有放热反应和吸热反应叠加在一起所呈现出来的表观活化能数值比较小时,O3/MNBs体系的反应速率对反应温度的变化就会比较迟钝,体现为反应温度对垃圾渗滤液纳滤浓缩液污染物去除率并无明显影响。这与游丽华[22]研究温度对微气泡O3氧化去除污染物效果得出的结论相似。综合考虑,选择30 ℃为最佳反应温度。综上所述,在O3进气量400 mL·min−1、初始pH=11、反应温度为30 ℃的条件下可以实现O3/MNBs的最佳处理效果。

    图 5  不同温度对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响
    Figure 5.  Effect of different temperatures on the treatment effect of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate

    为进一步研究絮凝-O3/MNBs耦合工艺对垃圾渗滤液纳滤浓缩液可生化性的影响,本实验在垃圾渗滤液纳滤浓缩液中选取代表性的PPCPs,如BPA、SDZ、SMX和NPX等药物污染物进行深入研究。有研究表明,现有污水处理厂的活性污泥体系中的微生物无法有效去除大部分PPCPs[39],同时PPCPs会对微生物产生毒害作用[40]。因此,垃圾渗滤液纳滤浓缩液中的高浓度PPCPs的去除对垃圾渗滤液纳滤浓缩液可生化的影响尤为重要。

    本研究采用的絮凝耦合O3/MNBs工艺对垃圾渗滤液纳滤浓缩液中PPCPs污染物有较高的去除效率,结果如图6(a)所示。最佳条件下的絮凝工艺对垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX去除率分别为32.3%、30.8%、34.5%和25.7%,BPA、SDZ、SMX及NPX的质量浓度分别从垃圾渗滤液纳滤浓缩液原液的194.1、29.4、25.0和20.3 μg·L−1降至絮凝工艺出水的131.5、20.3、16.4和15.1 μg·L−1。而在进一步的O3/MNBs处理中,垃圾渗滤液纳滤浓缩液中的BPA、SDZ、SMX和NPX去除率增至60.4%、100.0%、80.4%和67.7%。这一结果表明,垃圾渗滤液纳滤浓缩液通过絮凝工艺去除PPCPs的效能是有限的,絮凝出水进一步通过O3/MNBs工艺处理,才可实现较高的PPCPs去除率。这可能是因为絮凝通过吸附电中和及网捕卷扫作用去除胶体物质,对于非胶体物质,主要通过PFS絮凝剂形成的铁盐氢氧化物网状沉淀裹挟去除[41],PPCPs这类结构尺寸较小的物质可穿过较大孔径的网眼留在垃圾渗滤液纳滤浓缩液絮凝出水中。在进一步的O3/MNBs工艺中,垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX等PPCPs通过O3分子和·OH氧化降解[42-45],母体被分解成小分子物质甚至是完全矿化。絮凝-O3/MNBs耦合工艺处理BPA、SDZ、SMX及NPX等难降解物质的过程与垃圾渗滤液纳滤浓缩液中B/C的变化相互验证:絮凝工艺在去除垃圾渗滤液纳滤浓缩液大分子有机物的同时也去除了部分小分子有机物,使得B/C从垃圾渗滤液纳滤浓缩液原液的0.09增至絮凝出水的0.22,可生化性增幅较小,而后的O3/MNBs工艺在降解大分子有机物的同时也生成了小分子有机物,垃圾渗滤液纳滤浓缩液可生化性显著提高,B/C从絮凝出水的0.22增至0.62。

    图 6  絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX和NPX的效能以及整个体系生物毒性的变化
    Figure 6.  Efficacy of the coupled flocculation-O3/MNBs process treating of BPA, SDZ, SMX and NPX in nanofiltration concentrates of landfill leachate and changes in whole system biotoxicity

    垃圾渗滤液纳滤浓缩液因含有高浓度有机物、无机盐和重金属等污染物,具有相当高的生物毒性,本实验采用V.fischeri法检测其生物毒性,并以发光抑制率作为生物毒性的直观体现。垃圾渗滤液纳滤浓缩液原液的发光抑制率高达92.4%,属高毒水体,对于生物工艺的微生物种群有着极高的毒害作用。垃圾渗滤液纳滤浓缩液进行生物处置前,须经预处理工艺降低水质毒性。

    在絮凝-O3/MNBs耦合工艺最佳实验条件下,垃圾渗滤液纳滤浓缩液的生物毒性变化如图6(b)所示,絮凝工艺对垃圾渗滤液纳滤浓缩液生物毒性的处理效果非常显著,发光抑制率从垃圾渗滤液纳滤浓缩液原液的92.4%降至垃圾渗滤液纳滤浓缩液絮凝处理出水的50.6%,水质毒性等级从高毒降为重毒,生物毒性大幅降低。而在O3/MNBs中进一步反应,水中的O3分子和·OH通过加成反应、亲电反应、亲核反应和链式反应[13]来使大分子物质发生开环或是断链,有机物分子结构发生变化使得生物毒性降低。此外,O3/MNBs可以对垃圾渗滤液纳滤浓缩液中的重金属络合物进行破络,释放出的部分金属离子水解沉淀,减轻了垃圾渗滤液纳滤浓缩液重金属带来的生物毒性,絮凝处理后的垃圾渗滤液纳滤浓缩液对发光细菌的抑制率从50.6%降至20.3%。水质毒性等级从重毒降为低毒,生物毒性进一步降低。絮凝-O3/MNBs耦合工艺使垃圾渗滤液纳滤浓缩液的生物毒性从92.4%降至20.3%,水质毒性等级从原液的高毒级别降至絮凝-O3/MNBs耦合工艺处理出水的低毒级别,极大减轻了后续生物工艺的负荷,有效提高垃圾渗滤液纳滤浓缩液的可生化性,为垃圾渗滤液纳滤浓缩液进一步生物处置可提供良好的条件。

