-
三氯乙烯(TCE)作为氯代烃的一种,具有水溶性差、易吸附于土壤以及化学结构稳定等特点,因此,其很难从低渗透土壤介质中被去除。长期存在于土壤介质中的TCE作为污染源,会持续污染土壤和地下水,并严重威胁着人类健康[1-2]。近年来,表面活性剂由于对氯代烃污染物具有增溶作用,故其受到了越来越多的关注。表面活性剂可分为阳离子型表面活性剂、阴离子型表面活性剂和非离子型表面活性剂。大量研究[3-6]表明,阳离子型表面活性剂较容易吸附到土壤颗粒上,而阴离子型表面活性剂容易与土壤中的阳离子共沉淀,相比于阳离子型和阴离子型表面活性剂,非离子型表面活性剂由于其临界胶束浓度低,具有更好的增溶能力和经济效益。作为非离子型表面活性剂,吐温-80(Tween-80)具有非离子型表面活性剂的许多优点,如水溶性好、稳定性高、受电解质和酸碱等外部因素影响较小等。此外,与其他非离子型表面活性剂相比,Tween-80具有成本低、对土壤和地下水中微生物的毒性弱等优点[7-8]。因此,Tween-80已广泛应用于土壤和地下水中氯代烃污染物的增溶过程中。然而,为了防止二次污染,Tween-80增溶后的TCE溶液需要进一步处理,但含有表面活性剂的TCE会被Tween-80形成的胶束包裹,从而影响TCE的处理效果[9]。因此,如何高效去除含表面活性剂Tween-80的水相中的TCE是当前亟待解决的一个技术难题。
高级氧化技术(AOPs)因具有高效快速的特性,常被用于处理含有表面活性剂水溶液中的污染物[10-11]。在高级氧化技术中,常用的氧化剂主要有臭氧[12]、过氧化氢[13-14]、过硫酸盐[15-16]和过碳酸钠[17-18]等。过碳酸钠(Na2CO3·1.5H2O2,SPC)被称为固体过氧化氢(H2O2),是一种实用价值较高的绿色氧化剂。作为H2O2的载体,SPC与水混合时可以释放出H2O2[19]。其分解产物通常为水、二氧化碳和碳酸钠,故其具有无毒性及无二次污染的优势。与传统的H2O2相比,SPC具有价格低廉、操作安全、方便储存运输和适用pH范围广等优点[20]。与过硫酸盐相比,SPC可以通过引入碳酸根,以保证水环境pH不致过低,进而降低氧化过程酸性条件对水环境中微生物的影响[21]。基于上述优点,近年来SPC在污染场地修复中受到了越来越多的关注[22-23]。
与传统Fenton反应[24]相似,Fe(Ⅱ)可以活化SPC用于降解各种污染物。然而,该体系反应速度过快,Fe(Ⅱ)迅速转化为Fe(Ⅲ),不能持续降解污染物,制约了其在实际中的应用。纳米零价铁(nZVI)作为一种环境友好型催化材料,与普通铁粉相比,具有更强的还原能力和更好的迁移能力,近年来常用于污染场地修复[25-26]。但是该过程耗时长、成本高。采用nZVI活化SPC需要降低溶液的pH,因为只有在酸性条件下nZVI表面才被腐蚀且释放出Fe(Ⅱ)。
迄今为止,将nZVI与Fe(Ⅱ)协同活化SPC应用于降解有机污染物(含表面活性剂)的研究尚鲜有报道。本研究基于Fe(Ⅱ)与SPC释放的H2O2反应产生强氧化性的羟基自由基(·OH)的过程中,也同时降低溶液pH的特点,通过nZVI自身腐蚀逐步释放Fe(Ⅱ),及时地将体系中产生的Fe(III)转化为Fe(Ⅱ),以期达到持续强化的协同效果。nZVI协同Fe(Ⅱ)活化SPC体系既能克服单独的Fe(Ⅱ)活化SPC时不能持续高效降解TCE的缺点,也能克服单独的nZVI不能活化SPC的不足,具有较高的潜在应用价值。鉴于此,本研究以含Tween-80的水相中TCE为研究对象,SPC/Fe(Ⅱ)/nZVI为反应体系,主要探究了在Tween-80存在下该反应体系降解TCE的有效性;分别考察了Tween-80浓度、溶液初始pH以及无机阴离子对TCE降解效果的影响;最后考察了该体系中活性氧自由基的类型及其对TCE降解的作用机制。
纳米零价铁协同Fe(Ⅱ)活化过碳酸钠降解含吐温-80水体中的三氯乙烯
Degradation of trichloroethylene in aqueous solution containing surfactant Tween-80 by nanoscale zero-valent iron and Fe(Ⅱ) synergistically activating sodium percarbonate
-
摘要: 在表面活性剂吐温-80(Tween-80)存在下,采用纳米零价铁(nZVI)协同Fe(Ⅱ)共同活化过碳酸钠(SPC)体系去除污染物场地水相中的三氯乙烯(TCE),验证了SPC/Fe(Ⅱ)/nZVI体系降解TCE的有效性,探究了Tween-80浓度、无机阴离子以及溶液初始pH对TCE降解效果的影响,并确定了该体系中活性氧自由基的类型。结果表明:nZVI协同Fe(Ⅱ)共同活化SPC能够高效持续降解TCE,在TCE和Tween-80初始浓度分别为0.15 mmol·L−1和13 mg·L−1的溶液中,SPC、Fe(Ⅱ)和nZVI的投加量分别为0.6 mmol·L−1、0.6 mmol·L−1和25 mg·L−1时,在60 min内,TCE的降解率可达97.3%;Tween-80的存在会抑制TCE的降解,Tween-80浓度越高,抑制效果越明显;溶液中Cl−的存在对TCE的影响不明显,而
$ {\rm{HCO}}_3^ {-} $ 的抑制效果较明显;当溶液初始pH为2.0~5.2时,SPC/Fe(Ⅱ)/nZVI体系可有效去除TCE;化学探针实验证明体系中产生了·OH和$ {\rm{O}}_2^ {-} $ ·,自由基淬灭实验证实了降解TCE起主导作用的是·OH。综上所述,SPC/Fe(Ⅱ)/nZVI体系可以有效地去除含吐温-80的水相中的TCE,本研究成果可为污染土壤场地修复工程提供参考。