[1] |
刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. doi: 10.12030/j.cjee.201803195
|
[2] |
FANG L P, WU B L, LO I M. Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism[J]. Chemical Engineering Journal, 2017, 319: 258-267. doi: 10.1016/j.cej.2017.03.012
|
[3] |
施川, 张盼月, 郭建斌, 等. 污泥生物炭的磷吸附特性[J]. 环境工程学报, 2016, 10(12): 7202-7208. doi: 10.12030/j.cjee.201508021
|
[4] |
晋银佳, 陈享享, 王丰吉, 等. 氨基复合铁氧化物对As(Ⅴ)的吸附性能与机理[J]. 环境工程学报, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
|
[5] |
MANNING B A, FENDORF S E, GOLDBERG S. Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes[J]. Environmental Science & Technology, 1998, 32(16): 2383-2388.
|
[6] |
KIM J, LI W, PHILIPS B L, et al. Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): A 31P NMR study[J]. Energy & Environmental Science, 2011, 4: 4298-4305.
|
[7] |
崔蒙蒙, 刘锋, 黄天寅, 等. 水铁矿吸附磷酸根的影响因素[J]. 环境工程学报, 2017, 11(4): 2285-2290. doi: 10.12030/j.cjee.201602079
|
[8] |
LI W, FENG X, YAN Y, et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides[J]. Environmental Science & Technology, 2013, 47: 8308-8315.
|
[9] |
KAPPEN P, WEBB J. An EXAFS study of arsenic bonding on amorphous aluminium hydroxide[J]. Applied Geochemistry, 2013, 31: 79-83. doi: 10.1016/j.apgeochem.2012.12.007
|
[10] |
VICENTE I, HUANG P, ANDERSEN F, et al. Phosphate adsorption by fresh and aged aluminum hydroxide: Consequences for lake restoration[J]. Environmental Science & Technology, 2008, 42: 6650-6655.
|
[11] |
PENA M E, MENG X G, KORFIATIS G P, et al. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide[J]. Environmental Science & Technology, 2006, 40(4): 1257-1262.
|
[12] |
JU X Q, HOU J F, TANG Y Q, et al. ZrO2 nanoparticles confined in CMK-3 as highly effective sorbent for phosphate adsorption[J]. Microporous and Mesoporous Materials, 2016, 230: 188-195. doi: 10.1016/j.micromeso.2016.05.002
|
[13] |
RODRIGUES L A, MASCHIO L J, COPPIO L S C, et al. Adsorption of phosphate from aqueous solution by hydrous zirconium oxide[J]. Environmental Technology, 2012, 33: 1345-1351. doi: 10.1080/09593330.2011.632651
|
[14] |
LUO X B, WU X, RENG Z, et al. Enhancement of phosphate adsorption on zirconium hydroxide by ammonium modification[J]. Industrial & Engineering Chemistry Research, 2017, 56(34): 9419-9428.
|
[15] |
XIE J, WANG Z, LU S Y, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254: 163-170. doi: 10.1016/j.cej.2014.05.113
|
[16] |
XU R, ZHANG M Y, MORTIMER R J G, et al. Enhanced phosphorus locking by novel lanthanum/aluminum hydroxide composite: implications for eutrophication control[J]. Environmental Science & Technology, 2017, 51: 3418-3425.
|
[17] |
REN Z M, SHAO L N, ZHANG G S. Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent[J]. Water, Air & Soil Pollution, 2012, 223: 4221-4231.
|
[18] |
LU J B, LIU H J, ZHAO X, et al. Phosphate removal from water using freshly formed Fe-Mn binary oxide: Adsorption behaviors and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455: 11-18.
|
[19] |
LIU Y T, HESTERBERG D. Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates[J]. Environmental Science & Technology, 2011, 45: 6283-6289.
|
[20] |
LI R, WANG J J, ZHOU B, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. doi: 10.1016/j.scitotenv.2016.03.151
|
[21] |
LI J F, GYOTEN H, SONODA A, et al. Removal of trace arsenic to below drinking water standards using a Mn-Fe binary oxide[J]. RSC Advances, 2017, 7: 1490-1497. doi: 10.1039/C6RA26806D
|
[22] |
LI G L, GAO S, ZHANG G S, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)-copper(II) binary oxides[J]. Chemical Engineering Journal, 2014, 235: 124-131. doi: 10.1016/j.cej.2013.09.021
|
[23] |
GU W, XIE Q, XING M C, et al. Enhanced adsorption of phosphate onto zinc ferrite by incorporating cerium[J]. Chemical Engineering Research and Design, 2017, 117: 706-714. doi: 10.1016/j.cherd.2016.11.026
|
[24] |
DOU X M, ZHANG Y, ZHAO B, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: EXAFS study and surface complexation modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379: 109-115.