    1)在絮凝实验中,在絮凝时间为40 min,PFS投加量为10 g·L−1,絮凝转速为300 r·min−1的最佳条件下,垃圾渗滤液纳滤浓缩液的色度、腐殖质和COD去除率分别达到79.8%、59.2%和73.3%,B/C从0.09增至0.22,垃圾渗滤液纳滤浓缩液的可生化性得到改善,并为后续O3/MNBs工艺的高效处理创造有利条件。

    2) O3进气量为400 mL·min−1,初始pH=11,反应温度为30 ℃的条件可以实现O3/MNBs的最佳处理效果,经絮凝处理后的垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别为100.0%、80.8%和38.9%,B/C从0.22增至0.62,垃圾渗滤液纳滤浓缩液可生化性得到显著提升。

    3)絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液的B/C变化及纳滤浓缩液中BPA、SDZ、SMX和NPX等新污染物降解效率的研究一致表明絮凝-O3/MNBs耦合工艺是提升垃圾渗滤液纳滤浓缩液可生化性的有效方法,最佳处置条件下能有效减弱垃圾渗滤液纳滤浓缩液72.1%生物毒性。

  • 图 1  FeOH,NiOH,ZrOH及Fe-Ni,Fe-Zr复合材料的SEM图

    Figure 1.  SEM images of the FeOH, NiOH, ZrOH and Fe-Ni, Fe-Zr composite materials

    图 2  Fe-Ni及Fe-Zr复合材料的XRD图

    Figure 2.  XRD patterns of the Fe-Ni and Fe-Zr composite materials

    图 3  Fe-Ni及Fe-Zr复合材料的O1s XPS图

    Figure 3.  O1s XPS spectra of the Fe-Ni and Fe-Zr composite materials

    图 4  Fe-Ni及Fe-Zr复合材料的氧近边XAS图

    Figure 4.  O K-edge XAS spectra of the Fe-Ni and Fe-Zr composite materials

    图 5  FeOH、NiOH、ZrOH、Fe-Ni和Fe-Zr复合材料的PO34AsO34吸附曲线

    Figure 5.  PO34 and AsO34 adsorption curves by the FeOH, NiOH, ZrOH, Fe-Ni and Fe-Zr composite materials

    图 6  Fe-Ni和Fe-Zr复合材料的形成及其含氧阴离子吸附机理示意图

    Figure 6.  Schematic illustrations for the formation and oxyanionic adsorption mechanism of Fe-Ni and Fe-Zr composite materials

