-
化学镀镍是一种前沿的表面处理技术,具有镀层均匀、耐腐蚀、操作方便等优点,在汽车、电子、石油等领域得到了广泛的应用[1]。在化学镀镍的过程中,镍离子通过次磷酸盐、氨基硼烷、硼氢化合物的还原作用沉积在金属的表面[2]。随着反应的进行,溶液中的镍离子和次磷酸盐不断减少,通常需要补充硫酸镍和次磷酸钠,但是积存的亚磷酸盐、硫酸盐、钠等物质降低了金属薄膜的质量,因此,须更换镀液,更换镀液的过程中产生了大量的废槽液,再加上镀件表面的清洗流程,化学镀镍活动会消耗大量的清洗水。
化学镀镍废水含有较高浓度的次亚磷酸钠、重金属镍,为提高镀层的质量、镀液的稳定性及金属镍的沉积速度,在化学镀镍液中均须添加各种有机酸络合剂[3],故在化学镍废水中也含有较高的COD。目前,化学镀镍废水的处理方法主要有化学沉淀法、离子交换法、膜分离及吸附法[4]。施银燕等[5]发现H2O2、NaOH和聚丙烯酰胺能够沉淀、回收化学镀镍废水中大部分的镍离子。白滢等[6]以电镀废水为处理对象,研究了高分子重金属絮凝剂PEX对废水中重金属离子、浊度及有机污染物的处理效果。虽然化学沉淀法能够有效去除废水中的重金属离子,但因其产生的污泥量大,故处理污泥危废的成本较高,并且化学沉淀法难以协同去除废水中的次亚磷酸盐。LI等[7]对化学镀镍废液在电渗析回收过程中的2种阳离子交换膜的不同性能进行了测试,发现其能有效去除废液中的有害金属离子(亚磷酸、硫酸盐和钠)。但是离子交换法、膜分离及吸附法存在操作难度高、膜易受污染、离子交换剂饱和及再生等问题[8]。
电化学方法是一种有效的环境友好的净水技术,其在水中发生电化学反应,经过絮凝、沉淀、氧化和还原等组合作用,可在短时间内完成对多种污染物的去除[9]。电絮凝技术已经广泛应用于电镀废水处理中,可有效去除废水中的多种重金属污染物;电芬顿法处理电镀废水也已有报道[10-13]。研究针对化学镀镍废水中的镍离子、有机污染物和次亚磷酸盐,开展了电化学处理研究,详细考察了电絮凝、双氧水强化电絮凝等对化学镀镍废水中的总磷、镍离子与COD的去除效果,并分析了影响去除效果的主要因素与影响机制,可为电镀废水中的次亚磷酸盐、有机物和镍离子的有效去除提供技术参考。
电芬顿法去除化学镀镍废水中的镍、总磷和COD
Removal of nickel, total phosphorus and COD from electroless nickel plating wastewater by electro-Fenton method
-
摘要: 采用电芬顿法处理化学镀镍废水,分别考察了电流密度、初始pH和H2O2投加量对镍离子、总磷和COD去除效果的影响。结果表明:随着电流密度的增大,镍离子和COD的去除率提高,总磷去除率也逐渐增加;当初始pH为3时,对镍离子、COD和总磷的去除效果最好;随着H2O2投加量的增加,镍离子去除率并没有明显的提高,总磷和COD的去除率表现为先增大后减小。优化所得的最佳工艺参数:电流密度为10 mA·cm−2、初始pH为3、30% H2O2投加量为6 mL·L−1、反应40 min,镍离子、总磷和COD的去除率分别达到96.6%、91.5%和84.7%。此外,随着电化学反应的进行,反应体系不断升高的pH导致生成的正磷酸盐沉淀溶出,总磷去除率降低。镍离子主要是通过电絮凝作用去除,总磷和COD主要通过芬顿氧化后吸附沉淀而被去除。以上研究证明,采用电芬顿方法处理化学镀镍废水具有较好的应用前景。Abstract: Electro-Fenton method was used to treat electroless plating nickel wastewater. The effects of current density, initial pH and dose of hydrogen peroxide (H2O2) on the removal of nickel ions, total phosphorus and COD were studied. The results showed that with the increase of current density, the removal rates of nickel ions and COD increased, and the removal rate of total phosphorus gradually increased. At initial pH of 3, the best removal effects of nickel ions, total phosphorus and COD occurred. With the increase of the dose of hydrogen peroxide, the removal rate of nickel ions did not significantly increase, and the removal rates of total phosphorus and COD first increased and then decreased. The optimal process parameters were following: the current density of 10 mA·cm−2, initial pH 3, H2O2 (30%) dose of 6 mL·L−1 and the reaction time of 40 min, at which the removal rates of nickel ions, total phosphorus and COD reached 96.6%, 91.5% and 84.7%, respectively. With the progress of the electro-Fenton reaction, the continuous increase of the reaction system pH led to the dissolution of the orthophosphate precipitate, the decrease of the removal rate of total phosphorus. The removal of nickel ions was mainly attributed to electric flocculation reaction, while the removal of total phosphorus and COD were mainly attributed to Fenton oxidation, adsorption and precipitation. The above research proves that the electro-Fenton method has good application prospects in the treatment of electroless nickel plating wastewater.