Abstract: In the presence of surfactant Tween-80, the system of nanoscale zero-valent iron (nZVI) and Fe(Ⅱ) synergistically activating sodium percarbonate (SPC) was used to remove trichloroethene (TCE) in aqueous phase of contaminated sites. The effectiveness of TCE degradation by SPC/Fe(Ⅱ)/nZVI system was demonstrated. The effects of Tween-80 concentration, inorganic anions concentration and initial solution pH on TCE degradation were explored. The generation of the reactive oxygen species (ROSs) was confirmed. The experimental results showed that TCE could be degraded continuously and effectively by the nZVI and Fe(Ⅱ) synergistically activated SPC system. In the aqueous solution with 0.15 mmol·L−1 TCE and 13 mg·L−1 Tween-80, 97.3% TCE could be degraded within 60 min by SPC/Fe(Ⅱ)/nZVI system at the dosages of 0.6 mmol·L−1 SPC, 0.6 mmol·L−1 Fe(Ⅱ) and 25 mg·L−1 nZVI. The presence of Tween-80 could inhibit TCE degradation, and the inhibitive effect increased with the increase of Tween-80 concentration. The presence of Cl− in solution had no obvious effect on TCE removal, while the presence of$ {\rm{HCO}}_3^ {-} $ in solution had significant inhibitive effect. TCE removal performed well at the initial solution pH range of 2.0~5.2 in SPC/Fe(Ⅱ)/nZVI system. The chemical probe tests confirmed that ·OH and$ {\rm{O}}_2^ {-} $ · were generated in the system, and radical scavenging tests suggested that the major ROSs responsible for TCE degradation was ·OH. The above results strongly confirmed that TCE could be efficiently removed from water phase containing Tween-80 by SPC/Fe(Ⅱ)/nZVI system, and it provides a theoretical basis for practical application in TCE contaminated site remediation. -
表 1 Tween-80(初始浓度260 mg·L−1)在有无TCE体系中浓度的变化
Table 1. Changes of concentration of Tween-80 (the initial concentration 260 mg·L−1) in systems with or without TCE
反应时间/
minSPC/Fe(Ⅱ)/nZVI
Tween-80浓度/
(mg·L−1)SPC/Fe(Ⅱ)/nZVI/
TCE Tween-80浓度/
(mg·L−1)0 260 260 3 239 233 15 207 228 30 208 218 60 205 199 -
[1] 张凤君, 王斯佳, 马慧, 等. 三氯乙烯和四氯乙烯在土壤和地下水中的污染及修复技术[J]. 科技导报, 2012, 30(18): 65-72. doi: 10.3981/j.issn.1000-7857.2012.18.010 [2] CLEWELL H J, GENTRY P R, GEARHART J M, et al. Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: Examples with vinyl chloride and trichloroethylene[J]. Chemosphere, 1995, 31(1): 2561. doi: 10.1016/0045-6535(95)00124-Q [3] 李爽, 胡晓钧, 李玉双, 等. 表面活性剂对多环芳烃的淋洗修复[J]. 环境工程学报, 2017, 11(3): 1899-1905. doi: 10.12030/j.cjee.201512026 [4] SINGH S K, JOHN S. Surfactant-enhanced remediation of soils contaminated with petroleum hydrocarbons[J]. International Journal of Environment and Waste Management, 2013, 11(2): 178. doi: 10.1504/IJEWM.2013.051843 [5] 李果, 毛华军, 巩宗强, 等. 几种表面活性剂对柴油及多环芳烃的增溶作用[J]. 环境科学研究, 2011, 24(7): 775-780. [6] 马浩, 刘元元, 肖文燕, 等. 表面活性剂CMC对石油烃污染土壤的增溶[J]. 环境工程学报, 2016, 10(12): 7333-7338. doi: 10.12030/j.cjee.201507133 [7] 王欢, 王瑶, 肖鹏飞, 等. 非-阴离子表面活性剂对PAHs的增溶作用及无机盐的强化效果研究[J]. 环境科学与管理, 2014, 39(10): 96-100. doi: 10.3969/j.issn.1673-1212.2014.10.021 [8] BAI X X, WANG Y, ZHENG X, et al. Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the $ {\rm{UV}}/{{\rm{S}}_2}{\rm{O}}_8^{2 - }$ process and recycling of the surfactant[J]. Chemical Engineering Journal, 2019, 369: 1014-1023. doi: 10.1016/j.cej.2019.03.116[9] MA X H, ZHAO L, LIN Z R, et al. Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2,4,4′-trichlorodiphenyl from soil contaminated with capacitor oil[J]. Environmental Science and Pollution Research, 2016, 23(8): 7890-7898. doi: 10.1007/s11356-016-6037-2 [10] HUGUENOT D, MOUSSET E, VAN HULLEBUSCH E D, et al. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons[J]. Journal of Environmental Management, 2015, 153: 40-47. [11] MOUSSET E, OTURAN N, VAN HULLEBUSCH E D, et al. Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process: Study of soil washing recycling possibilities and environmental impact[J]. Water Research, 2014, 48: 306-316. doi: 10.1016/j.watres.2013.09.044 [12] SUNDER M, HEMPEL D C. Oxidation of tri- and perchloroethene in aqueous solution with ozone and hydrogen peroxide in a tube reactor[J]. Water Research, 1997, 31(1): 33-40. doi: 10.1016/S0043-1354(96)00218-7 [13] CHE H, BAE S, LEE W. Degradation of trichloroethylene by Fenton reaction in pyrite suspension[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361. [14] 黄伟英, 刘菲, 鲁安怀, 等. 过氧化氢与过硫酸钠去除有机污染物的进展[J]. 环境科学与技术, 2013, 36(9): 88-95. doi: 10.3969/j.issn.1003-6504.2013.09.018 [15] 李永涛, 岳东, 熊鑫高原, 等. 零价铁活化过硫酸钠降解含油废水[J]. 环境工程学报, 2016, 10(8): 4239-4243. doi: 10.12030/j.cjee.201503147 [16] 王继鹏, 胡林潮, 杨彦, 等. Fe2+活化过硫酸钠降解1,2-二氯苯[J]. 环境工程学报, 2014, 8(9): 3767-3772. [17] MIAO Z W, GU X G, LU S G, et al. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism[J]. Chemosphere, 2015, 119: 1120-1125. doi: 10.1016/j.chemosphere.2014.09.065 [18] 崔航, 傅晓日, 顾小钢, 等. 二价铁催化过碳酸钠处理水中乙苯[J]. 中国环境科学, 2016, 36(5): 1449-1455. doi: 10.3969/j.issn.1000-6923.2016.05.024 [19] LA CALLE R G, GIMENO O, RIVAS J, et al. Percarbonate as a hydrogen peroxide carrier in soil remediation processes[J]. Environmental Engineering Science, 2012, 29(10): 951-956. doi: 10.1089/ees.2011.0237 [20] ZHANG Y H, XUE C M, GUO C H. Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater[J]. Procedia Environmental Sciences, 2011, 10: 1668-1673. doi: 10.1016/j.proenv.2011.09.262 [21] SINDELAR H R, BROWN M T, BOYER T H. Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources[J]. Chemosphere, 2014, 105: 112-118. doi: 10.1016/j.chemosphere.2013.12.040 [22] FU X R, GU X G, LU S G, et al. Benzene depletion by Fe(II)-catalyzed sodium percarbonate in aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 25-33. doi: 10.1016/j.cej.2014.12.104 [23] TANG P, JIANG W C, LU S G, et al. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol[J]. Environmental Technology, 2019, 40(3): 356-364. doi: 10.1080/09593330.2017.1393012 [24] YAP C L, GAN S Y, NG H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83(11): 1414-1430. doi: 10.1016/j.chemosphere.2011.01.026 [25] 朱雪强, 韩宝平. 零价铁修复受三氯乙烯污染地下水的实验研究[J]. 