    表 1  Fe-Ni和Fe-Zr复合金属水合氧化物的PO34AsO34的拟合吸附容量

    Table 1.  PO34 and AsO34 adsorption capacities of the Fe-Ni and Fe-Zr materials

    材料PO34AsO34
    qm/(mg·g−1)R2qm/(mg·g−1)R2
    FeOH34.70.96766.70.995
    FN3135.00.95969.40.971
    FN1136.80.89187.70.963
    FN1347.00.93080.00.961
    NiOH34.20.96978.50.986
    FZ3159.90.99084.00.958
    FZ1168.00.99287.00.971
    FZ1370.920.98692.60.942
    ZrOH73.00.983104.20.951
    材料PO34AsO34
    qm/(mg·g−1)R2qm/(mg·g−1)R2
    FeOH34.70.96766.70.995
    FN3135.00.95969.40.971
    FN1136.80.89187.70.963
    FN1347.00.93080.00.961
    NiOH34.20.96978.50.986
    FZ3159.90.99084.00.958
    FZ1168.00.99287.00.971
    FZ1370.920.98692.60.942
    ZrOH73.00.983104.20.951
    下载: 导出CSV
  • [1] 刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. doi: 10.12030/j.cjee.201803195
    [2] FANG L P, WU B L, LO I M. Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism[J]. Chemical Engineering Journal, 2017, 319: 258-267. doi: 10.1016/j.cej.2017.03.012
    [3] 施川, 张盼月, 郭建斌, 等. 污泥生物炭的磷吸附特性[J]. 环境工程学报, 2016, 10(12): 7202-7208. doi: 10.12030/j.cjee.201508021
    [4] 晋银佳, 陈享享, 王丰吉, 等. 氨基复合铁氧化物对As(Ⅴ)的吸附性能与机理[J]. 环境工程学报, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
    [5] MANNING B A, FENDORF S E, GOLDBERG S. Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes[J]. Environmental Science & Technology, 1998, 32(16): 2383-2388.
    [6] KIM J, LI W, PHILIPS B L, et al. Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): A 31P NMR study[J]. Energy & Environmental Science, 2011, 4: 4298-4305.
    [7] 崔蒙蒙, 刘锋, 黄天寅, 等. 水铁矿吸附磷酸根的影响因素[J]. 环境工程学报, 2017, 11(4): 2285-2290. doi: 10.12030/j.cjee.201602079
    [8] LI W, FENG X, YAN Y, et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides[J]. Environmental Science & Technology, 2013, 47: 8308-8315.
    [9] KAPPEN P, WEBB J. An EXAFS study of arsenic bonding on amorphous aluminium hydroxide[J]. Applied Geochemistry, 2013, 31: 79-83. doi: 10.1016/j.apgeochem.2012.12.007
    [10] VICENTE I, HUANG P, ANDERSEN F, et al. Phosphate adsorption by fresh and aged aluminum hydroxide: Consequences for lake restoration[J]. Environmental Science & Technology, 2008, 42: 6650-6655.
    [11] PENA M E, MENG X G, KORFIATIS G P, et al. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide[J]. Environmental Science & Technology, 2006, 40(4): 1257-1262.
    [12] JU X Q, HOU J F, TANG Y Q, et al. ZrO2 nanoparticles confined in CMK-3 as highly effective sorbent for phosphate adsorption[J]. Microporous and Mesoporous Materials, 2016, 230: 188-195. doi: 10.1016/j.micromeso.2016.05.002
    [13] RODRIGUES L A, MASCHIO L J, COPPIO L S C, et al. Adsorption of phosphate from aqueous solution by hydrous zirconium oxide[J]. Environmental Technology, 2012, 33: 1345-1351. doi: 10.1080/09593330.2011.632651
    [14] LUO X B, WU X, RENG Z, et al. Enhancement of phosphate adsorption on zirconium hydroxide by ammonium modification[J]. Industrial & Engineering Chemistry Research, 2017, 56(34): 9419-9428.
    [15] XIE J, WANG Z, LU S Y, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254: 163-170. doi: 10.1016/j.cej.2014.05.113
    [16] XU R, ZHANG M Y, MORTIMER R J G, et al. Enhanced phosphorus locking by novel lanthanum/aluminum hydroxide composite: implications for eutrophication control[J]. Environmental Science & Technology, 2017, 51: 3418-3425.
    [17] REN Z M, SHAO L N, ZHANG G S. Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent[J]. Water, Air & Soil Pollution, 2012, 223: 4221-4231.
    [18] LU J B, LIU H J, ZHAO X, et al. Phosphate removal from water using freshly formed Fe-Mn binary oxide: Adsorption behaviors and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455: 11-18.
    [19] LIU Y T, HESTERBERG D. Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates[J]. Environmental Science & Technology, 2011, 45: 6283-6289.
    [20] LI R, WANG J J, ZHOU B, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. doi: 10.1016/j.scitotenv.2016.03.151
    [21] LI J F, GYOTEN H, SONODA A, et al. Removal of trace arsenic to below drinking water standards using a Mn-Fe binary oxide[J]. RSC Advances, 2017, 7: 1490-1497. doi: 10.1039/C6RA26806D
    [22] LI G L, GAO S, ZHANG G S, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)-copper(II) binary oxides[J]. Chemical Engineering Journal, 2014, 235: 124-131. doi: 10.1016/j.cej.2013.09.021
    [23] GU W, XIE Q, XING M C, et al. Enhanced adsorption of phosphate onto zinc ferrite by incorporating cerium[J]. Chemical Engineering Research and Design, 2017, 117: 706-714. doi: 10.1016/j.cherd.2016.11.026
    [24] DOU X M, ZHANG Y, ZHAO B, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: EXAFS study and surface complexation modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379: 109-115.
    [25] 杨雪, 陈静, 李秋梅, 等. 新型铁铜铝三元复合氧化物除磷性能与机制研究[J]. 环境科学学报, 2018, 38(2): 501-510.
    [26] 王建燕, 张传巧, 陈静, 等. 新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J]. 环境科学学报, 2019, 39(8): 2575-2585.
    [27] SU Y, YANG W Y, SUN W Z, et al. Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water[J]. Chemical Engineering Journal, 2015, 268: 270-279. doi: 10.1016/j.cej.2015.01.070
    [28] XIANG C, WANG H J, JI Q H, et al. Tracking internal electron shuttle using X-ray spectroscopies in La/Zr hydroxide for reconciliation of charge-transfer interaction and coordination toward phosphate[J]. ACS Applied Materials & Interfaces, 2019, 11: 24699-24706.
    [29] KUZNETSOV D A, HAN B H, YU Y, et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis[J]. Joule, 2018, 2: 225-244. doi: 10.1016/j.joule.2017.11.014
    [30] WANG X Y, GAO X J, QIN L, et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics[J]. Nature Communications, 2019, 10: 704. doi: 10.1038/s41467-019-08657-5
    [31] SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3: 546-550. doi: 10.1038/nchem.1069
    [32] BULAVCHENKO O A, VINOKUROV Z S, AFONASENKO T N, et al. Reduction of mixed Mn-Zr oxides: In situ XPS and XRD studies[J]. Dalton Transactions, 2015, 44: 15499-15507. doi: 10.1039/C5DT01440A
    [33] YOSHINAGA T, SARUYAMA M, XIONG A, et al. Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts[J]. Nanoscale, 2018, 10: 10420-10427. doi: 10.1039/C8NR00377G
    [34] LEE S, BAI L C, HU X L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel iron layered double hydroxide[J]. Angewandte Chemie International Edition, 2020, 59(21): 8072-8077. doi: 10.1002/anie.201915803
    [35] ZHOU D J, WANG S Y, JIA Y, et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis[J]. Angewandte Chemie International Edition, 2019, 58: 736-740. doi: 10.1002/anie.201809689
    [36] WANG Y Y, XIE C, ZHANG Z Y, et al. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction[J]. Advanced Functional Materials, 2018, 28: 1703363. doi: 10.1002/adfm.201703363
    [37] ZHANG M, ZHANG J F, WU Y Q, et al. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Applied Catalysis B: Environmental, 2019, 244: 427-437. doi: 10.1016/j.apcatb.2018.11.068
    [38] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32: 751-767. doi: 10.1107/S0567739476001551
    [39] CHEN J G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds[J]. Surface Science Reports, 1997, 30: 1-152. doi: 10.1016/S0167-5729(97)00011-3
    [40] SUNTIVICH J, HONG W T, LEE Y L, et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2014, 118: 1856-1863. doi: 10.1021/jp410644j
    [41] MEIGHAN M, MACNEIL J, FALCONER R. Determining the solubility product of Fe(OH)3: An equilibrium study with environmental significance[J]. Journal of Chemical Education, 2008, 85: 254-255. doi: 10.1021/ed085p254
    [42] WANG Q, CUI M, HOU Y, et al. The effect of precipitation pH on thermal stability and structure of Ce0.35Zr0.55(LaPr)0.1O2 oxides prepared by co-precipitation method[J]. Journal of Alloys and Compounds, 2017, 712: 431-436. doi: 10.1016/j.jallcom.2017.04.105
    [43] LI M X, LIU J Y, XU Y F, et al. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review[J]. Environmental Reviews, 2016, 24: 319-132. doi: 10.1139/er-2015-0080
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.4 %DOWNLOAD: 4.4 %HTML全文: 81.5 %HTML全文: 81.5 %摘要: 14.2 %摘要: 14.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.3 %其他: 95.3 %XX: 3.4 %XX: 3.4 %上海: 0.0 %上海: 0.0 %北京: 0.8 %北京: 0.8 %北海: 0.0 %北海: 0.0 %南昌: 0.0 %南昌: 0.0 %天津: 0.0 %天津: 0.0 %徐州: 0.1 %徐州: 0.1 %抚顺: 0.0 %抚顺: 0.0 %济南: 0.0 %济南: 0.0 %深圳: 0.0 %深圳: 0.0 %郑州: 0.0 %郑州: 0.0 %阳泉: 0.1 %阳泉: 0.1 %驻马店: 0.0 %驻马店: 0.0 %其他XX上海北京北海南昌天津徐州抚顺济南深圳郑州阳泉驻马店Highcharts.com
图( 6) 表( 1)
计量
  • 文章访问数:  6257
  • HTML全文浏览数:  6257
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-12
  • 录用日期:  2020-05-30
  • 刊出日期:  2021-01-10
向超, 张弓, 于洁, 王洪杰, 付军. Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制[J]. 环境工程学报, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074
引用本文: 向超, 张弓, 于洁, 王洪杰, 付军. Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制[J]. 环境工程学报, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074
XIANG Chao, ZHANG Gong, YU Jie, WANG Hongjie, FU Jun. Doping characteristics of Fe-Ni and Fe-Zr hydroxides and their adsorption mechanisms towards aqueous PO34 and AsO34 anions[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074
Citation: XIANG Chao, ZHANG Gong, YU Jie, WANG Hongjie, FU Jun. Doping characteristics of Fe-Ni and Fe-Zr hydroxides and their adsorption mechanisms towards aqueous PO34 and AsO34 anions[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 8-19. doi: 10.12030/j.cjee.202003074