|
[25] |
杨雪, 陈静, 李秋梅, 等. 新型铁铜铝三元复合氧化物除磷性能与机制研究[J]. 环境科学学报, 2018, 38(2): 501-510.
|
[26] |
王建燕, 张传巧, 陈静, 等. 新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J]. 环境科学学报, 2019, 39(8): 2575-2585.
|
[27] |
SU Y, YANG W Y, SUN W Z, et al. Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water[J]. Chemical Engineering Journal, 2015, 268: 270-279. doi: 10.1016/j.cej.2015.01.070
|
[28] |
XIANG C, WANG H J, JI Q H, et al. Tracking internal electron shuttle using X-ray spectroscopies in La/Zr hydroxide for reconciliation of charge-transfer interaction and coordination toward phosphate[J]. ACS Applied Materials & Interfaces, 2019, 11: 24699-24706.
|
[29] |
KUZNETSOV D A, HAN B H, YU Y, et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis[J]. Joule, 2018, 2: 225-244. doi: 10.1016/j.joule.2017.11.014
|
[30] |
WANG X Y, GAO X J, QIN L, et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics[J]. Nature Communications, 2019, 10: 704. doi: 10.1038/s41467-019-08657-5
|
[31] |
SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3: 546-550. doi: 10.1038/nchem.1069
|
[32] |
BULAVCHENKO O A, VINOKUROV Z S, AFONASENKO T N, et al. Reduction of mixed Mn-Zr oxides: In situ XPS and XRD studies[J]. Dalton Transactions, 2015, 44: 15499-15507. doi: 10.1039/C5DT01440A
|
[33] |
YOSHINAGA T, SARUYAMA M, XIONG A, et al. Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts[J]. Nanoscale, 2018, 10: 10420-10427. doi: 10.1039/C8NR00377G
|
[34] |
LEE S, BAI L C, HU X L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel iron layered double hydroxide[J]. Angewandte Chemie International Edition, 2020, 59(21): 8072-8077. doi: 10.1002/anie.201915803
|
[35] |
ZHOU D J, WANG S Y, JIA Y, et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis[J]. Angewandte Chemie International Edition, 2019, 58: 736-740. doi: 10.1002/anie.201809689
|
[36] |
WANG Y Y, XIE C, ZHANG Z Y, et al. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction[J]. Advanced Functional Materials, 2018, 28: 1703363. doi: 10.1002/adfm.201703363
|
[37] |
ZHANG M, ZHANG J F, WU Y Q, et al. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide[J]. Applied Catalysis B: Environmental, 2019, 244: 427-437. doi: 10.1016/j.apcatb.2018.11.068
|
[38] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32: 751-767. doi: 10.1107/S0567739476001551
|
[39] |
CHEN J G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds[J]. Surface Science Reports, 1997, 30: 1-152. doi: 10.1016/S0167-5729(97)00011-3
|
[40] |
SUNTIVICH J, HONG W T, LEE Y L, et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2014, 118: 1856-1863. doi: 10.1021/jp410644j
|
[41] |
MEIGHAN M, MACNEIL J, FALCONER R. Determining the solubility product of Fe(OH)3: An equilibrium study with environmental significance[J]. Journal of Chemical Education, 2008, 85: 254-255. doi: 10.1021/ed085p254
|
[42] |
WANG Q, CUI M, HOU Y, et al. The effect of precipitation pH on thermal stability and structure of Ce0.35Zr0.55(LaPr)0.1O2 oxides prepared by co-precipitation method[J]. Journal of Alloys and Compounds, 2017, 712: 431-436. doi: 10.1016/j.jallcom.2017.04.105
|
[43] |
LI M X, LIU J Y, XU Y F, et al. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review[J]. Environmental Reviews, 2016, 24: 319-132. doi: 10.1139/er-2015-0080
|