-
-
[1] BULASARA V K, THAKURIA H, UPPALURI R, et al. Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths[J]. Journal of Materials Processing Technology, 2011, 211(9): 1488-1499. doi: 10.1016/j.jmatprotec.2011.03.022 [2] HORIKAWA K, HIRASAWA I. Removal and recovery of nickel ion from wastewater of electroless plating by reduction crystallization[J]. Korean Journal of Chemical Engineering, 2000, 17(6): 629-632. doi: 10.1007/BF02699108 [3] LISSENS G, VERHAEGE M, PINOY L, et al. Electro-Fenton decomplexing and oxidation of organic (chelating) additives in effluents from surface treatment and metal finishing[J]. Journal of Chemical Technology & Biotechnology, 2003, 78(10): 1054-1060. [4] 戴文灿, 周发庭. 电镀含镍废水治理技术研究现状及展望[J]. 工业水处理, 2015, 35(7): 14-18. doi: 10.11894/1005-829x.2015.35(7).014 [5] 施银燕, 徐玉福, 胡献国. 化学沉淀法回收化学镀镍废水中镍的研究[J]. 电镀与环保, 2011, 31(5): 44-46. doi: 10.3969/j.issn.1000-4742.2011.05.015 [6] 白滢, 常青. 高分子重金属絮凝剂PEX处理电镀废水研究[J]. 中国给水排水, 2006, 22(19): 53-55. doi: 10.3321/j.issn:1000-4602.2006.19.015 [7] LI C L, ZHAO H X, TSURU T, et al. Recovery of spent electroless nickel plating bath by electrodialysis[J]. Electroplating & Finishing, 2007, 157(2): 241-249. [8] 蔡艳. 离子交换树脂在废水处理中的综合应用[D]. 合肥: 安徽大学, 2010. [9] 曲久辉, 刘会娟. 水处理电化学原理与技术[M]. 北京: 科学出版社, 2007. [10] HUANG Y H, SU H T, LIN L W. Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes[J]. Journal of Environmental Sciences, 2009, 21(1): 35-40. doi: 10.1016/S1001-0742(09)60008-5 [11] SHIH Y J, LIN C P, HUANG Y H. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation and Purification Technology, 2013, 104: 100-105. doi: 10.1016/j.seppur.2012.11.025 [12] ZHAO Z, LIU Z, WANG H, et al. Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents[J]. Chemosphere, 2018, 202: 238-245. doi: 10.1016/j.chemosphere.2018.03.090 [13] ZHAO X, ZHANG B, LIU H, et al. Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro-Fenton process[J]. Chemosphere, 2012, 87(6): 631-636. doi: 10.1016/j.chemosphere.2012.01.054 [14] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [15] LAKSHMANAN D, CLIFFORD D A, SAMANTA G. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation[J]. Water Research, 2010, 44(19): 5641-5652. doi: 10.1016/j.watres.2010.06.018 [16] 雷乐成. 水处理高级氧化技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007. [17] 毛岩鹏. 水体中铁盐与磷酸盐的相互作用机理及其数学模型研究[D]. 济南: 山东大学, 2012. [18] 李婷. 亚铁强化去除水中磷酸盐的作用机制与效能[D]. 哈尔滨: 哈尔滨工业大学, 2015. [19] ZHANG Y Q, ZHANG Q Z, ZUO S J, et al. A highly efficient flow-through electro-Fenton system enhanced with nitrilotriacetic acid for phenol removal at neutral pH[J]. Science of the Total Environment, 2019, 697: 134173. doi: 10.1016/j.scitotenv.2019.134173