Fe-Ni、Fe-Zr水合氧化物的掺杂特征及其对PO34AsO34的吸附机制

    通讯作者: 王洪杰(1972—),男,博士,教授。研究方向:生态环境污染修复。E-mail:hongjiewang@bjfu.edu.cn
    作者简介: 向超(1987—),男,博士研究生。研究方向:生态环境污染机制与修复技术。E-mail:chaos618@163.com
  • 1. 北京林业大学环境科学与工程学院,北京 100083
  • 2. 清华大学环境学院,环境模拟与污染控制国家重点实验室,水质与水生态研究中心,北京 100084
  • 3. 中日环境友好保护中心,北京 100029
基金项目:
国家水体污染控制与治理科技重大专项(2018ZX07110);国家自然科学基金面上项目(51578067,51778054,51708543)

摘要: 水中含氧阴离子的高效去除是水质净化领域的研究前沿和热点之一。以地球上含量丰富的、具有代表性的3d过渡金属Fe、Ni和前4d过渡金属Zr的金属盐为前驱物,采用水热法,制备了过渡金属的水合氧化物及Fe-Ni和Fe-Zr复合水合氧化物,并以磷酸根和砷酸根为目标污染物,评价了这些过渡金属的水合氧化物及Fe-Ni和Fe-Zr复合材料的吸附性能。结果表明:Fe-Ni复合材料吸附性能优于单一材料,Fe-Zr复合材料的吸附性能归因于Zr的本征吸附活性;少量Ni或Zr的掺杂可显著调控过渡金属d电子态,Fe和Ni在晶体晶格中相互掺杂形成Fe-Ni复合氧化物,而Fe-Zr复合材料中FeOH和ZrOH以混合的晶粒形式存在。综合上述结果,Fe-Ni和Fe-Zr水合氧化物不同的掺杂特征是造成复合吸附材料对含氧阴离子吸附效能差异的根本原因。