环境工程学报, 2012, 6(1): 94-98. [26] LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2015, 565: 889-901. [27] 许卉, 杨昕, 杨倩文, 等. 一种快速高效测定吐温80含量的比色方法及其应用: CN107300555A[P]. 2020-01-07. [28] YAN W, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water[J]. Journal of Contaminant Hydrology, 2010, 118(3): 96-104. [29] HAN Y, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J]. Environmental Science and Technology, 2016, 50(23): 12992-13001. doi: 10.1021/acs.est.6b03997 [30] ZANG X K, GU X G, LU S G, et al. Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system[J]. Environmental Technology, 2014, 35(5): 791-798. [31] 臧学轲, 吕树光, 顾小钢, 等. 泥浆系统中Fe2+活化过碳酸钠降解三氯乙烯[J]. 环境工程学报, 2015, 9(8): 4042-4046. doi: 10.12030/j.cjee.20150873 [32] 臧学轲. 羟胺促进柠檬酸-Fe2+活化过碳酸钠降解三氯乙烯[J]. 华东理工大学学报(自然科学版), 2018, 44(3): 454-462. [33] 贾汉忠, 宋存义, 李晖. 纳米零价铁处理地下水污染技术研究进展[J]. 化工进展, 2009, 28(11): 2028-2034. [34] CHENG M, ZENG G, HUANG D, et al. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds[J]. Chemical Engineering Journal, 2017, 314: 98-113. doi: 10.1016/j.cej.2016.12.135 [35] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science Technology, 2004, 38(13): 3705-3712. doi: 10.1021/es035121o [36] SMITH B A, TEEL A L, WATTS R J. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems[J]. Environmental Science Technology, 2004, 38(20): 5465-5469. doi: 10.1021/es0352754 [37] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [38] TEEL A L, WATTS R J. Degradation of carbon tetrachloride by modified Fenton's reagent[J]. Journal of Hazardous Materials, 2002, 94(2): 179-189. doi: 10.1016/S0304-3894(02)00068-7 [39] ZHANG X, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion[J]. Journal of Hazardous Materials, 2015, 284: 253-260. doi: 10.1016/j.jhazmat.2014.11.030 [40] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564 [41] KHAN J A, HE X X, KHAN H M, et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, $ {\rm{UV}}/{{\rm{S}}_2}{\rm{O}}_8^{2 - }$ /Fe2+ and$ {\rm{UV}}/{\rm{HSO}}_5^{- }$ /Fe2+ processes: A comparative study[J]. Chemical Engineering Journal, 2013, 218: 376-383. doi: 10.1016/j.cej.2012.12.055[42] LIPCZYNSKA E, SPRAH G, HARMS S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction[J]. Chemosphere, 1995, 30(1): 9-20. doi: 10.1016/0045-6535(94)00371-Z [43] SIEDLECKA E M, WIECKOWSKA A, STEPNOWSKI P. Influence of inorganic ions on MTBE degradation by Fenton’s reagent[J]. Journal of Hazardous Materials, 2007, 147(1/2): 497-502. [44] GREBEL J E, PIGNATELLO J J, MITCH W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science and Technology, 2010, 44(17): 6822. doi: 10.1021/es1010225 [45] BUXTON G V, ELLIOT A J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions[J]. International Journal of Radiation Applications & Instrumentation. Part C. Radiation Physics & Chemistry, 1986, 27(3): 241-243.