English Abstract

  • 含氧阴离子是水环境中广泛存在的对水生动植物及水生态产生重要影响的一些非金属离子及一些重金属离子的总称,其统一的化学表示为XOmn,其中PO34AsO34是水环境中典型的含氧阴离子[1-4]。金属水合氧化物吸附剂材料,如FeOOH[5-7]、Al(OH)3[8-10]、TiO2[11]、ZrO2[12]、Zr(OH)4[13-14]和La(OH)3[15]等,因其具有高效的含氧酸阴离子吸附性能而受到广泛关注,特别是近年来金属复合材料的增强吸附机制已成为环境材料领域的研究热点。与单一组分金属水合氧化物相比,某些双金属及多金属复合材料拥有更好的含氧酸阴离子吸附性能[2, 16-27]。有研究[16, 20, 23, 27]表明,这些金属复合材料对含氧阴离子吸附性能具有特定的最优金属比,或通过物理混合物对比证实了金属复合材料的吸附增强特性[18]。前期对镧锆复合金属材料吸附研究提出金属离子掺杂电子结构调控增强吸附[28],但是金属复合材料的吸附增强机制尚待深入研究。另外,通过对比研究发现,上述材料中的镧(La)和锆(Zr)等前过渡金属材料表现出比铁(Fe)等后过渡金属更为突出的含氧阴离子吸附性能,而且这些过渡金属材料的含氧阴离子高效吸附特性在一些特定反应过程中蕴藏着潜在的规律,如析氧反应(OER)和氧还原反应(ORR)等[29-31]。这些研究[29-31]提出,过渡金属3d与O2p的σ*反键轨道电子填充度,即eg描述符,用以揭示过渡金属材料的OER和ORR电催化活性,但过渡金属水合物的形成机制及其对含氧阴离子的作用机制仍待深入研究。本研究的主要目标为:采用统一合成方法制备系列过渡金属水合氧化物及其复合材料;研究过渡金属水合氧化物对典型含氧酸阴离子的吸附效能;探讨过渡金属水合氧化物的形成机制和过渡金属水合氧化物及其复合材料对含氧阴离子的吸附机制,以期为后续过渡金属水合氧化物材料开发及其对含氧阴离子吸附过程及调控机制等研究提供理论支持。

  • 过渡金属水合氧化物吸附材料是通过水热法制备的,具体制备过程如下。选择Fe(NO3)3·9H2O、Ni(NO3)3·6H2O和Zr(NO3)4·5H2O作为起始原料,使用乙醇作为溶剂,并加入环氧丙烷引发胶凝作用。在60 ℃磁力搅拌下,分别将12 mmol 金属硝酸盐溶解在80 mL乙醇中,用于获得金属硝酸盐溶液。澄清后,将前体溶液冷却至室温,定量吸取0.024 mol环氧丙烷溶液并在剧烈搅拌下缓慢加入所得到的金属硝酸盐溶液中。2 min后,将形成的透明溶液倒入100 mL聚四氟乙烯(PTFE)水热反应釜内胆中,并转移到不锈钢高压釜中,在自生压力下于200 ℃进行溶剂热处理。20 h后,将高压釜缓慢冷却至环境温度。将所得的湿凝胶在60 ℃下蒸发48 h,得到干凝胶,然后先后分别用去离子水和无水乙醇反复洗涤3次。将获得的沉淀物在60 ℃下干燥48 h,然后研磨成细粉。根据样品合成过程中使用的金属盐命名样品,即FeOH、NiOH和ZrOH。Fe-Ni和Fe-Zr复合金属水合氧化物由相同方法制备,其样品的命名是根据样品合成过程中的Fe:Ni或Fe:Zr的物质的量之比,即FN31、FN11、FN13或FZ31、FZ11、FZ13。材料制备及实验中所用试剂均为国药分析纯试剂。

  • 吸附实验是通过将0.01 g吸附剂悬浮在50 mL去离子水中而进行的,P浓度为10~100 mg·L−1和As浓度为5~50 mg·L−1。在实验前,使用1 mol·L−1 HCl或KOH调节液将溶液pH 调至7.0±0.1,然后将上述悬浊液放置在(25±1) ℃恒温摇床中,以200 r·min−1转速摇动24 h。到达预定时间后,通过电感耦合等离子体发射光谱法(ICP-OES)测定上清液中磷或砷的浓度。每个数据点分别做3次平行实验,根据Langmuir吸附模型对所得实验数据进行拟合,如式(1)所示。

    式中:qe为平衡吸附量,mg·g−1qm为吸附材料的吸附容量,mg·g−1KL为吸附参数,L·mg−1Ce为平衡时体系中吸附质的浓度,mg·L−1

  • 采用SU8000扫描电子显微镜(SEM,日本,日立公司)、X’ Pert PRO MPDX射线衍射仪(XRD,德国,布鲁克公司)、PHI 5600 X射线光电子能谱仪(XPS,美国,Physical Electronics公司)对反应前后的材料样品进行形貌、物相和表面元素形态分析。采用中科院高能物理研究所北京同步加速器辐射设施(BSRF)的4B7B线站对材料样品表面氧元素进行氧近边光吸收谱(XAS)分析。采用iCAP8000电感耦合等离子体光谱仪(美国,赛默飞公司)对溶液中的磷和砷的浓度进行分析。

  • 合成的FeOH、NiOH、ZrOH及Fe-Ni、Fe-Zr复合材料的SEM和XRD图谱如图1图2所示。FeOH材料呈纳米颗粒团簇状,颗粒尺寸约为100 nm,颗粒聚集体尺寸可达数微米,其结构松散、易脱落。FeOH材料的XRD谱图与三方相Fe2O3(00-033-00664)卡片比对吻合,这说明所合成的FeOH材料为颗粒均匀且结构松散的铁氧化物。NiOH材料呈纳米花瓣状,其球状尺寸约为1 μm,整体花簇状尺寸可达5 μm以上。NiOH材料的XRD图谱显示,其各衍射峰峰位置与FeOH材料(Fe2O3)相近,这说明NiOH材料为镍的氧化物。前3个强衍射峰的位置相对于晶体相Fe2O3后移,这进一步说明在相同晶格中Fe和Ni原子的电荷的差别[32-33]。此外,NiOH和FeOH材料的XRD衍射模式,即衍射峰强度比存在显著差异。在NiOH材料的XRD谱图中,位于24°附近的峰最强,而在FeOH材料中此峰的强度远远小于在33°附近的峰。XRD衍射模式的差异与晶体的晶面取向相关,这正是NiOH与FeOH材料的形貌不同的表现。ZrOH材料呈块状,结构密实,块形尺寸为5 μm以上。合成所得ZrOH材料的XRD谱图与ZrO2(00-037-1484)卡片比对吻合,其在大约30°及50°~60°处的大峰包,表明ZrOH材料为非晶态ZrO2相材料。

    另外,由图1可知,复合金属水合氧化物的形貌结构存在一定的变化趋势。Fe-Ni复合金属水合氧化物的形貌从FN31的类似FeOH松散团簇状结构随着镍含量的升高发展为FN13的类似NiOH材料花簇状结构。与之类似,Fe-Zr复合金属水合氧化物的形貌随着锆含量的升高从FZ31的类似FeOH松散团簇状结构发展为FZ13的类似ZrOH材料块状密实结构。结合上述对其单一金属水合氧化物的物相分析,Fe-Ni、Fe-Zr复合金属水合氧化物材料中存在FeOH-NiOH和FeOH-ZrOH间晶体物相的竞争。由XRD模式(图2)的差异可知,复合金属水合氧化物材料的晶面取向有所不同,说明在形成复合金属水合氧化物材料过程中存在晶体物相的相互干扰。如图2(a)所示,FN11的XRD图谱中无明显其他新衍射峰的出现,由此可知FN11材料中无其他物相形成。Fe-Ni复合金属水合氧化物的XRD峰强度的相对变化,表明FN11材料中仅为FeOH-NiOH间金属离子的互混,最近LEE等[34]采用Raman谱也证实了镍铁氢氧化物中Fe和Ni原子的掺杂。然而,FZ11的XRD的图谱中在对应位置处均出现显著的FeOH的特征衍射峰和30°附近对应的ZrO2峰包,如图2(b)所示。FZ11材料中包含这2种晶体相成分,确认了Fe-Zr复合材料为FeOH和ZrOH混合晶体颗粒。同时,Fe-Ni、Fe-Zr复合金属水合氧化物材料所对应晶体衍射峰强度均显著有所降低,这表明复合材料中FeOH、NiOH和ZrOH晶粒尺寸的减小,暗示材料中晶体物相间存在竞争干扰。

  • 通过O1s XPS表征来进一步确认各金属水合氧化物表面的氧物种形态。由图3可以看出,在各金属水合氧化物中的氧物种形态主要以形成晶体的晶格氧M—O、表面金属羟基M—OH及其结合水形式存在[35-37]。对这些材料中O1s XPS谱的峰形分析表明,FeOH、NiOH、ZrOH金属水合氧化物材料表面氧形态组成存在显著差异:FeOH材料以晶格氧M—O为主,而NiOH和ZrOH 材料以M—OH为主;另外表面结合水含量也存在差异:FeOH材料结合水含量较低,而NiOH和ZrOH材料结合水含量较高。由以上分析可知,此合成方法制得的FeOH中铁离子易与体系氧物种缩合形成氧化物晶体,而NiOH和ZrOH分别形成水合态氧化物晶体NiOH和非晶水合氧化物ZrOH。比较Fe-Ni和Fe-Zr复合材料的O1s XPS图谱发现,FeOH在形成氧化物晶体的结晶过程中,易受到体系中Ni3+和Zr4+金属离子的干扰,致使Fe-Ni、Fe-Zr复合材料中M—OH和结合水含量显著增加。一方面,Fe-Ni和Fe-Zr复合材料中同时分别含有Fe—O、Ni—O、Fe—OH、Ni—OH和Fe—O、Zr—O、Fe—OH、Zr—OH,这表明复合金属水合氧化物材料中氧物种组成成分没有发生变化。另一方面,Fe-Ni复合材料的XRD图谱已经确认了材料中Fe和Ni在相近的晶体晶格中的相互掺杂,并且Fe3+和Ni3+离子半径相近,满足相互掺杂的必要条件(与6个氧配位的高和低自旋的Fe3+离子半径分别为0.064 5 nm和0.055 0 nm,与6个氧配位的高和低自旋的Ni3+离子半径分别为0.060 0 nm和0.056 0 nm[38]);对于Fe-Zr复合材料而言,由于非晶态的氧化锆与Fe2O3晶体相的显著差别,以及Zr4+离子半径较大(与6个和7个氧配位的Zr4+离子半径分别为0.072 0 nm和0.078 0 nm[38]),Fe3+和Zr4+不容易相互掺杂,Fe-Zr复合材料而是形成混合的FeOH和ZrOH晶粒。

  • 为进一步确定各金属水合氧化物材料表面的氧物种形态及物理化学特征,我们分别调查了Fe-Ni、Fe-Zr及其复合材料的氧近边XAS谱。氧近边XAS谱表现的是10 nm附近的材料表面的物理化学特征,O1s轨道电子到费米能级及费米能级以上空域的激发态[39]。过渡金属水合氧化物复杂的电子结构与局域化的金属d电子态和d电子相互作用有关。通过揭示具有d轨道的O2p杂化状态,氧近边XAS分析为研究由不同金属的存在引起的化学状态变化的灵敏方法,这有助于进一步了解复合材料对含氧阴离子的吸附机理。

    图4为Fe-Ni及Fe-Zr复合材料的氧近边XAS图。Fe和Ni的水合氧化物及其复合材料的氧近边XAS谱如图4(a)所示,其主要由530~532、533~535及536~543 eV的3个谱带组成。为了阐明能量顺序,进一步分析了金属-氧配体的成键或反键特性。有研究[39-40]表明,可以将谱峰分配给金属和氧配体的t2g、eg和4sp杂化轨道。此外,结合水的谱峰位置大约在534~537 eV。氧近边XAS谱中位于530~532 eV的谱峰表明过渡金属Fe/Ni与氧配体间的成键或反键作用,即t2g和eg杂化轨道,其电子分布表征了过渡金属d电子间的相互作用。对于FeOH金属水合氧化物材料,Fe3+ 电子态3d5采取的是t32ge2g,氧近边XAS谱图在相应位置表现为两峰的交叠。对于NiOH金属水合氧化物材料,Ni3+电子态3d7采取的是t62ge1g,氧近边XAS谱图在相应位置表现为孤立的eg峰。进一步比较Fe-Ni复合材料谱图发现,在复合材料形成过程中,少量的掺杂便可显著的调控过渡金属d电子态;比较结合水的峰强度,发现少量的镍掺杂可大幅提升材料的结合水含量,使得Fe-Ni复合材料的水合程度增加,这符合XRD和XPS的相关结论。

    Fe和Zr的水合氧化物及其复合材料的氧近边XAS谱如图4(b)所示,主要由530~532、533~535、535~537和538~543 eV处的4个峰组成。同理,可以用金属-氧配体间的成键或反键相互作用进行谱分析。对于FeOH金属水合氧化物材料,Fe3+电子态3d5采取的是t32ge2g。对于ZrOH金属水合氧化物材料,Zr4+电子态4d0采取的是t02ge0g,533 eV和536 eV 处2个峰与之相对应。进一步比较Fe-Zr复合材料图谱发现,在复合材料形成的过程中,少量锆的掺杂便可显著的调控过渡金属d电子态;比较结合水的峰强度发现,少量的锆掺杂就可大幅提升材料的结合水含量,使得Fe-Zr复合材料的水合程度增加,这与XPS的相关结论一致。

  • 图5为FeOH、NiOH、ZrOH、Fe-Ni和Fe-Zr复合材料的PO34AsO34吸附曲线。考虑到磷酸根及砷酸根具有相近的pKa(分别为2.12、7.2、12.36和2.2、7.00、11.50),本研究选定在pH=7.0的条件来评价所选材料的吸附容量,以此评价各吸附材料的吸附性能,从而构建材料特征与吸附性能的关系。Fe、Ni和Zr金属水合氧化物的磷酸根和砷酸根吸附性能如图5(a)图5(b)所示。在pH=7.0、温度为25 ℃条件下,Fe、Ni和Zr金属水合氧化物的磷酸根和砷酸根的拟合吸附容量分别约为34.7、34.2、73.0 mg·g−1和66.7、78.5、104.2 mg·g−1。在相同条件下,ZrOH材料对磷和砷的吸附性能也远大于FeOH和NiOH,吸附能力顺序为FeOH、NiOH<ZrOH。

    Fe-Ni和Fe-Zr复合金属水合氧化物的磷酸根和砷酸根吸附性能分别如图5(c)图5(d)所示,其吸附容量拟合值见表1。首先,Fe-Ni和Fe-Zr复合金属水合氧化物的磷酸根吸附性能趋势显著不同:Fe-Ni复合金属水合氧化物的磷酸根吸附性能要优于单一金属水合氧化物FeOH和NiOH,而Fe-Zr复合金属水合氧化物的磷酸根吸附性能随吸附材料锆含量的升高而显著增加。另外,Fe-Ni和Fe-Zr复合金属水合氧化物的砷酸根吸附性能具有类似的趋势。Fe-Ni复合金属水合氧化物的含氧阴离子吸附性能有所增强的原因可能为Fe-Ni复合材料形成过程中的铁镍水合干扰引起的形貌改变,使得吸附材料表面暴露的有效吸附位点的增多,也可能是材料中铁镍掺杂改变了过渡金属3d电子的状态,从而影响了金属铁镍的本征吸附活性。Fe-Zr复合金属水合氧化物的锆依赖吸附活性可归因于Zr金属的本征吸附活性。

  • 图6为Fe-Ni和Fe-Zr复合材料的形成及其含氧阴离子吸附机理示意图。Fe、Ni、Zr金属水合氧化物的形成过程如图6(a)所示。在金属离子水解过程中,金属离子结合羟基,在水热合成中环氧丙烷的氧结合质子,可加速金属离子结合羟基并相互缩合,使之发生进一步晶体化。当混有不同金属离子时,根据金属离子水解能力的不同,结合羟基能力强的金属离子先结合,在到达一定程度后,结合羟基能力弱的金属离子也开始水解,并参与到金属羟基团簇的缩合反应中。在本研究中,根据Fe(OH)3和Zr(OH)4的溶度积(Ksp分别为1.6×10−36和3.0×10−49)可知,离子形成氢氧化物沉淀的能力为Zr4+>Fe3+,Zr4+先于Fe3+离子水解形成沉淀[41-42],这也是Fe-Zr复合材料的形貌以ZrOH材料为基础而变化的原因;由XAS分析结果可知,Fe3+与Ni3+离子的电子构型分别为t32ge2gt62ge1g,根据eg轨道填充规则,Ni—O比Fe—O结合略强,其形成氢氧化物沉淀的能力相近,Fe-Ni复合材料形成过程中Fe3+与Ni3+离子同步水解沉淀,这为Fe3+与Ni3+离子掺杂提供了必要条件。根据XRD分析,Fe-Ni复合材料中Fe和Ni在晶体晶格中相互掺杂形成Fe-Ni复合氧化物,Fe-Zr复合材料中,由于ZrO2晶型不同以及Zr4+离子的离子半径较大,Fe3+不容易掺杂其中,Fe-Zr复合材料以混合的FeOH和ZrOH晶粒形式存在。同时XPS与XAS分析表明,少量的镍和锆离子的掺杂可大幅提升复合材料的结合水含量,表明Fe-Ni和Fe-Zr复合材料为水合氧化物。

  • 金属水合氧化物的含氧阴离子吸附作用包括物理吸附和化学吸附[43]。物理吸附发生在吸附剂与吸附质相距较远的空间,吸附剂与吸附质之间的作用力不是很大,由于分子热运动的存在,不足以将其牢牢固定在吸附剂的表面。当这些被物理吸附在表面附近的吸附质由于不规则热运动更加靠近吸附剂表面的吸附位点时,由于其碰撞方向匹配及间距足够小,此时吸附位点上被物理吸附的水分子被这个吸附质分子挤开,吸附质分子通过离子键或共价键的形式牢牢固定在吸附剂表面,此过程为化学吸附作用,如图6(b)所示。

    对于复合金属水合氧化物的吸附机制,需要从复合材料的形成过程加以分析。就Fe-Ni复合金属水合氧化物的物质结构和磷酸根吸附性能的综合分析来看,Fe-Ni复合金属水合氧化物的除磷性能有所增强。其吸附增强的可能机制是金属的掺杂调控了化学吸附作用。如前所述,Fe-Ni复合材料形成过程的铁镍水合干扰引起的形貌改变,使得吸附表面的增加或暴露的吸附位点增多,也可能是材料中铁镍掺杂改变了过渡金属3d电子的状态,从而影响了金属铁镍的本征吸附活性。根据氧近边 XAS表征结果分析,可能是两者共同的结果。Fe-Ni复合材料形成过程的铁镍水合干扰,引起了金属氧化物Fe2O3结晶度的降低,金属水合位点增多,这也是引起其形貌改变的原因,形貌的改变并不是吸附性能增强的原因,其真正原因是金属水合位点的增多,即有效化学吸附活性位点的增多。一方面,XPS和XAS分析结果表明,少量的镍掺杂可大幅提升Fe-Ni复合材料的结合水含量。如图6(c)所示,根据eg轨道填充规则[31], Ni3+离子的t62ge1g电子构型更易容纳水分子中氧的2p电子,导致含镍材料中结合水含量增加。Fe-Ni复合材料的铁镍掺杂调控了eg轨道电子态,削弱了金属与羟基及结合水的结合强度,使得有效的含氧阴离子吸附活性位点增多。另一方面,Fe-Ni复合材料的铁镍掺杂调控也能增加其化学吸附物种的电子状态,使其以相对稳定的状态固定在其表面上。对于Fe-Zr复合金属水合氧化物,其物质结构是Fe与Zr水合氧化物晶粒的混合。非晶态锆氧化物ZrOH材料拥有大量的结合水,而FeOH材料中的结合水含量相对较少。与Fe-Ni复合材料类似地,Zr4+离子的t02ge0g电子构型使其更易容纳水分子中氧的2p电子,导致含锆材料中结合水含量增加。Fe-Zr金属掺杂调控带来的金属水合位点的增多远不及因锆含量降低带来的金属水合位点的减少,且不管Fe与Zr水合氧化物团簇的混合提供的电子调控能力。所以Fe-Zr复合金属水合氧化物的除磷除砷性能随吸附材料锆含量的升高而显著增加,与Fe-Ni复合金属水合氧化物形成对比。Fe-Zr复合金属水合氧化物的锆依赖吸附活性可归因于Zr4+离子的t02ge0g电子构型以及其高配位性质导致的高本征吸附活性。

  • 1)复合金属水合氧化物材料的形成机制的差异:Fe和Ni的水合氧化物由于其离子半径和形成的晶体结构相近,Fe和Ni元素掺杂形成Fe-Ni复合水合氧化物材料;而Fe和Zr的水合氧化物由于其离子半径和形成的晶体结构差异显著,Fe和Zr离子掺杂仅形成FeOH和ZrOH微小晶体颗粒的混合团簇。

    2)过渡金属水合氧化物材料的含氧阴离子吸附性能顺序为FeOH、NiOH<Fe-Ni<Fe-Zr<ZrOH。复合水合氧化物吸附材料的含氧阴离子的吸附机制的差异为:Fe-Ni复合水合氧化物材料中Fe和Ni元素掺杂可调控材料3d电子态,通过电子态调控强化吸附性能;而Fe-Zr复合金属水合氧化物的锆依赖吸附活性可归因于Zr4+离子的t02ge0g电子构型以及其高配位性质导致的高本征吸附活性。

参考文献 (43)

返回顶部

目录

/

返回文章
返回